| 1 |
/*************************************************************************** |
| 2 |
* This program is free software; you can redistribute it and/or modify * |
| 3 |
* it under the terms of the GNU General Public License as published by * |
| 4 |
* the Free Software Foundation; either version 3 of the License, or * |
| 5 |
* (at your option) any later version. * |
| 6 |
* * |
| 7 |
* This program is distributed in the hope that it will be useful, * |
| 8 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of * |
| 9 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * |
| 10 |
* GNU General Public License for more details. * |
| 11 |
* * |
| 12 |
* You should have received a copy of the GNU General Public License * |
| 13 |
* along with this program; if not, see <http://www.gnu.org/licenses/>. * |
| 14 |
***************************************************************************/ |
| 15 |
|
| 16 |
/*** |
| 17 |
* This file was imported from qtpie, found at http://code.google.com/p/qtpie |
| 18 |
* and was modified minimally for use in OpenMD. |
| 19 |
* |
| 20 |
* No author attribution was found in the code, but it presumably is |
| 21 |
* the work of J. Chen and Todd J. Martinez. |
| 22 |
* |
| 23 |
* QTPIE (charge transfer with polarization current equilibration) is |
| 24 |
* a new charge model, similar to other charge models like QEq, |
| 25 |
* fluc-q, EEM or ABEEM. Unlike other existing charge models, however, |
| 26 |
* it is capable of describing both charge transfer and polarization |
| 27 |
* phenomena. It is also unique for its ability to describe |
| 28 |
* intermolecular charge transfer at reasonable computational cost. |
| 29 |
* |
| 30 |
* Good references to cite when using this code are: |
| 31 |
* |
| 32 |
* J. Chen and T. J. Martinez, "QTPIE: Charge transfer with |
| 33 |
* polarization current equalization. A fluctuating charge model with |
| 34 |
* correct asymptotics", Chemical Physics Letters 438 (2007), |
| 35 |
* 315-320. DOI: 10.1016/j.cplett.2007.02.065. Erratum: ibid, 463 |
| 36 |
* (2008), 288. DOI: 10.1016/j.cplett.2008.08.060 |
| 37 |
* |
| 38 |
* J. Chen, D. Hundertmark and T. J. Martinez, "A unified theoretical |
| 39 |
* framework for fluctuating-charge models in atom-space and in |
| 40 |
* bond-space", Journal of Chemical Physics 129 (2008), 214113. DOI: |
| 41 |
* 10.1063/1.3021400. |
| 42 |
* |
| 43 |
* J. Chen and T. J. Martinez, "Charge conservation in |
| 44 |
* electronegativity equalization and its implications for the |
| 45 |
* electrostatic properties of fluctuating-charge models", Journal of |
| 46 |
* Chemical Physics 131 (2009), 044114. DOI: 10.1063/1.3183167 |
| 47 |
* |
| 48 |
