ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/SHAPES.cpp
Revision: 1635
Committed: Thu Sep 15 16:24:03 2011 UTC (13 years, 7 months ago) by gezelter
File size: 14125 byte(s)
Log Message:
cleaning up the development branch a bit, removing cruft, etc.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 #include <stdio.h>
43 #include <string.h>
44
45 #include <cmath>
46 #include "nonbonded/SHAPES.hpp"
47 #include "nonbonded/LJ.hpp"
48 #include "utils/simError.h"
49
50 using namespace std;
51 namespace OpenMD {
52
53 SHAPES::SHAPES() {
54 initialized_ = false;
55 lMax_ = 64;
56 mMax_ = 64;
57 forceField_ = NULL;
58 }
59
60 void SHAPES::initialize() {
61
62 ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
63 ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
64 ForceField::AtomTypeContainer::MapTypeIterator i;
65 AtomType* at;
66
67 // SHAPES handles all of the SHAPES-SHAPES interactions as well as
68 // SHAPES-LJ cross interactions:
69
70 for (at = atomTypes->beginType(i); at != NULL;
71 at = atomTypes->nextType(i)) {
72
73 if (at->isShape())
74 addShape(dynamic_cast<ShapeAtomType*>(at));
75
76 if (at->isLennardJones())
77 addLJ(at);
78
79 }
80
81 initialized_ = true;
82 }
83
84 void SHAPES::addShape(ShapeAtomType* atomType){
85 // add it to the map:
86 AtomTypeProperties atp = atomType->getATP();
87
88 if (atomType->isShape() ) {
89 pair<map<int,ShapeAtomType*>::iterator, bool> ret;
90 ret = ShapesMap.insert( pair<int, ShapeAtomType*>(atp.ident, atomType));
91 if (ret.second == false) {
92 sprintf( painCave.errMsg,
93 "SHAPES already had a previous entry with ident %d\n",
94 atp.ident);
95 painCave.severity = OPENMD_INFO;
96 painCave.isFatal = 0;
97 simError();
98 }
99
100 ShapesMap.insert( pair<int, ShapeAtomType*>(atp.ident, static_cast<ShapeAtomType*>(atomType)) );
101
102 } else if (atomType->isLennardJones()) {
103 RealType d1 = getLJSigma(atomType) / sqrt(2.0);
104 RealType e1 = getLJEpsilon(atomType);
105 } else {
106 sprintf( painCave.errMsg,
107 "SHAPES::addType was passed an atomType (%s) that does not\n"
108 "\tappear to be a SHAPES or Lennard-Jones atom.\n",
109 atomType->getName().c_str());
110 painCave.severity = OPENMD_ERROR;
111 painCave.isFatal = 1;
112 simError();
113 }
114 }
115
116
117 LJParam SHAPES::getLJParam(AtomType* atomType) {
118
119 // Do sanity checking on the AtomType we were passed before
120 // building any data structures:
121 if (!atomType->isLennardJones()) {
122 sprintf( painCave.errMsg,
123 "SHAPES::getLJParam was passed an atomType (%s) that does not\n"
124 "\tappear to be a Lennard-Jones atom.\n",
125 atomType->getName().c_str());
126 painCave.severity = OPENMD_ERROR;
127 painCave.isFatal = 1;
128 simError();
129 }
130
131 GenericData* data = atomType->getPropertyByName("LennardJones");
132 if (data == NULL) {
133 sprintf( painCave.errMsg, "SHAPES::getLJParam could not find Lennard-Jones\n"
