1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <stdio.h> |
44 |
#include <string.h> |
45 |
|
46 |
#include <cmath> |
47 |
#include "nonbonded/SHAPES.hpp" |
48 |
#include "nonbonded/LJ.hpp" |
49 |
#include "utils/simError.h" |
50 |
|
51 |
using namespace std; |
52 |
namespace OpenMD { |
53 |
|
54 |
SHAPES::SHAPES() { |
55 |
initialized_ = false; |
56 |
lMax_ = 64; |
57 |
mMax_ = 64; |
58 |
forceField_ = NULL; |
59 |
} |
60 |
|
61 |
void SHAPES::initialize() { |
62 |
|
63 |
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
64 |
ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes(); |
65 |
ForceField::AtomTypeContainer::MapTypeIterator i; |
66 |
AtomType* at; |
67 |
|
68 |
// SHAPES handles all of the SHAPES-SHAPES interactions as well as |
69 |
// SHAPES-LJ cross interactions: |
70 |
|
71 |
for (at = atomTypes->beginType(i); at != NULL; |
72 |
at = atomTypes->nextType(i)) { |
73 |
|
74 |
if (at->isShape()) |
75 |
addShape(dynamic_cast<ShapeAtomType*>(at)); |
76 |
|
77 |
if (at->isLennardJones()) |
78 |
addLJ(at); |
79 |
|
80 |
} |
81 |
|
82 |
initialized_ = true; |
83 |
} |
84 |
|
85 |
void SHAPES::addShape(ShapeAtomType* atomType){ |
86 |
// add it to the map: |
87 |
AtomTypeProperties atp = atomType->getATP(); |
88 |
|
89 |
if (atomType->isShape() ) { |
90 |
pair<map<int,ShapeAtomType*>::iterator, bool> ret; |
91 |
ret = ShapesMap.insert( pair<int, ShapeAtomType*>(atp.ident, atomType)); |
92 |
if (ret.second == false) { |
93 |
sprintf( painCave.errMsg, |
94 |
"SHAPES already had a previous entry with ident %d\n", |
95 |
atp.ident); |
96 |
painCave.severity = OPENMD_INFO; |
97 |
painCave.isFatal = 0; |
98 |
simError(); |
99 |
} |
100 |
|
101 |
ShapesMap.insert( pair<int, ShapeAtomType*>(atp.ident, static_cast<ShapeAtomType*>(atomType)) ); |
102 |
|
103 |
} else if (atomType->isLennardJones()) { |
104 |
RealType d1 = getLJSigma(atomType) / sqrt(2.0); |
105 |
RealType e1 = getLJEpsilon(atomType); |
106 |
} else { |
107 |
sprintf( painCave.errMsg, |
108 |
"SHAPES::addType was passed an atomType (%s) that does not\n" |
109 |
"\tappear to be a SHAPES or Lennard-Jones atom.\n", |
110 |
atomType->getName().c_str()); |
111 |
painCave.severity = OPENMD_ERROR; |
112 |
painCave.isFatal = 1; |
113 |
simError(); |
114 |
} |
115 |
} |
116 |
|
117 |
|
118 |
LJParam SHAPES::getLJParam(AtomType* atomType) { |
119 |
|
120 |
// Do sanity checking on the AtomType we were passed before |
121 |
// building any data structures: |
122 |
if (!atomType->isLennardJones()) { |
123 |
sprintf( painCave.errMsg, |
124 |