* J. Chen and T. J. Martinez, "The dissociation catastrophe in |
| 49 |
* fluctuating-charge models and its implications for the concept of |
| 50 |
* atomic electronegativity", Progress in Theoretical Chemistry and |
| 51 |
* Physics, to appear. arXiv:0812.1543 |
| 52 |
* |
| 53 |
* J. Chen, "Theory and applications of fluctuating-charge models", |
| 54 |
* PhD (chemical physics) thesis, University of Illinois at |
| 55 |
* Urbana-Champaign, Department of Chemistry, 2009. |
| 56 |
* |
| 57 |
* J. Chen and T. J. Martinez, "Size-extensive polarizabilities with |
| 58 |
* intermolecular charge transfer in a fluctuating-charge model", in |
| 59 |
* preparation. arXiv:0812.1544 |
| 60 |
*/ |
| 61 |
|
| 62 |
#include "config.h" |
| 63 |
#include <cmath> |
| 64 |
#include <cstdlib> |
| 65 |
#include <iostream> |
| 66 |
#include "math/Factorials.hpp" |
| 67 |
#include "utils/NumericConstant.hpp" |
| 68 |
|
| 69 |
#ifndef NONBONDED_SLATERINTEGRALS_HPP |
| 70 |
#define NONBONDED_SLATERINTEGRALS_HPP |
| 71 |
|
| 72 |
template <typename T> inline T sqr(T t) { return t*t; } |
| 73 |
template <typename T> inline T mod(T x, T m) |
| 74 |
{ return x<0 ? m - 1 - ((-x) - 1)%m : x%m; } |
| 75 |
|
| 76 |
// #include "parameters.h" |
| 77 |
|
| 78 |
/** |
| 79 |
* @brief Computes Rosen's Guillimer-Zener function A |
| 80 |
* Computes Rosen's A integral, an auxiliary quantity needed to |
| 81 |
* compute integrals involving Slater-type orbitals of s symmetry. |
| 82 |
* \f[ |
| 83 |
* A_n(\alpha) = \int_1^\infty x^n e^{-\alpha x}dx |
| 84 |
* = \frac{n! e^{-\alpha}}{\alpha^{n+1}}\sum_{\nu=0}^n |
| 85 |
* \frac{\alpha^\nu}{\nu!} |
| 86 |
* \f] |
| 87 |
* @param n - principal quantum number |
| 88 |
* @param a - Slater exponent |
| 89 |
* @return the value of Rosen's A integral |
| 90 |
* @note N. Rosen, Phys. Rev., 38 (1931), 255 |
| 91 |
*/ |
| 92 |
inline RealType RosenA(int n, RealType a) |
| 93 |
{ |
| 94 |
RealType RosenA_ = 0.; |
| 95 |
if (a != 0.) |
| 96 |
{ |
| 97 |
RealType Term = 1.; |
| 98 |
RosenA_ = Term; |
| 99 |
for (int nu=1; nu<=n; nu++) |
| 100 |
{ |
| 101 |
Term *= a / nu; |
| 102 |
RosenA_ += Term; |
| 103 |
} |
| 104 |
RosenA_ = (RosenA_/Term) * (exp(-a)/a); |
| 105 |
} |
| 106 |
return RosenA_; |
| 107 |
} |
| 108 |
|
| 109 |
/** |
| 110 |
* @brief Computes Rosen's Guillimer-Zener function B |
| 111 |
* Computes Rosen's B integral, an auxiliary quantity needed to |
| 112 |
* compute integrals involving Slater-type orbitals of s symmetry. |
| 113 |
* \f[ |
| 114 |
* B_n(\alpha) = \int_{-1}^1 x^n e^{-\alpha x} dx |
| 115 |
* = \frac{n!}{\alpha^{n+1}} |
| 116 |
* \sum_{\nu=0}^n \frac{e^\alpha(-\alpha)^\nu |
| 117 |