134 "\tparameters for atomType %s.\n", atomType->getName().c_str());
135 painCave.severity = OPENMD_ERROR;
136 painCave.isFatal = 1;
137 simError();
138 }
139
140 LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data);
141 if (ljData == NULL) {
142 sprintf( painCave.errMsg,
143 "SHAPES::getLJParam could not convert GenericData to LJParam for\n"
144 "\tatom type %s\n", atomType->getName().c_str());
145 painCave.severity = OPENMD_ERROR;
146 painCave.isFatal = 1;
147 simError();
148 }
149
150 return ljData->getData();
151 }
152
153 RealType SHAPES::getLJEpsilon(AtomType* atomType) {
154 LJParam ljParam = getLJParam(atomType);
155 return ljParam.epsilon;
156 }
157 RealType SHAPES::getLJSigma(AtomType* atomType) {
158 LJParam ljParam = getLJParam(atomType);
159 return ljParam.sigma;
160 }
161
162 RealType SHAPES::getGayBerneCut(int atid) {
163 if (!initialized_) initialize();
164 std::map<int, AtomType*> :: const_iterator it;
165 it = SHAPESMap.find(atid);
166 if (it == SHAPESMap.end()) {
167 sprintf( painCave.errMsg,
168 "SHAPES::getGayBerneCut could not find atid %d in SHAPESMap\n",
169 (atid));
170 painCave.severity = OPENMD_ERROR;
171 painCave.isFatal = 1;
172 simError();
173 }
174
175 AtomType* atype = it->second;
176
177 RealType gbCut;
178
179 if (atype->isGayBerne()) {
180 GayBerneParam gb = getGayBerneParam(atype);
181
182 // sigma is actually sqrt(2) * l for prolate ellipsoids
183 gbCut = 2.5 * sqrt(2.0) * max(gb.SHAPES_l, gb.SHAPES_d);
184
185 } else if (atype->isLennardJones()) {
186 gbCut = 2.5 * LJ::Instance()->getSigma(atype);
187 }
188
189 return gbCut;
190 }
191
192
193 void SHAPES::calcForce(AtomType* at1, AtomType* at2, Vector3d d,
194 RealType r, RealType r2, RealType sw,
195 RealType &vpair, RealType &pot,
196 RotMat3x3d A1, RotMat3x3d A2, Vector3d &f1,
197 Vector3d &t1, Vector3d &t2) {
198
199 if (!initialized_) initialize();
200
201 pair<AtomType*, AtomType*> key = make_pair(at1, at2);
202 SHAPESInteractionData mixer = MixingMap[key];
203
204 RealType r3 = r2 * r;
205 RealType r5 = r3 * r2;
206
207 Vector3d drdi = -d / r;
208 Vector3d drdui = V3Zero;
209 Vector3d drdj = d / r;
210 Vector3d drduj = V3Zero;
211
212 bool i_is_LJ = at1->isLennardJones();
213 bool j_is_LJ = at2->isLennardJones();
214
215 RealType sigma_i;
216 RealType s_i;
217 RealType eps_i;
218 Vector3d dsigmaidr;
219 Vector3d disgmaidu;
220 Vector3d dsidr;
221 Vector3d dsidu;
222 Vector3d depsidr;
223 Vector3d depsidu;
224
225 if (i_is_LJ) {
226 sigma_i = LJ::Instance()->getSigma(at1);
227 s_i = sigma_i;
228 epsilon_i = LJ::Instance()->getEpsilon(at1);
229 dsigmaidr = V3Zero;
230 dsigmaidu = V3Zero;
231 dsidr = V3Zero;
232 dsidu = V3Zero;
233 depsidr = V3Zero;
234 depsidu = V3Zero;
235 } else {
236
237 // rotate the inter-particle separation into the two different
238 // body-fixed coordinate systems:
239
