| 1 |
/* |
| 2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
* |
| 4 |
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
* non-exclusive, royalty free, license to use, modify and |
| 6 |
* redistribute this software in source and binary code form, provided |
| 7 |
* that the following conditions are met: |
| 8 |
* |
| 9 |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
* notice, this list of conditions and the following disclaimer. |
| 11 |
* |
| 12 |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
* notice, this list of conditions and the following disclaimer in the |
| 14 |
* documentation and/or other materials provided with the |
| 15 |
* distribution. |
| 16 |
* |
| 17 |
* This software is provided "AS IS," without a warranty of any |
| 18 |
* kind. All express or implied conditions, representations and |
| 19 |
* warranties, including any implied warranty of merchantability, |
| 20 |
* fitness for a particular purpose or non-infringement, are hereby |
| 21 |
* excluded. The University of Notre Dame and its licensors shall not |
| 22 |
* be liable for any damages suffered by licensee as a result of |
| 23 |
* using, modifying or distributing the software or its |
| 24 |
* derivatives. In no event will the University of Notre Dame or its |
| 25 |
* licensors be liable for any lost revenue, profit or data, or for |
| 26 |
* direct, indirect, special, consequential, incidental or punitive |
| 27 |
* damages, however caused and regardless of the theory of liability, |
| 28 |
* arising out of the use of or inability to use software, even if the |
| 29 |
* University of Notre Dame has been advised of the possibility of |
| 30 |
* such damages. |
| 31 |
* |
| 32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
* research, please cite the appropriate papers when you publish your |
| 34 |
* work. Good starting points are: |
| 35 |
* |
| 36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
* [4] Vardeman & Gezelter, in progress (2009). |
| 40 |
*/ |
| 41 |
|
| 42 |
#include <stdio.h> |
| 43 |
#include <string.h> |
| 44 |
|
| 45 |
#include <cmath> |
| 46 |
#include "nonbonded/SHAPES.hpp" |
| 47 |
#include "nonbonded/LJ.hpp" |
| 48 |
#include "utils/simError.h" |
| 49 |
|
| 50 |
using namespace std; |
| 51 |
namespace OpenMD { |
| 52 |
|
| 53 |
SHAPES::SHAPES() { |
| 54 |
initialized_ = false; |
| 55 |
lMax_ = 64; |
| 56 |
mMax_ = 64; |
| 57 |
forceField_ = NULL; |
| 58 |
} |
| 59 |
|
| 60 |
void SHAPES::initialize() { |
| 61 |
|
| 62 |
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
| 63 |
ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes(); |
| 64 |
ForceField::AtomTypeContainer::MapTypeIterator i; |
| 65 |
AtomType* at; |
| 66 |
|
| 67 |
// SHAPES handles all of the SHAPES-SHAPES interactions as well as |
| 68 |
// SHAPES-LJ cross interactions: |
| 69 |
|
| 70 |
for (at = atomTypes->beginType(i); at != NULL; |
| 71 |
at = atomTypes->nextType(i)) { |
| 72 |
|
| 73 |
if (at->isShape()) |
| 74 |
addShape(dynamic_cast<ShapeAtomType*>(at)); |
| 75 |
|
| 76 |
if (at->isLennardJones()) |
| 77 |
addLJ(at); |
| 78 |
|
| 79 |
} |