* - e^{-\alpha} \alpha^\nu}{\nu!} |
| 118 |
* \f] |
| 119 |
* @param n - principal quantum number |
| 120 |
* @param alpha - Slater exponent |
| 121 |
* @return the value of Rosen's B integral |
| 122 |
* @note N. Rosen, Phys. Rev., 38 (1931), 255 |
| 123 |
*/ |
| 124 |
inline RealType RosenB(int n, RealType alpha) |
| 125 |
{ |
| 126 |
RealType TheSum, Term; |
| 127 |
RealType RosenB_, PSinhRosenA, PCoshRosenA, PHyperRosenA; |
| 128 |
bool IsPositive; |
| 129 |
if (alpha != 0.) |
| 130 |
{ |
| 131 |
Term = 1.; |
| 132 |
TheSum = 1.; |
| 133 |
IsPositive = true; |
| 134 |
|
| 135 |
// These two expressions are (up to constant factors) equivalent |
| 136 |
// to computing the hyperbolic sine and cosine of a respectively |
| 137 |
// The series consists of adding up these terms in an alternating fashion |
| 138 |
PSinhRosenA = exp(alpha) - exp(-alpha); |
| 139 |
PCoshRosenA = -exp(alpha) - exp(-alpha); |
| 140 |
TheSum = PSinhRosenA; |
| 141 |
for (unsigned nu=1; nu<=n; nu++) |
| 142 |
{ |
| 143 |
if (IsPositive) |
| 144 |
{ |
| 145 |
PHyperRosenA = PCoshRosenA; |
| 146 |
IsPositive = false; |
| 147 |
} |
| 148 |
else // term to add should be negative |
| 149 |
{ |
| 150 |
PHyperRosenA = PSinhRosenA; |
| 151 |
IsPositive = true; |
| 152 |
} |
| 153 |
Term *= alpha / nu; |
| 154 |
TheSum += Term * PHyperRosenA; |
| 155 |
} |
| 156 |
RosenB_ = TheSum / (alpha*Term); |
| 157 |
} |
| 158 |
else // pathological case of a=0 |
| 159 |
{ |
| 160 |
printf("WARNING, a = 0 in RosenB\n"); |
| 161 |
RosenB_ = (1. - pow(-1., n)) / (n + 1.); |
| 162 |
} |
| 163 |
return RosenB_; |
| 164 |
} |
| 165 |
|
| 166 |
/** @brief Computes Rosen's D combinatorial factor |
| 167 |
* Computes Rosen's D factor, an auxiliary quantity needed to |
| 168 |
* compute integrals involving Slater-type orbitals of s symmetry. |
| 169 |
* \f[ |
| 170 |
* RosenD^{mn}_p = \sum_k (-1)^k \frac{m! n!} |
| 171 |
* {(p-k)!(m-p+k)!(n-k)!k!} |
| 172 |
* \f] |
| 173 |
* @return the value of Rosen's D factor |
| 174 |
* @note N. Rosen, Phys. Rev., 38 (1931), 255 |
| 175 |
*/ |
| 176 |
inline RealType RosenD(int m, int n, int p) |
| 177 |
{ |
| 178 |
if (m+n+p > maxFact) |
| 179 |
{ |
| 180 |
printf("Error, arguments exceed maximum factorial computed %d > %d\n", m+n+p, maxFact); |
| 181 |
::exit(0); |
| 182 |
} |
| 183 |
|
| 184 |
RealType RosenD_ = 0; |
| 185 |
for (int k=max(p-m,0); k<=min(n,p); k++) |
| 186 |
{ |
| 187 |
if (mod(k,2) == 0) |
| 188 |
RosenD_ += (fact[m] / (fact[p-k] * fact[m-p+k])) * (fact[n] / (fact[n-k] * fact[k])); |
| 189 |
else |
| 190 |
RosenD_ -= (fact[m] / ( fact[p-k] * fact[m-p+k])) * (fact[n] / (fact[n-k] * fact[k])); |
| 191 |
} |
| 192 |
return RosenD_; |
| 193 |
} |