240 Vector3d ri = A1 * d;
241
242 RealType xi = ri.x() / r;
243 RealType yi = ri.y() / r;
244 RealType zi = ri.z() / r;
245 RealType xi2 = xi * xi;
246 RealType yi2 = yi * yi;
247 RealType zi2 = zi * zi;
248 RealType cti = zi / r;
249
250 if (cti > 1.0) cti = 1.0;
251 if (cti < -1.0_dp) cti = -1.0;
252
253 Vector3d dctidr(-zi * xi / r3,
254 -zi * yi / r3,
255 1.0 / r - zi2 / r3);
256
257 Vector3d dctidu(yi / r,
258 -zi / r,
259 0.0);
260
261 // this is an attempt to try to truncate the singularity when
262 // sin(theta) is near 0.0:
263
264 RealType sti2 = 1.0 - cti*cti;
265 if (fabs(sti2) < 1.0e-12) {
266 RealType proji = sqrt(r * 1.0e-12);
267 Vector3d dcpidx(1.0 / proji,
268 0.0,
269
270 dcpidx = 1.0_dp / proji
271 dcpidy = 0.0_dp
272 dcpidux = xi / proji
273 dcpiduy = 0.0_dp
274 dspidx = 0.0_dp
275 dspidy = 1.0_dp / proji
276 dspidux = 0.0_dp
277 dspiduy = yi / proji
278 else
279 proji = sqrt(xi2 + yi2)
280 proji3 = proji*proji*proji
281 dcpidx = 1.0_dp / proji - xi2 / proji3
282 dcpidy = - xi * yi / proji3
283 dcpidux = xi / proji - (xi2 * xi) / proji3
284 dcpiduy = - (xi * yi2) / proji3
285 dspidx = - xi * yi / proji3
286 dspidy = 1.0_dp / proji - yi2 / proji3
287 dspidux = - (yi * xi2) / proji3
288 dspiduy = yi / proji - (yi2 * yi) / proji3
289 endif
290
291 cpi = xi / proji
292 dcpidz = 0.0_dp
293 dcpiduz = 0.0_dp
294
295 spi = yi / proji
296 dspidz = 0.0_dp
297 dspiduz = 0.0_dp
298
299
300
301
302 RealType sigma0 = mixer.sigma0;
303 RealType dw = mixer.dw;
304 RealType eps0 = mixer.eps0;
305 RealType x2 = mixer.x2;
306 RealType xa2 = mixer.xa2;
307 RealType xai2 = mixer.xai2;
308 RealType xp2 = mixer.xp2;
309 RealType xpap2 = mixer.xpap2;
310 RealType xpapi2 = mixer.xpapi2;
311
312 Vector3d ul1 = A1.getRow(2);
313 Vector3d ul2 = A2.getRow(2);
314
315 RealType a, b, g;
316
317
318 if (i_is_LJ) {
319 a = 0.0;
320 ul1 = V3Zero;
321 } else {
322 a = dot(d, ul1);
323 }
324
325 if (j_is_LJ) {
326 b = 0.0;
327 ul2 = V3Zero;
328 } else {
329 b = dot(d, ul2);
330 }
331
332 if (i_is_LJ || j_is_LJ)
333 g = 0.0;
334 else
335 g = dot(ul1, ul2);
336
337 RealType au = a / r;
338 RealType bu = b / r;
339
340 RealType au2 = au * au;
341 RealType bu2 = bu * bu;
342 RealType g2 = g * g;
343
344 RealType H = (xa2 * au2 + xai2 * bu2 - 2.0*x2*au*bu*g) / (1.0 - x2*g2);
345 RealType Hp = (xpap2*au2 + xpapi2*bu2 - 2.0*xp2*au*bu*g) / (1.0 - xp2*g2);
346
347 RealType sigma = sigma0 / sqrt(1.0 - H);
348 RealType e1 = 1.0 / sqrt(1.0 - x2*g2);
349 RealType e2 = 1.0 - Hp;
350 RealType eps = eps0 * pow(e1,nu_) * pow(e2,mu_);
351 RealType BigR = dw*sigma0 / (r - sigma + dw*sigma0);
352
353 RealType R3 = BigR*BigR*BigR;
354 RealType R6 = R3*R3;
355 RealType R7 = R6 * BigR;
356 RealType R12 = R6*R6;
357 RealType R13 = R6*R7;
358
359 RealType U = vdwMult * 4.0 * eps * (R12 - R6);
360
361 RealType s3 = sigma*sigma*sigma;
362 RealType s03 = sigma0*sigma0*sigma0;