"SHAPES::getLJParam was passed an atomType (%s) that does not\n" |
125 |
"\tappear to be a Lennard-Jones atom.\n", |
126 |
atomType->getName().c_str()); |
127 |
painCave.severity = OPENMD_ERROR; |
128 |
painCave.isFatal = 1; |
129 |
simError(); |
130 |
} |
131 |
|
132 |
GenericData* data = atomType->getPropertyByName("LennardJones"); |
133 |
if (data == NULL) { |
134 |
sprintf( painCave.errMsg, "SHAPES::getLJParam could not find Lennard-Jones\n" |
135 |
"\tparameters for atomType %s.\n", atomType->getName().c_str()); |
136 |
painCave.severity = OPENMD_ERROR; |
137 |
painCave.isFatal = 1; |
138 |
simError(); |
139 |
} |
140 |
|
141 |
LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data); |
142 |
if (ljData == NULL) { |
143 |
sprintf( painCave.errMsg, |
144 |
"SHAPES::getLJParam could not convert GenericData to LJParam for\n" |
145 |
"\tatom type %s\n", atomType->getName().c_str()); |
146 |
painCave.severity = OPENMD_ERROR; |
147 |
painCave.isFatal = 1; |
148 |
simError(); |
149 |
} |
150 |
|
151 |
return ljData->getData(); |
152 |
} |
153 |
|
154 |
RealType SHAPES::getLJEpsilon(AtomType* atomType) { |
155 |
LJParam ljParam = getLJParam(atomType); |
156 |
return ljParam.epsilon; |
157 |
} |
158 |
RealType SHAPES::getLJSigma(AtomType* atomType) { |
159 |
LJParam ljParam = getLJParam(atomType); |
160 |
return ljParam.sigma; |
161 |
} |
162 |
|
163 |
RealType SHAPES::getGayBerneCut(int atid) { |
164 |
if (!initialized_) initialize(); |
165 |
std::map<int, AtomType*> :: const_iterator it; |
166 |
it = SHAPESMap.find(atid); |
167 |
if (it == SHAPESMap.end()) { |
168 |
sprintf( painCave.errMsg, |
169 |
"SHAPES::getGayBerneCut could not find atid %d in SHAPESMap\n", |
170 |
(atid)); |
171 |
painCave.severity = OPENMD_ERROR; |
172 |
painCave.isFatal = 1; |
173 |
simError(); |
174 |
} |
175 |
|
176 |
AtomType* atype = it->second; |
177 |
|
178 |
RealType gbCut; |
179 |
|
180 |
if (atype->isGayBerne()) { |
181 |
GayBerneParam gb = getGayBerneParam(atype); |
182 |
|
183 |
// sigma is actually sqrt(2) * l for prolate ellipsoids |
184 |
gbCut = 2.5 * sqrt(2.0) * max(gb.SHAPES_l, gb.SHAPES_d); |
185 |
|
186 |
} else if (atype->isLennardJones()) { |
187 |
gbCut = 2.5 * LJ::Instance()->getSigma(atype); |
188 |
} |
189 |
|
190 |
return gbCut; |
191 |
} |
192 |
|
193 |
|
194 |
void SHAPES::calcForce(AtomType* at1, AtomType* at2, Vector3d d, |
195 |
RealType r, RealType r2, RealType sw, |
196 |
RealType &vpair, RealType &pot, |
197 |
RotMat3x3d A1, RotMat3x3d A2, Vector3d &f1, |
198 |
Vector3d &t1, Vector3d &t2) { |
199 |
|
200 |
if (!initialized_) initialize(); |
201 |
|
202 |