| 194 |
|
| 195 |
/** @brief Computes Coulomb integral analytically over s-type STOs |
| 196 |
* Computes the two-center Coulomb integral over Slater-type orbitals of s symmetry. |
| 197 |
* @param a : Slater zeta exponent of first atom in inverse Bohr (au) |
| 198 |
* @param b : Slater zeta exponent of second atom in inverse Bohr (au) |
| 199 |
* @param m : principal quantum number of first atom |
| 200 |
* @param n : principal quantum number of second atom |
| 201 |
* @param R : internuclear distance in atomic units (bohr) |
| 202 |
* @return value of the Coulomb potential energy integral |
| 203 |
* @note N. Rosen, Phys. Rev., 38 (1931), 255 |
| 204 |
* @note In Rosen's paper, this integral is known as K2. |
| 205 |
*/ |
| 206 |
inline RealType sSTOCoulInt(RealType a, RealType b, int m, int n, RealType R) |
| 207 |
{ |
| 208 |
RealType x, K2; |
| 209 |
RealType Factor1, Factor2, Term, OneElectronTerm; |
| 210 |
RealType eps, epsi; |
| 211 |
|
| 212 |
// To speed up calculation, we terminate loop once contributions |
| 213 |
// to integral fall below the bound, epsilon |
| 214 |
RealType epsilon = 0.; |
| 215 |
|
| 216 |
// x is the argument of the auxiliary RosenA and RosenB functions |
| 217 |
x = 2. * a * R; |
| 218 |
|
| 219 |
// First compute the two-electron component |
| 220 |
RealType sSTOCoulInt_ = 0.; |
| 221 |
if (std::fabs(x) < OpenMD::NumericConstant::epsilon) // Pathological case |
| 222 |
{ |
| 223 |
|
| 224 |
// This solution for the one-center coulomb integrals comes from |
| 225 |
// Yoshiyuki Hase, Computers & Chemistry 9(4), pp. 285-287 (1985). |
| 226 |
|
| 227 |
RealType Term1 = fact[2*m - 1] / pow(2*a, 2*m); |
| 228 |
RealType Term2 = 0.; |
| 229 |
for (int nu = 1; nu <= 2*n; nu++) { |
| 230 |
Term2 += nu * pow(2*b, 2*n - nu) * fact[2*(m+n)-nu-1] / (fact[2*n-nu]*2*n * pow(2*(a+b), 2*(m+n)-nu)); |
| 231 |
} |
| 232 |
sSTOCoulInt_ = pow(2*a, 2*m+1) * (Term1 - Term2) / fact[2*m]; |
| 233 |
|
| 234 |
// Original QTPIE code for the one-center case is below. Doesn't |
| 235 |
// appear to generate the correct one-center results. |
| 236 |
// |
| 237 |
// if ((a==b) && (m==n)) |
| 238 |
// { |
| 239 |
// for (int nu=0; nu<=2*n-1; nu++) |
| 240 |
// { |
| 241 |
// K2 = 0.; |
| 242 |
// for (unsigned p=0; p<=2*n+m; p++) K2 += 1. / fact[p]; |
| 243 |
// sSTOCoulInt_ += K2 * fact[2*n+m] / fact[m]; |
| 244 |
// } |
| 245 |
// sSTOCoulInt_ = 2 * a / (n * fact[2*n]) * sSTOCoulInt_; |
| 246 |
// } |
| 247 |
// else |
| 248 |
// { |
| 249 |
// // Not implemented |
| 250 |
// printf("ERROR, sSTOCoulInt cannot compute from arguments\n"); |
| 251 |
// printf("a = %lf b = %lf m = %d n = %d R = %lf\n",a, b, m, n, R); |
| 252 |