| 80 |
|
| 81 |
initialized_ = true; |
| 82 |
} |
| 83 |
|
| 84 |
void SHAPES::addShape(ShapeAtomType* atomType){ |
| 85 |
// add it to the map: |
| 86 |
AtomTypeProperties atp = atomType->getATP(); |
| 87 |
|
| 88 |
pair<map<int,ShapeAtomType*>::iterator, bool> ret; |
| 89 |
ret = shapesMap.insert( pair<int, ShapeAtomType*>(atp.ident, atomType)); |
| 90 |
if (ret.second == false) { |
| 91 |
sprintf( painCave.errmsg, |
| 92 |
"SHAPES already had a previous entry with ident %d\n", |
| 93 |
atp.ident); |
| 94 |
painCave.severity = OPENMD_INFO; |
| 95 |
painCave.isFatal = 0; |
| 96 |
simError(); |
| 97 |
} |
| 98 |
|
| 99 |
ShapesMap.insert( pair<int, ShapeAtomType*>(atp.ident, sAtomType) ); |
| 100 |
|
| 101 |
} else if (atomType->isLennardJones()) { |
| 102 |
d1 = getLJSigma(atomType) / sqrt(2.0); |
| 103 |
e1 = getLJEpsilon(atomType); |
| 104 |
} else { |
| 105 |
sprintf( painCave.errMsg, |
| 106 |
"SHAPES::addType was passed an atomType (%s) that does not\n" |
| 107 |
"\tappear to be a SHAPES or Lennard-Jones atom.\n", |
| 108 |
atomType->getName().c_str()); |
| 109 |
painCave.severity = OPENMD_ERROR; |
| 110 |
painCave.isFatal = 1; |
| 111 |
simError(); |
| 112 |
} |
| 113 |
} |
| 114 |
|
| 115 |
|
| 116 |
LJParam SHAPES::getLJParam(AtomType* atomType) { |
| 117 |
|
| 118 |
// Do sanity checking on the AtomType we were passed before |
| 119 |
// building any data structures: |
| 120 |
if (!atomType->isLennardJones()) { |
| 121 |
sprintf( painCave.errMsg, |
| 122 |
"SHAPES::getLJParam was passed an atomType (%s) that does not\n" |
| 123 |
"\tappear to be a Lennard-Jones atom.\n", |
| 124 |
atomType->getName().c_str()); |
| 125 |
painCave.severity = OPENMD_ERROR; |
| 126 |
painCave.isFatal = 1; |
| 127 |
simError(); |
| 128 |
} |
| 129 |
|
| 130 |
GenericData* data = atomType->getPropertyByName("LennardJones"); |
| 131 |
if (data == NULL) { |
| 132 |
sprintf( painCave.errMsg, "SHAPES::getLJParam could not find Lennard-Jones\n" |
| 133 |
"\tparameters for atomType %s.\n", atomType->getName().c_str()); |
| 134 |
painCave.severity = OPENMD_ERROR; |
| 135 |
painCave.isFatal = 1; |
| 136 |
simError(); |
| 137 |
} |
| 138 |
|
| 139 |
LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data); |
| 140 |
if (ljData == NULL) { |
| 141 |
sprintf( painCave.errMsg, |
| 142 |
"SHAPES::getLJParam could not convert GenericData to LJParam for\n" |
| 143 |
"\tatom type %s\n", atomType->getName().c_str()); |
| 144 |
painCave.severity = OPENMD_ERROR; |
| 145 |
painCave.isFatal = 1; |
| 146 |
simError(); |
| 147 |
} |
| 148 |
|
| 149 |
return ljData->getData(); |
| 150 |
} |
| 151 |
|
| 152 |
RealType SHAPES::getLJEpsilon(AtomType* atomType) { |
| 153 |
LJParam ljParam = getLJParam(atomType); |
| 154 |
return ljParam.epsilon; |
| 155 |
} |
| 156 |
RealType SHAPES::getLJSigma(AtomType* atomType) { |
| 157 |
LJParam ljParam = getLJParam(atomType); |
| 158 |
return ljParam.sigma; |
| 159 |
} |
| 160 |
|
| 161 |
RealType SHAPES::getGayBerneCut(int atid) { |
| 162 |
if (!initialized_) initialize(); |
| 163 |
std::map<int, AtomType*> :: const_iterator it; |
| 164 |
it = SHAPESMap.find(atid); |