pair<AtomType*, AtomType*> key = make_pair(at1, at2); |
203 |
SHAPESInteractionData mixer = MixingMap[key]; |
204 |
|
205 |
RealType r3 = r2 * r; |
206 |
RealType r5 = r3 * r2; |
207 |
|
208 |
Vector3d drdi = -d / r; |
209 |
Vector3d drdui = V3Zero; |
210 |
Vector3d drdj = d / r; |
211 |
Vector3d drduj = V3Zero; |
212 |
|
213 |
bool i_is_LJ = at1->isLennardJones(); |
214 |
bool j_is_LJ = at2->isLennardJones(); |
215 |
|
216 |
RealType sigma_i; |
217 |
RealType s_i; |
218 |
RealType eps_i; |
219 |
Vector3d dsigmaidr; |
220 |
Vector3d disgmaidu; |
221 |
Vector3d dsidr; |
222 |
Vector3d dsidu; |
223 |
Vector3d depsidr; |
224 |
Vector3d depsidu; |
225 |
|
226 |
if (i_is_LJ) { |
227 |
sigma_i = LJ::Instance()->getSigma(at1); |
228 |
s_i = sigma_i; |
229 |
epsilon_i = LJ::Instance()->getEpsilon(at1); |
230 |
dsigmaidr = V3Zero; |
231 |
dsigmaidu = V3Zero; |
232 |
dsidr = V3Zero; |
233 |
dsidu = V3Zero; |
234 |
depsidr = V3Zero; |
235 |
depsidu = V3Zero; |
236 |
} else { |
237 |
|
238 |
// rotate the inter-particle separation into the two different |
239 |
// body-fixed coordinate systems: |
240 |
|
241 |
Vector3d ri = A1 * d; |
242 |
|
243 |
RealType xi = ri.x() / r; |
244 |
RealType yi = ri.y() / r; |
245 |
RealType zi = ri.z() / r; |
246 |
RealType xi2 = xi * xi; |
247 |
RealType yi2 = yi * yi; |
248 |
RealType zi2 = zi * zi; |
249 |
RealType cti = zi / r; |
250 |
|
251 |
if (cti > 1.0) cti = 1.0; |
252 |
if (cti < -1.0_dp) cti = -1.0; |
253 |
|
254 |
Vector3d dctidr(-zi * xi / r3, |
255 |
-zi * yi / r3, |
256 |
1.0 / r - zi2 / r3); |
257 |
|
258 |
Vector3d dctidu(yi / r, |
259 |
-zi / r, |
260 |
0.0); |
261 |
|
262 |
// this is an attempt to try to truncate the singularity when |
263 |
// sin(theta) is near 0.0: |
264 |
|
265 |
RealType sti2 = 1.0 - cti*cti; |
266 |
if (fabs(sti2) < 1.0e-12) { |
267 |
RealType proji = sqrt(r * 1.0e-12); |
268 |
Vector3d dcpidx(1.0 / proji, |
269 |
0.0, |
270 |
|
271 |
// pickup the ball here! |
272 |
|
273 |
dcpidx = 1.0_dp / proji |
274 |
dcpidy = 0.0_dp |
275 |
dcpidux = xi / proji |
276 |
dcpiduy = 0.0_dp |
277 |
dspidx = 0.0_dp |
278 |
dspidy = 1.0_dp / proji |
279 |
dspidux = 0.0_dp |
280 |
dspiduy = yi / proji |
281 |
else |
282 |
proji = sqrt(xi2 + yi2) |
283 |
proji3 = proji*proji*proji |
284 |
dcpidx = 1.0_dp / proji - xi2 / proji3 |
285 |
dcpidy = - xi * yi / proji3 |
286 |
dcpidux = xi / proji - (xi2 * xi) / proji3 |
287 |
dcpiduy = - (xi * yi2) / proji3 |
288 |
dspidx = - xi * yi / proji3 |
289 |
dspidy = 1.0_dp / proji - yi2 / proji3 |
290 |
dspidux = - (yi * xi2) / proji3 |
291 |
