ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/SHAPES.cpp
Revision: 1505
Committed: Sun Oct 3 22:18:59 2010 UTC (14 years, 6 months ago) by gezelter
File size: 14019 byte(s)
Log Message:
Less busted than it was on last check-in, but still won't completely
build.


File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 #include <stdio.h>
43 #include <string.h>
44
45 #include <cmath>
46 #include "nonbonded/SHAPES.hpp"
47 #include "nonbonded/LJ.hpp"
48 #include "utils/simError.h"
49
50 using namespace std;
51 namespace OpenMD {
52
53 SHAPES::SHAPES() {
54 initialized_ = false;
55 lMax_ = 64;
56 mMax_ = 64;
57 forceField_ = NULL;
58 }
59
60 void SHAPES::initialize() {
61
62 ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
63 ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
64 ForceField::AtomTypeContainer::MapTypeIterator i;
65 AtomType* at;
66
67 // SHAPES handles all of the SHAPES-SHAPES interactions as well as
68 // SHAPES-LJ cross interactions:
69
70 for (at = atomTypes->beginType(i); at != NULL;
71 at = atomTypes->nextType(i)) {
72
73 if (at->isShape())
74 addShape(dynamic_cast<ShapeAtomType*>(at));
75
76 if (at->isLennardJones())
77 addLJ(at);
78
79 }
80
81 initialized_ = true;
82 }
83
84 void SHAPES::addShape(ShapeAtomType* atomType){
85 // add it to the map:
86 AtomTypeProperties atp = atomType->getATP();
87
88 pair<map<int,ShapeAtomType*>::iterator, bool> ret;
89 ret = shapesMap.insert( pair<int, ShapeAtomType*>(atp.ident, atomType));
90 if (ret.second == false) {
91 sprintf( painCave.errmsg,
92 "SHAPES already had a previous entry with ident %d\n",
93 atp.ident);
94 painCave.severity = OPENMD_INFO;
95 painCave.isFatal = 0;
96 simError();
97 }
98
99 ShapesMap.insert( pair<int, ShapeAtomType*>(atp.ident, sAtomType) );
100
101 } else if (atomType->isLennardJones()) {
102 d1 = getLJSigma(atomType) / sqrt(2.0);
103 e1 = getLJEpsilon(atomType);
104 } else {
105 sprintf( painCave.errMsg,
106 "SHAPES::addType was passed an atomType (%s) that does not\n"
107 "\tappear to be a SHAPES or Lennard-Jones atom.\n",
108 atomType->getName().c_str());
109 painCave.severity = OPENMD_ERROR;
110 painCave.isFatal = 1;
111 simError();
112 }
113 }
114
115
116 LJParam SHAPES::getLJParam(AtomType* atomType) {
117
118 // Do sanity checking on the AtomType we were passed before
119 // building any data structures:
120 if (!atomType->isLennardJones()) {
121 sprintf( painCave.errMsg,
122 "SHAPES::getLJParam was passed an atomType (%s) that does not\n"
123 "\tappear to be a Lennard-Jones atom.\n",
124 atomType->getName().c_str());
125 painCave.severity = OPENMD_ERROR;
126 painCave.isFatal = 1;
127 simError();
128 }
129
130 GenericData* data = atomType->getPropertyByName("LennardJones");
131 if (data == NULL) {
132 sprintf( painCave.errMsg, "SHAPES::getLJParam could not find Lennard-Jones\n"
133 "\tparameters for atomType %s.\n", atomType->getName().c_str());
134 painCave.severity = OPENMD_ERROR;
135 painCave.isFatal = 1;
136 simError();
137 }
138
139 LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data);
140 if (ljData == NULL) {
141 sprintf( painCave.errMsg,
142 "SHAPES::getLJParam could not convert GenericData to LJParam for\n"
143 "\tatom type %s\n", atomType->getName().c_str());
144 painCave.severity = OPENMD_ERROR;
145 painCave.isFatal = 1;
146 simError();
147 }
148
149 return ljData->getData();
150 }
151
152 RealType SHAPES::getLJEpsilon(AtomType* atomType) {
153 LJParam ljParam = getLJParam(atomType);
154 return ljParam.epsilon;
155 }
156 RealType SHAPES::getLJSigma(AtomType* atomType) {
157 LJParam ljParam = getLJParam(atomType);
158 return ljParam.sigma;
159 }
160
161 RealType SHAPES::getGayBerneCut(int atid) {
162 if (!initialized_) initialize();
163 std::map<int, AtomType*> :: const_iterator it;
164 it = SHAPESMap.find(atid);
165 if (it == SHAPESMap.end()) {