| 165 |
if (it == SHAPESMap.end()) { |
| 166 |
sprintf( painCave.errMsg, |
| 167 |
"SHAPES::getGayBerneCut could not find atid %d in SHAPESMap\n", |
| 168 |
(atid)); |
| 169 |
painCave.severity = OPENMD_ERROR; |
| 170 |
painCave.isFatal = 1; |
| 171 |
simError(); |
| 172 |
} |
| 173 |
|
| 174 |
AtomType* atype = it->second; |
| 175 |
|
| 176 |
RealType gbCut; |
| 177 |
|
| 178 |
if (atype->isGayBerne()) { |
| 179 |
GayBerneParam gb = getGayBerneParam(atype); |
| 180 |
|
| 181 |
// sigma is actually sqrt(2) * l for prolate ellipsoids |
| 182 |
gbCut = 2.5 * sqrt(2.0) * max(gb.SHAPES_l, gb.SHAPES_d); |
| 183 |
|
| 184 |
} else if (atype->isLennardJones()) { |
| 185 |
gbCut = 2.5 * LJ::Instance()->getSigma(atype); |
| 186 |
} |
| 187 |
|
| 188 |
return gbCut; |
| 189 |
} |
| 190 |
|
| 191 |
|
| 192 |
void SHAPES::calcForce(AtomType* at1, AtomType* at2, Vector3d d, |
| 193 |
RealType r, RealType r2, RealType sw, |
| 194 |
RealType &vpair, RealType &pot, |
| 195 |
RotMat3x3d A1, RotMat3x3d A2, Vector3d &f1, |
| 196 |
Vector3d &t1, Vector3d &t2) { |
| 197 |
|
| 198 |
if (!initialized_) initialize(); |
| 199 |
|
| 200 |
pair<AtomType*, AtomType*> key = make_pair(at1, at2); |
| 201 |
SHAPESInteractionData mixer = MixingMap[key]; |
| 202 |
|
| 203 |
RealType r3 = r2 * r; |
| 204 |
RealType r5 = r3 * r2; |
| 205 |
|
| 206 |
Vector3d drdi = -d / r; |
| 207 |
Vector3d drdui = V3Zero; |
| 208 |
Vector3d drdj = d / r; |
| 209 |
Vector3d drduj = V3Zero; |
| 210 |
|
| 211 |
bool i_is_LJ = at1->isLennardJones(); |
| 212 |
bool j_is_LJ = at2->isLennardJones(); |
| 213 |
|
| 214 |
RealType sigma_i; |
| 215 |
RealType s_i; |
| 216 |
RealType eps_i; |
| 217 |
Vector3d dsigmaidr; |
| 218 |
Vector3d disgmaidu; |
| 219 |
Vector3d dsidr; |
| 220 |
Vector3d dsidu; |
| 221 |
Vector3d depsidr; |
| 222 |
Vector3d depsidu; |
| 223 |
|
| 224 |
if (i_is_LJ) { |
| 225 |
sigma_i = LJ::Instance()->getSigma(at1); |
| 226 |
s_i = sigma_i; |
| 227 |
epsilon_i = LJ::Instance()->getEpsilon(at1); |
| 228 |
dsigmaidr = V3Zero; |
| 229 |
dsigmaidu = V3Zero; |
| 230 |
dsidr = V3Zero; |
| 231 |
dsidu = V3Zero; |
| 232 |
depsidr = V3Zero; |
| 233 |
depsidu = V3Zero; |
| 234 |
} else { |
| 235 |
|
| 236 |
// rotate the inter-particle separation into the two different |
| 237 |
// body-fixed coordinate systems: |
| 238 |
|
| 239 |
Vector3d ri = A1 * d; |
| 240 |
|
| 241 |
RealType xi = ri.x() / r; |
| 242 |
RealType yi = ri.y() / r; |
| 243 |
RealType zi = ri.z() / r; |
| 244 |
RealType xi2 = xi * xi; |
| 245 |
RealType yi2 = yi * yi; |
| 246 |
RealType zi2 = zi * zi; |
| 247 |
RealType cti = zi / r; |
| 248 |
|
| 249 |
if (cti > 1.0) cti = 1.0; |
| 250 |
if (cti < -1.0_dp) cti = -1.0; |
| 251 |
|
| 252 |
Vector3d dctidr(-zi * xi / r3, |
| 253 |
-zi * yi / r3, |
| 254 |
1.0 / r - zi2 / r3); |
| 255 |
|
| 256 |
Vector3d dctidu(yi / r, |
| 257 |
-zi / r, |
| 258 |
0.0); |
| 259 |
|
| 260 |
// this is an attempt to try to truncate the singularity when |
| 261 |
// sin(theta) is near 0.0: |
| 262 |
|
| 263 |
RealType sti2 = 1.0 - cti*cti; |
| 264 |
if (fabs(sti2) < 1.0e-12) { |
| 265 |