// exit(0); |
| 253 |
// } |
| 254 |
|
| 255 |
} |
| 256 |
else |
| 257 |
{ |
| 258 |
OneElectronTerm = 1./R + pow(x, 2*m)/(fact[2*m]*R)* |
| 259 |
((x-2*m)*RosenA(2*m-1,x)-exp(-x)) + sSTOCoulInt_; |
| 260 |
eps = epsilon / OneElectronTerm; |
| 261 |
if (a == b) |
| 262 |
{ |
| 263 |
// Apply Rosen (48) |
| 264 |
Factor1 = -a*pow(a*R, 2*m)/(n*fact[2*m]); |
| 265 |
for (int nu=0; nu<=2*n-1; nu++) |
| 266 |
{ |
| 267 |
Factor2 = (2.*n-nu)/fact[nu]*pow(a*R,nu); |
| 268 |
epsi = eps / fabs(Factor1 * Factor2); |
| 269 |
K2 = 0.; |
| 270 |
for (int p=0; p<=m+(nu-1)/2; p++) |
| 271 |
{ |
| 272 |
Term = RosenD(2*m-1, nu, 2*p)/(2.*p+1.) *RosenA(2*m+nu-1-2*p,x); |
| 273 |
K2 += Term; |
| 274 |
if ((Term > 0) && (Term < epsi)) goto label1; |
| 275 |
} |
| 276 |
sSTOCoulInt_ += K2 * Factor2; |
| 277 |
} |
| 278 |
label1: |
| 279 |
sSTOCoulInt_ *= Factor1; |
| 280 |
} |
| 281 |
else |
| 282 |
{ |
| 283 |
Factor1 = -a*pow(a*R,2*m)/(2.*n*fact[2*m]); |
| 284 |
epsi = eps/fabs(Factor1); |
| 285 |
if (b == 0.) |
| 286 |
printf("WARNING: b = 0 in sSTOCoulInt\n"); |
| 287 |
else |
| 288 |
{ |
| 289 |
// Apply Rosen (54) |
| 290 |
for (int nu=0; nu<=2*n-1; nu++) |
| 291 |
{ |
| 292 |
K2 = 0; |
| 293 |
for (int p=0; p<=2*m+nu-1; p++) |
| 294 |
K2=K2+RosenD(2*m-1,nu,p)*RosenB(p,R*(a-b)) |
| 295 |
*RosenA(2*m+nu-1-p,R*(a+b)); |
| 296 |
Term = K2*(2*n-nu)/fact[nu]*pow(b*R, nu); |
| 297 |
sSTOCoulInt_ += Term; |
| 298 |
if (fabs(Term) < epsi) goto label2; |
| 299 |
} |
| 300 |
label2: |
| 301 |
sSTOCoulInt_ *= Factor1; |
| 302 |
} |
| 303 |
} |
| 304 |
// Now add the one-electron term from Rosen (47) = Rosen (53) |
| 305 |
sSTOCoulInt_ += OneElectronTerm; |
| 306 |
} |
| 307 |
return sSTOCoulInt_; |
| 308 |
} |
| 309 |
|
| 310 |
/** |
| 311 |
* @brief Computes overlap integral analytically over s-type STOs |
| 312 |
* Computes the overlap integral over two |
| 313 |
* Slater-type orbitals of s symmetry. |
| 314 |
* @param a : Slater zeta exponent of first atom in inverse Bohr (au) |
| 315 |
* @param b : Slater zeta exponent of second atom in inverse Bohr (au) |
| 316 |
* @param m : principal quantum number of first atom |
| 317 |
* @param n : principal quantum number of second atom |
| 318 |
* @param R : internuclear distance in atomic units (bohr) |
| 319 |
* @return the value of the sSTOOvInt integral |
| 320 |
* @note N. Rosen, Phys. Rev., 38 (1931), 255 |
| 321 |
* @note In the Rosen paper, this integral is known as I. |
| 322 |
*/ |
| 323 |
inline RealType sSTOOvInt(RealType a, RealType b, int m, int n, RealType R) |
| 324 |
{ |
| 325 |
RealType Factor, Term, eps; |
| 326 |
|
| 327 |
// To speed up calculation, we terminate loop once contributions |