363
364 RealType pref1 = - vdwMult * 8.0 * eps * mu_ * (R12 - R6) / (e2 * r);
365
366 RealType pref2 = vdwMult * 8.0 * eps * s3 * (6.0*R13 - 3.0*R7) /(dw*r*s03);
367
368 RealType dUdr = - (pref1 * Hp + pref2 * (sigma0*sigma0*r/s3 + H));
369
370 RealType dUda = pref1 * (xpap2*au - xp2*bu*g) / (1.0 - xp2 * g2)
371 + pref2 * (xa2 * au - x2 *bu*g) / (1.0 - x2 * g2);
372
373 RealType dUdb = pref1 * (xpapi2*bu - xp2*au*g) / (1.0 - xp2 * g2)
374 + pref2 * (xai2 * bu - x2 *au*g) / (1.0 - x2 * g2);
375
376 RealType dUdg = 4.0 * eps * nu_ * (R12 - R6) * x2 * g / (1.0 - x2*g2)
377 + 8.0 * eps * mu_ * (R12 - R6) * (xp2*au*bu - Hp*xp2*g) /
378 (1.0 - xp2 * g2) / e2 + 8.0 * eps * s3 * (3.0 * R7 - 6.0 * R13) *
379 (x2 * au * bu - H * x2 * g) / (1.0 - x2 * g2) / (dw * s03);
380
381
382 Vector3d rhat = d / r;
383 Vector3d rxu1 = cross(d, ul1);
384 Vector3d rxu2 = cross(d, ul2);
385 Vector3d uxu = cross(ul1, ul2);
386
387 pot += U*sw;
388 f1 += dUdr * rhat + dUda * ul1 + dUdb * ul2;
389 t1 += dUda * rxu1 - dUdg * uxu;
390 t2 += dUdb * rxu2 - dUdg * uxu;
391 vpair += U*sw;
392
393 return;
394
395 }
396
397 void SHAPES::do_gb_pair(int *atid1, int *atid2, RealType *d, RealType *r,
398 RealType *r2, RealType *sw, RealType *vdwMult,
399 RealType *vpair, RealType *pot, RealType *A1,
400 RealType *A2, RealType *f1, RealType *t1, RealType *t2) {
401
402 if (!initialized_) initialize();
403
404 AtomType* atype1 = SHAPESMap[*atid1];
405 AtomType* atype2 = SHAPESMap[*atid2];
406
407 Vector3d disp(d);
408 Vector3d frc(f1);
409 Vector3d trq1(t1);
410 Vector3d trq2(t2);
411 RotMat3x3d Ai(A1);
412 RotMat3x3d Aj(A2);
413
414 // Fortran has the opposite matrix ordering from c++, so we'll use
415 // transpose here. When we finish the conversion to C++, this wrapper
416 // will disappear, as will the transpose below:
417
418 calcForce(atype1, atype2, disp, *r, *r2, *sw, *vdwMult, *vpair, *pot,
419 Ai, Aj, frc, trq1, trq1);
420
421 f1[0] = frc.x();
422 f1[1] = frc.y();
423 f1[2] = frc.z();
424
425 t1[0] = trq1.x();
426 t1[1] = trq1.y();
427 t1[2] = trq1.z();
428
429 t2[0] = trq2.x();
430 t2[1] = trq2.y();
431 t2[2] = trq2.z();
432
433 return;
434 }
435 }
436
437 extern "C" {
438
439 #define fortranGetGayBerneCut FC_FUNC(getgaybernecut, GETGAYBERNECUT)
440 #define fortranDoSHAPESPair FC_FUNC(do_gb_pair, DO_SHAPES_PAIR)
441
442 RealType fortranGetGayBerneCut(int* atid) {
443 return OpenMD::SHAPES::Instance()->getGayBerneCut(*atid);
444 }
445
446 void fortranDoSHAPESPair(int *atid1, int *atid2, RealType *d, RealType *r,
447 RealType *r2, RealType *sw, RealType *vdwMult,
448 RealType *vpair, RealType *pot, RealType *A1,
449 RealType *A2, RealType *f1, RealType *t1, RealType *t2){
450
451 return OpenMD::SHAPES::Instance()->do_gb_pair(atid1, atid2, d, r, r2, sw,
452 vdwMult, vpair, pot, A1, A2, f1,
453 t1, t2);
454 }
455 }

Properties

Name Value
svn:eol-style native