RealType proji = sqrt(r * 1.0e-12); |
| 266 |
Vector3d dcpidx(1.0 / proji, |
| 267 |
0.0, |
| 268 |
|
| 269 |
dcpidx = 1.0_dp / proji |
| 270 |
dcpidy = 0.0_dp |
| 271 |
dcpidux = xi / proji |
| 272 |
dcpiduy = 0.0_dp |
| 273 |
dspidx = 0.0_dp |
| 274 |
dspidy = 1.0_dp / proji |
| 275 |
dspidux = 0.0_dp |
| 276 |
dspiduy = yi / proji |
| 277 |
else |
| 278 |
proji = sqrt(xi2 + yi2) |
| 279 |
proji3 = proji*proji*proji |
| 280 |
dcpidx = 1.0_dp / proji - xi2 / proji3 |
| 281 |
dcpidy = - xi * yi / proji3 |
| 282 |
dcpidux = xi / proji - (xi2 * xi) / proji3 |
| 283 |
dcpiduy = - (xi * yi2) / proji3 |
| 284 |
dspidx = - xi * yi / proji3 |
| 285 |
dspidy = 1.0_dp / proji - yi2 / proji3 |
| 286 |
dspidux = - (yi * xi2) / proji3 |
| 287 |
dspiduy = yi / proji - (yi2 * yi) / proji3 |
| 288 |
endif |
| 289 |
|
| 290 |
cpi = xi / proji |
| 291 |
dcpidz = 0.0_dp |
| 292 |
dcpiduz = 0.0_dp |
| 293 |
|
| 294 |
spi = yi / proji |
| 295 |
dspidz = 0.0_dp |
| 296 |
dspiduz = 0.0_dp |
| 297 |
|
| 298 |
|
| 299 |
|
| 300 |
|
| 301 |
RealType sigma0 = mixer.sigma0; |
| 302 |
RealType dw = mixer.dw; |
| 303 |
RealType eps0 = mixer.eps0; |
| 304 |
RealType x2 = mixer.x2; |
| 305 |
RealType xa2 = mixer.xa2; |
| 306 |
RealType xai2 = mixer.xai2; |
| 307 |
RealType xp2 = mixer.xp2; |
| 308 |
RealType xpap2 = mixer.xpap2; |
| 309 |
RealType xpapi2 = mixer.xpapi2; |
| 310 |
|
| 311 |
Vector3d ul1 = A1.getRow(2); |
| 312 |
Vector3d ul2 = A2.getRow(2); |
| 313 |
|
| 314 |
RealType a, b, g; |
| 315 |
|
| 316 |
|
| 317 |
if (i_is_LJ) { |
| 318 |
a = 0.0; |
| 319 |
ul1 = V3Zero; |
| 320 |
} else { |
| 321 |
a = dot(d, ul1); |
| 322 |
} |
| 323 |
|
| 324 |
if (j_is_LJ) { |
| 325 |
b = 0.0; |
| 326 |
ul2 = V3Zero; |
| 327 |
} else { |
| 328 |
b = dot(d, ul2); |
| 329 |
} |
| 330 |
|
| 331 |
if (i_is_LJ || j_is_LJ) |
| 332 |
g = 0.0; |
| 333 |
else |
| 334 |
g = dot(ul1, ul2); |
| 335 |
|
| 336 |
RealType au = a / r; |
| 337 |
RealType bu = b / r; |
| 338 |
|
| 339 |
RealType au2 = au * au; |
| 340 |
RealType bu2 = bu * bu; |
| 341 |
RealType g2 = g * g; |
| 342 |
|
| 343 |
RealType H = (xa2 * au2 + xai2 * bu2 - 2.0*x2*au*bu*g) / (1.0 - x2*g2); |
| 344 |
RealType Hp = (xpap2*au2 + xpapi2*bu2 - 2.0*xp2*au*bu*g) / (1.0 - xp2*g2); |
| 345 |
|
| 346 |
RealType sigma = sigma0 / sqrt(1.0 - H); |
| 347 |
RealType e1 = 1.0 / sqrt(1.0 - x2*g2); |
| 348 |
RealType e2 = 1.0 - Hp; |
| 349 |
RealType eps = eps0 * pow(e1,nu_) * pow(e2,mu_); |
| 350 |
RealType BigR = dw*sigma0 / (r - sigma + dw*sigma0); |
| 351 |
|
| 352 |
RealType R3 = BigR*BigR*BigR; |
| 353 |
RealType R6 = R3*R3; |
| 354 |
RealType R7 = R6 * BigR; |
| 355 |
RealType R12 = R6*R6; |
| 356 |
RealType R13 = R6*R7; |
| 357 |
|
| 358 |
RealType U = vdwMult * 4.0 * eps * (R12 - R6); |
| 359 |
|
| 360 |
RealType s3 = sigma*sigma*sigma; |
| 361 |
RealType s03 = sigma0*sigma0*sigma0; |
| 362 |
|
| 363 |
RealType pref1 = - vdwMult * 8.0 * eps * mu_ * (R12 - R6) / (e2 * r); |
| 364 |
|
| 365 |
RealType pref2 = vdwMult * 8.0 * eps * s3 * (6.0*R13 - 3.0*R7) /(dw*r*s03); |
| 366 |
|
| 367 |
RealType dUdr = - (pref1 * Hp + pref2 * (sigma0*sigma0*r/s3 + H)); |