| 328 |
// to integral fall below the bound, epsilon |
| 329 |
RealType epsilon = 0.; |
| 330 |
RealType sSTOOvInt_ = 0.; |
| 331 |
|
| 332 |
if (a == b) |
| 333 |
{ |
| 334 |
Factor = pow(a*R, m+n+1)/sqrt(fact[2*m]*fact[2*n]); |
| 335 |
eps = epsilon / fabs(Factor); |
| 336 |
for (int q=0; q<=(m+n)/2; q++) |
| 337 |
{ |
| 338 |
Term = RosenD(m,n,2*q)/(2.*q+1.)*RosenA(m+n-2*q,a*R); |
| 339 |
sSTOOvInt_ += Term; |
| 340 |
if (fabs(Term) < eps) exit(0); |
| 341 |
} |
| 342 |
sSTOOvInt_ *= Factor; |
| 343 |
} |
| 344 |
else |
| 345 |
{ |
| 346 |
Factor = 0.5*pow(a*R, m+0.5)*pow(b*R,n+0.5) |
| 347 |
/sqrt(fact[2*m]*fact[2*n]); |
| 348 |
eps = epsilon / fabs(Factor); |
| 349 |
for (int q=0; q<=m+n; q++) |
| 350 |
{ |
| 351 |
Term = RosenD(m,n,q)*RosenB(q, R/2.*(a-b)) |
| 352 |
* RosenA(m+n-q,R/2.*(a+b)); |
| 353 |
sSTOOvInt_ += Term; |
| 354 |
if (fabs(Term) < eps) exit(0); |
| 355 |
} |
| 356 |
sSTOOvInt_ *= Factor; |
| 357 |
} |
| 358 |
return sSTOOvInt_; |
| 359 |
} |
| 360 |
|
| 361 |
/** |
| 362 |
* @brief Computes kinetic energy integral analytically over s-type STOs |
| 363 |
* Computes the overlap integral over two Slater-type orbitals of s symmetry. |
| 364 |
* @param a : Slater zeta exponent of first atom in inverse Bohr (au) |
| 365 |
* @param b : Slater zeta exponent of second atom in inverse Bohr (au) |
| 366 |
* @param m : principal quantum number of first atom |
| 367 |
* @param n : principal quantum number of second atom |
| 368 |
* @param R : internuclear distance in atomic units (bohr) |
| 369 |
* @return the value of the kinetic energy integral |
| 370 |
* @note N. Rosen, Phys. Rev., 38 (1931), 255 |
| 371 |
* @note untested |
| 372 |
*/ |
| 373 |
inline RealType KinInt(RealType a, RealType b, int m, int n,RealType R) |
| 374 |
{ |
| 375 |
RealType KinInt_ = -0.5*b*b*sSTOOvInt(a, b, m, n, R); |
| 376 |
if (n > 0) |
| 377 |
{ |
| 378 |
KinInt_ += b*b*pow(2*b/(2*b-1),0.5) * sSTOOvInt(a, b, m, n-1, R); |
| 379 |
if (n > 1) KinInt_ += pow(n*(n-1)/((n-0.5)*(n-1.5)), 0.5) |
| 380 |
* sSTOOvInt(a, b, m, n-2, R); |
| 381 |
} |
| 382 |
return KinInt_; |
| 383 |
} |
| 384 |
|
| 385 |
/** |
| 386 |
* @brief Computes derivative of Coulomb integral with respect to the interatomic distance |
| 387 |
* Computes the two-center Coulomb integral over Slater-type orbitals of s symmetry. |
| 388 |
* @param a: Slater zeta exponent of first atom in inverse Bohr (au) |
| 389 |
* @param b: Slater zeta exponent of second atom in inverse Bohr (au) |
| 390 |
* @param m: principal quantum number of first atom |
| 391 |
* @param n: principal quantum number of second atom |
| 392 |
* @param R: internuclear distance in atomic units (bohr) |
| 393 |