dspiduy = yi / proji - (yi2 * yi) / proji3 |
292 |
endif |
293 |
|
294 |
cpi = xi / proji |
295 |
dcpidz = 0.0_dp |
296 |
dcpiduz = 0.0_dp |
297 |
|
298 |
spi = yi / proji |
299 |
dspidz = 0.0_dp |
300 |
dspiduz = 0.0_dp |
301 |
|
302 |
|
303 |
|
304 |
|
305 |
RealType sigma0 = mixer.sigma0; |
306 |
RealType dw = mixer.dw; |
307 |
RealType eps0 = mixer.eps0; |
308 |
RealType x2 = mixer.x2; |
309 |
RealType xa2 = mixer.xa2; |
310 |
RealType xai2 = mixer.xai2; |
311 |
RealType xp2 = mixer.xp2; |
312 |
RealType xpap2 = mixer.xpap2; |
313 |
RealType xpapi2 = mixer.xpapi2; |
314 |
|
315 |
Vector3d ul1 = A1.getRow(2); |
316 |
Vector3d ul2 = A2.getRow(2); |
317 |
|
318 |
RealType a, b, g; |
319 |
|
320 |
|
321 |
if (i_is_LJ) { |
322 |
a = 0.0; |
323 |
ul1 = V3Zero; |
324 |
} else { |
325 |
a = dot(d, ul1); |
326 |
} |
327 |
|
328 |
if (j_is_LJ) { |
329 |
b = 0.0; |
330 |
ul2 = V3Zero; |
331 |
} else { |
332 |
b = dot(d, ul2); |
333 |
} |
334 |
|
335 |
if (i_is_LJ || j_is_LJ) |
336 |
g = 0.0; |
337 |
else |
338 |
g = dot(ul1, ul2); |
339 |
|
340 |
RealType au = a / r; |
341 |
RealType bu = b / r; |
342 |
|
343 |
RealType au2 = au * au; |
344 |
RealType bu2 = bu * bu; |
345 |
RealType g2 = g * g; |
346 |
|
347 |
RealType H = (xa2 * au2 + xai2 * bu2 - 2.0*x2*au*bu*g) / (1.0 - x2*g2); |
348 |
RealType Hp = (xpap2*au2 + xpapi2*bu2 - 2.0*xp2*au*bu*g) / (1.0 - xp2*g2); |
349 |
|
350 |
RealType sigma = sigma0 / sqrt(1.0 - H); |
351 |
RealType e1 = 1.0 / sqrt(1.0 - x2*g2); |
352 |
RealType e2 = 1.0 - Hp; |
353 |
RealType eps = eps0 * pow(e1,nu_) * pow(e2,mu_); |
354 |
RealType BigR = dw*sigma0 / (r - sigma + dw*sigma0); |
355 |
|
356 |
RealType R3 = BigR*BigR*BigR; |
357 |
RealType R6 = R3*R3; |
358 |
RealType R7 = R6 * BigR; |
359 |
RealType R12 = R6*R6; |
360 |
RealType R13 = R6*R7; |
361 |
|
362 |
RealType U = vdwMult * 4.0 * eps * (R12 - R6); |
363 |
|
364 |
RealType s3 = sigma*sigma*sigma; |
365 |
RealType s03 = sigma0*sigma0*sigma0; |
366 |
|
367 |
RealType pref1 = - vdwMult * 8.0 * eps * mu_ * (R12 - R6) / (e2 * r); |
368 |
|
369 |
RealType pref2 = vdwMult * 8.0 * eps * s3 * (6.0*R13 - 3.0*R7) /(dw*r*s03); |
370 |
|
371 |
RealType dUdr = - (pref1 * Hp + pref2 * (sigma0*sigma0*r/s3 + H)); |
372 |
|
373 |
RealType dUda = pref1 * (xpap2*au - xp2*bu*g) / (1.0 - xp2 * g2) |
374 |
+ pref2 * (xa2 * au - x2 *bu*g) / (1.0 - x2 * g2); |
375 |
|
376 |
RealType dUdb = pref1 * (xpapi2*bu - xp2*au*g) / (1.0 - xp2 * g2) |
377 |
+ pref2 * (xai2 * bu - x2 *au*g) / (1.0 - x2 * g2); |
378 |
|
379 |
RealType dUdg = 4.0 * eps * nu_ * (R12 - R6) * x2 * g / (1.0 - x2*g2) |