| 368 |
|
| 369 |
RealType dUda = pref1 * (xpap2*au - xp2*bu*g) / (1.0 - xp2 * g2) |
| 370 |
+ pref2 * (xa2 * au - x2 *bu*g) / (1.0 - x2 * g2); |
| 371 |
|
| 372 |
RealType dUdb = pref1 * (xpapi2*bu - xp2*au*g) / (1.0 - xp2 * g2) |
| 373 |
+ pref2 * (xai2 * bu - x2 *au*g) / (1.0 - x2 * g2); |
| 374 |
|
| 375 |
RealType dUdg = 4.0 * eps * nu_ * (R12 - R6) * x2 * g / (1.0 - x2*g2) |
| 376 |
+ 8.0 * eps * mu_ * (R12 - R6) * (xp2*au*bu - Hp*xp2*g) / |
| 377 |
(1.0 - xp2 * g2) / e2 + 8.0 * eps * s3 * (3.0 * R7 - 6.0 * R13) * |
| 378 |
(x2 * au * bu - H * x2 * g) / (1.0 - x2 * g2) / (dw * s03); |
| 379 |
|
| 380 |
|
| 381 |
Vector3d rhat = d / r; |
| 382 |
Vector3d rxu1 = cross(d, ul1); |
| 383 |
Vector3d rxu2 = cross(d, ul2); |
| 384 |
Vector3d uxu = cross(ul1, ul2); |
| 385 |
|
| 386 |
pot += U*sw; |
| 387 |
f1 += dUdr * rhat + dUda * ul1 + dUdb * ul2; |
| 388 |
t1 += dUda * rxu1 - dUdg * uxu; |
| 389 |
t2 += dUdb * rxu2 - dUdg * uxu; |
| 390 |
vpair += U*sw; |
| 391 |
|
| 392 |
return; |
| 393 |
|
| 394 |
} |
| 395 |
|
| 396 |
void SHAPES::do_gb_pair(int *atid1, int *atid2, RealType *d, RealType *r, |
| 397 |
RealType *r2, RealType *sw, RealType *vdwMult, |
| 398 |
RealType *vpair, RealType *pot, RealType *A1, |
| 399 |
RealType *A2, RealType *f1, RealType *t1, RealType *t2) { |
| 400 |
|
| 401 |
if (!initialized_) initialize(); |
| 402 |
|
| 403 |
AtomType* atype1 = SHAPESMap[*atid1]; |
| 404 |
AtomType* atype2 = SHAPESMap[*atid2]; |
| 405 |
|
| 406 |
Vector3d disp(d); |
| 407 |
Vector3d frc(f1); |
| 408 |
Vector3d trq1(t1); |
| 409 |
Vector3d trq2(t2); |
| 410 |
RotMat3x3d Ai(A1); |
| 411 |
RotMat3x3d Aj(A2); |
| 412 |
|
| 413 |
// Fortran has the opposite matrix ordering from c++, so we'll use |
| 414 |
// transpose here. When we finish the conversion to C++, this wrapper |
| 415 |
// will disappear, as will the transpose below: |
| 416 |
|
| 417 |
calcForce(atype1, atype2, disp, *r, *r2, *sw, *vdwMult, *vpair, *pot, |
| 418 |
Ai, Aj, frc, trq1, trq1); |
| 419 |
|
| 420 |
f1[0] = frc.x(); |
| 421 |
f1[1] = frc.y(); |
| 422 |
f1[2] = frc.z(); |
| 423 |
|
| 424 |
t1[0] = trq1.x(); |
| 425 |
t1[1] = trq1.y(); |
| 426 |
t1[2] = trq1.z(); |
| 427 |
|
| 428 |
t2[0] = trq2.x(); |
| 429 |
t2[1] = trq2.y(); |
| 430 |
t2[2] = trq2.z(); |
| 431 |
|
| 432 |
return; |
| 433 |
} |
| 434 |
} |
| 435 |
|
| 436 |
extern "C" { |
| 437 |
|
| 438 |
#define fortranGetGayBerneCut FC_FUNC(getgaybernecut, GETGAYBERNECUT) |
| 439 |
#define fortranDoSHAPESPair FC_FUNC(do_gb_pair, DO_SHAPES_PAIR) |
| 440 |
|
| 441 |
RealType fortranGetGayBerneCut(int* atid) { |
| 442 |
return OpenMD::SHAPES::Instance()->getGayBerneCut(*atid); |
| 443 |
} |
| 444 |
|
| 445 |
void fortranDoSHAPESPair(int *atid1, int *atid2, RealType *d, RealType *r, |
| 446 |
RealType *r2, RealType *sw, RealType *vdwMult, |
| 447 |
RealType *vpair, RealType *pot, RealType *A1, |
| 448 |
RealType *A2, RealType *f1, RealType *t1, RealType *t2){ |
| 449 |
|
| 450 |
return OpenMD::SHAPES::Instance()->do_gb_pair(atid1, atid2, d, r, r2, sw, |
| 451 |
vdwMult, vpair, pot, A1, A2, f1, |
| 452 |
t1, t2); |
| 453 |
} |
| 454 |
} |