* @return the derivative of the Coulomb potential energy integral |
| 394 |
* @note Derived in QTPIE research notes, May 15 2007 |
| 395 |
*/ |
| 396 |
inline RealType sSTOCoulIntGrad(RealType a, RealType b, int m, int n, RealType R) |
| 397 |
{ |
| 398 |
RealType x, y, z, K2, TheSum; |
| 399 |
// x is the argument of the auxiliary RosenA and RosenB functions |
| 400 |
x = 2. * a * R; |
| 401 |
|
| 402 |
// First compute the two-electron component |
| 403 |
RealType sSTOCoulIntGrad_ = 0.; |
| 404 |
if (x==0) // Pathological case |
| 405 |
{ |
| 406 |
printf("WARNING: argument given to sSTOCoulIntGrad is 0\n"); |
| 407 |
printf("a = %lf R= %lf\n", a, R); |
| 408 |
} |
| 409 |
else |
| 410 |
{ |
| 411 |
if (a == b) |
| 412 |
{ |
| 413 |
TheSum = 0.; |
| 414 |
for (int nu=0; nu<=2*(n-1); nu++) |
| 415 |
{ |
| 416 |
K2 = 0.; |
| 417 |
for (int p=0; p<=(m+nu)/2; p++) |
| 418 |
K2 += RosenD(2*m-1, nu+1, 2*p)/(2*p + 1.) * RosenA(2*m+nu-1-2*p, x); |
| 419 |
TheSum += (2*n-nu-1)/fact[nu]*pow(a*R, nu) * K2; |
| 420 |
} |
| 421 |
sSTOCoulIntGrad_ = -pow(a, 2*m+2)*pow(R, 2*m) /(n*fact[2*m])*TheSum; |
| 422 |
TheSum = 0.; |
| 423 |
for (int nu=0; nu<=2*n-1; nu++) |
| 424 |
{ |
| 425 |
K2 = 0.; |
| 426 |
for (int p=0; p<=(m+nu-1)/2; p++) |
| 427 |
K2 += RosenD(2*m-1, nu, 2*p)/(2*p + 1.) * RosenA(2*m+nu-2*p, x); |
| 428 |
TheSum += (2*n-nu)/fact[nu]*pow(a*R,nu) * K2; |
| 429 |
} |
| 430 |
sSTOCoulIntGrad_ += 2*pow(a, 2*m+2)*pow(R, 2*m) /(n*fact[2*m])*TheSum; |
| 431 |
} |
| 432 |
else |
| 433 |
{ |
| 434 |
// Slater exponents are different |
| 435 |
// First calculate some useful arguments |
| 436 |
y = R*(a+b); |
| 437 |
z = R*(a-b); |
| 438 |
TheSum = 0.; |
| 439 |
for (int nu=0; nu<=2*n-1; nu++) |
| 440 |
{ |
| 441 |
K2 = 0.; |
| 442 |
for (int p=0; p<=2*m+nu; p++) |
| 443 |
K2 += RosenD(2*m-1, nu+1, p) |
| 444 |
* RosenB(p,z)*RosenA(2*m+nu-p, y); |
| 445 |
TheSum += (2*n-nu-1)/fact[nu]*pow(b*R,nu) * K2; |
| 446 |
} |
| 447 |
sSTOCoulIntGrad_ = -b*pow(a,2*m+1)*pow(R,2*m)/ |
| 448 |
(2*n*fact[2*m])*TheSum; |
| 449 |
TheSum = 0.; |
| 450 |
for (int nu=0; nu<=2*n; nu++) |
| 451 |
{ |
| 452 |
K2 = 0.; |
| 453 |
for (int p=0; p<=2*m-1+nu; p++) |
| 454 |
K2 += RosenD(2*m-1, nu, p) |
| 455 |
* ((a-b)*RosenB(p+1,z)*RosenA(2*m+nu-p-1, y) |
| 456 |
+(a+b)*RosenB(p ,z)*RosenA(2*m+nu-p , y)); |
| 457 |
TheSum += (2*n-nu)/fact[nu]*pow(b*R,nu) * K2; |
| 458 |
} |
| 459 |
sSTOCoulIntGrad_ += pow(a,2*m+1)*pow(R,2*m)/(2*n*fact[2*m])*TheSum; |
| 460 |
} |
| 461 |
// Now add one-electron terms and common term |
| 462 |
sSTOCoulIntGrad_ = sSTOCoulIntGrad_ - (2.*m+1.)/sqr(R) |
| 463 |
+ 2.*m/R * sSTOCoulInt(a,b,m,n,R) |
| 464 |
+ pow(x,2*m)/(fact[2*m]*sqr(R)) * ((2.*m+1.)*exp(-x) |