380 |
+ 8.0 * eps * mu_ * (R12 - R6) * (xp2*au*bu - Hp*xp2*g) / |
381 |
(1.0 - xp2 * g2) / e2 + 8.0 * eps * s3 * (3.0 * R7 - 6.0 * R13) * |
382 |
(x2 * au * bu - H * x2 * g) / (1.0 - x2 * g2) / (dw * s03); |
383 |
|
384 |
|
385 |
Vector3d rhat = d / r; |
386 |
Vector3d rxu1 = cross(d, ul1); |
387 |
Vector3d rxu2 = cross(d, ul2); |
388 |
Vector3d uxu = cross(ul1, ul2); |
389 |
|
390 |
pot += U*sw; |
391 |
f1 += dUdr * rhat + dUda * ul1 + dUdb * ul2; |
392 |
t1 += dUda * rxu1 - dUdg * uxu; |
393 |
t2 += dUdb * rxu2 - dUdg * uxu; |
394 |
vpair += U*sw; |
395 |
|
396 |
return; |
397 |
|
398 |
} |
399 |
|
400 |
void SHAPES::do_gb_pair(int *atid1, int *atid2, RealType *d, RealType *r, |
401 |
RealType *r2, RealType *sw, RealType *vdwMult, |
402 |
RealType *vpair, RealType *pot, RealType *A1, |
403 |
RealType *A2, RealType *f1, RealType *t1, RealType *t2) { |
404 |
|
405 |
if (!initialized_) initialize(); |
406 |
|
407 |
AtomType* atype1 = SHAPESMap[*atid1]; |
408 |
AtomType* atype2 = SHAPESMap[*atid2]; |
409 |
|
410 |
Vector3d disp(d); |
411 |
Vector3d frc(f1); |
412 |
Vector3d trq1(t1); |
413 |
Vector3d trq2(t2); |
414 |
RotMat3x3d Ai(A1); |
415 |
RotMat3x3d Aj(A2); |
416 |
|
417 |
// Fortran has the opposite matrix ordering from c++, so we'll use |
418 |
// transpose here. When we finish the conversion to C++, this wrapper |
419 |
// will disappear, as will the transpose below: |
420 |
|
421 |
calcForce(atype1, atype2, disp, *r, *r2, *sw, *vdwMult, *vpair, *pot, |
422 |
Ai, Aj, frc, trq1, trq1); |
423 |
|
424 |
f1[0] = frc.x(); |
425 |
f1[1] = frc.y(); |
426 |
f1[2] = frc.z(); |
427 |
|
428 |
t1[0] = trq1.x(); |
429 |
t1[1] = trq1.y(); |
430 |
t1[2] = trq1.z(); |
431 |
|
432 |
t2[0] = trq2.x(); |
433 |
t2[1] = trq2.y(); |
434 |
t2[2] = trq2.z(); |
435 |
|
436 |
return; |
437 |
} |
438 |
} |
439 |
|
440 |
extern "C" { |
441 |
|
442 |
#define fortranGetGayBerneCut FC_FUNC(getgaybernecut, GETGAYBERNECUT) |
443 |
#define fortranDoSHAPESPair FC_FUNC(do_gb_pair, DO_SHAPES_PAIR) |
444 |
|
445 |
RealType fortranGetGayBerneCut(int* atid) { |
446 |
return OpenMD::SHAPES::Instance()->getGayBerneCut(*atid); |
447 |
} |
448 |
|
449 |
void fortranDoSHAPESPair(int *atid1, int *atid2, RealType *d, RealType *r, |
450 |
RealType *r2, RealType *sw, RealType *vdwMult, |
451 |
RealType *vpair, RealType *pot, RealType *A1, |
452 |
RealType *A2, RealType *f1, RealType *t1, RealType *t2){ |
453 |
|
454 |
return OpenMD::SHAPES::Instance()->do_gb_pair(atid1, atid2, d, r, r2, sw, |
455 |
vdwMult, vpair, pot, A1, A2, f1, |
456 |
t1, t2); |
457 |
} |
458 |
} |