| 465 |
+ 2.*m*(1.+2.*m-x)*RosenA(2*m-1,x)); |
| 466 |
} |
| 467 |
return sSTOCoulIntGrad_; |
| 468 |
} |
| 469 |
|
| 470 |
/** |
| 471 |
* @brief Computes gradient of overlap integral with respect to the interatomic diatance |
| 472 |
* Computes the derivative of the overlap integral over two Slater-type orbitals of s symmetry. |
| 473 |
* @param a: Slater zeta exponent of first atom in inverse Bohr (au) |
| 474 |
* @param b: Slater zeta exponent of second atom in inverse Bohr (au) |
| 475 |
* @param m: principal quantum number of first atom |
| 476 |
* @param n: principal quantum number of second atom |
| 477 |
* @param R: internuclear distance in atomic units (bohr) |
| 478 |
* @return the derivative of the sSTOOvInt integral |
| 479 |
* @note Derived in QTPIE research notes, May 15 2007 |
| 480 |
*/ |
| 481 |
inline RealType sSTOOvIntGrad(RealType a, RealType b, int m, int n, RealType R) |
| 482 |
{ |
| 483 |
RealType w, x, y, z, TheSum; |
| 484 |
|
| 485 |
// Calculate first term |
| 486 |
RealType sSTOOvIntGrad_ = (m+n+1.)/R * sSTOOvInt(a, b, m, n, R); |
| 487 |
|
| 488 |
// Calculate remaining terms; answers depend on exponents |
| 489 |
TheSum = 0.; |
| 490 |
x = a * R; |
| 491 |
if (a == b) |
| 492 |
{ |
| 493 |
for (int q=0; q<=(m+n)/2; q++) |
| 494 |
TheSum += RosenD(m,n,2*q) / (2*q + 1.) * RosenA(m+n-2*q+1, x); |
| 495 |
sSTOOvIntGrad_ -= a*pow(x,m+n+1)/ sqrt(fact[2*m]*fact[2*n])*TheSum; |
| 496 |
} |
| 497 |
else |
| 498 |
{ |
| 499 |
w = b*R; |
| 500 |
y = 0.5*R*(a+b); |
| 501 |
z = 0.5*R*(a-b); |
| 502 |
for (int q=0; q<m+n; q++) |
| 503 |
TheSum = TheSum + RosenD(m,n,q) * |
| 504 |
((a-b)*RosenB(q+1,z)*RosenA(m+n-q ,y) |
| 505 |
+(a+b)*RosenB(q ,z)*RosenA(m+n-q+1,y)); |
| 506 |
sSTOOvIntGrad_ -= 0.25*sqrt((pow(x, 2*m+1)*pow(w, 2*n+1))/(fact[2*m]*fact[2*n]))*TheSum; |
| 507 |
} |
| 508 |
return sSTOOvIntGrad_; |
| 509 |
} |
| 510 |
|
| 511 |
/** |
| 512 |
* @brief Calculates a Slater-type orbital exponent based on the hardness parameters |
| 513 |
* @param hardness: chemical hardness in atomic units |
| 514 |
* @param n: principal quantum number |
| 515 |
* @note Modified for use with OpenMD by Gezelter and Michalka. |
| 516 |
*/ |
| 517 |
inline RealType getSTOZeta(int n, RealType hardness) |
| 518 |
{ |
| 519 |
// Approximate the exact value of the constant of proportionality |
| 520 |
// by its value at a very small distance epsilon |
| 521 |
// since the exact R = 0 case has not be programmed |
| 522 |
RealType epsilon = 1.0e-8; |
| 523 |
|
| 524 |
// Assign orbital exponent |
| 525 |
return pow(sSTOCoulInt(1., 1., n, n, epsilon) / hardness, -1./(3. + 2.*n)); |
| 526 |
} |
| 527 |
|
| 528 |
#endif |