166 sprintf( painCave.errMsg,
167 "SHAPES::getGayBerneCut could not find atid %d in SHAPESMap\n",
168 (atid));
169 painCave.severity = OPENMD_ERROR;
170 painCave.isFatal = 1;
171 simError();
172 }
173
174 AtomType* atype = it->second;
175
176 RealType gbCut;
177
178 if (atype->isGayBerne()) {
179 GayBerneParam gb = getGayBerneParam(atype);
180
181 // sigma is actually sqrt(2) * l for prolate ellipsoids
182 gbCut = 2.5 * sqrt(2.0) * max(gb.SHAPES_l, gb.SHAPES_d);
183
184 } else if (atype->isLennardJones()) {
185 gbCut = 2.5 * LJ::Instance()->getSigma(atype);
186 }
187
188 return gbCut;
189 }
190
191
192 void SHAPES::calcForce(AtomType* at1, AtomType* at2, Vector3d d,
193 RealType r, RealType r2, RealType sw,
194 RealType &vpair, RealType &pot,
195 RotMat3x3d A1, RotMat3x3d A2, Vector3d &f1,
196 Vector3d &t1, Vector3d &t2) {
197
198 if (!initialized_) initialize();
199
200 pair<AtomType*, AtomType*> key = make_pair(at1, at2);
201 SHAPESInteractionData mixer = MixingMap[key];
202
203 RealType r3 = r2 * r;
204 RealType r5 = r3 * r2;
205
206 Vector3d drdi = -d / r;
207 Vector3d drdui = V3Zero;
208 Vector3d drdj = d / r;
209 Vector3d drduj = V3Zero;
210
211 bool i_is_LJ = at1->isLennardJones();
212 bool j_is_LJ = at2->isLennardJones();
213
214 RealType sigma_i;
215 RealType s_i;
216 RealType eps_i;
217 Vector3d dsigmaidr;
218 Vector3d disgmaidu;
219 Vector3d dsidr;
220 Vector3d dsidu;
221 Vector3d depsidr;
222 Vector3d depsidu;
223
224 if (i_is_LJ) {
225 sigma_i = LJ::Instance()->getSigma(at1);
226 s_i = sigma_i;
227 epsilon_i = LJ::Instance()->getEpsilon(at1);
228 dsigmaidr = V3Zero;
229 dsigmaidu = V3Zero;
230 dsidr = V3Zero;
231 dsidu = V3Zero;
232 depsidr = V3Zero;
233 depsidu = V3Zero;
234 } else {
235
236 // rotate the inter-particle separation into the two different
237 // body-fixed coordinate systems:
238
239 Vector3d ri = A1 * d;
240
241 RealType xi = ri.x() / r;
242 RealType yi = ri.y() / r;
243 RealType zi = ri.z() / r;
244 RealType xi2 = xi * xi;
245 RealType yi2 = yi * yi;
246 RealType zi2 = zi * zi;
247 RealType cti = zi / r;
248
249 if (cti > 1.0) cti = 1.0;
250 if (cti < -1.0_dp) cti = -1.0;
251
252 Vector3d dctidr(-zi * xi / r3,
253 -zi * yi / r3,
254 1.0 / r - zi2 / r3);
255
256 Vector3d dctidu(yi / r,
257 -zi / r,
258 0.0);
259
260 // this is an attempt to try to truncate the singularity when
261 // sin(theta) is near 0.0:
262
263 RealType sti2 = 1.0 - cti*cti;
264 if (fabs(sti2) < 1.0e-12) {
265 RealType proji = sqrt(r * 1.0e-12);
266 Vector3d dcpidx(1.0 / proji,
267 0.0,
268
269 dcpidx = 1.0_dp / proji
270 dcpidy = 0.0_dp
271 dcpidux = xi / proji
272 dcpiduy = 0.0_dp
273 dspidx = 0.0_dp
274 dspidy = 1.0_dp / proji
275 dspidux = 0.0_dp
276 dspiduy = yi / proji
277 else
278 proji = sqrt(xi2 + yi2)
279 proji3 = proji*proji*proji
280 dcpidx = 1.0_dp / proji - xi2 / proji3
281 dcpidy = - xi * yi / proji3
282 dcpidux = xi / proji - (xi2 * xi) / proji3
283 dcpiduy = - (xi * yi2) / proji3
284 dspidx = - xi * yi / proji3
285 dspidy = 1.0_dp / proji - yi2 / proji3
286 dspidux = - (yi * xi2) / proji3
287 dspiduy = yi / proji - (yi2 * yi) / proji3
288 endif
289
290 cpi = xi / proji
291 dcpidz = 0.0_dp
292 dcpiduz = 0.0_dp
293
294 spi = yi / proji
295 dspidz = 0.0_dp
296 dspiduz = 0.0_dp
297
298
299
300
301 RealType sigma0 = mixer.sigma0;
302 RealType dw = mixer.dw;
303 RealType eps0 = mixer.eps0;
304 RealType x2 = mixer.x2;
305 RealType xa2 = mixer.xa2;
306 RealType xai2 = mixer.xai2;
307 RealType xp2 = mixer.xp2;
308 RealType xpap2 = mixer.xpap2;
309 RealType xpapi2 = mixer.xpapi2;
310
311 Vector3d ul1 = A1.getRow(2);
312 Vector3d ul2 = A2.getRow(2);
313
314 RealType a, b, g;
315
316
317 if (i_is_LJ) {
318 a = 0.0;
319 ul1 = V3Zero;
320 } else {
321 a = dot(d, ul1);
322 }
323
324 if (j_is_LJ) {
325 b = 0.0;
326 ul2 = V3Zero;
327 } else {
328 b = dot(d, ul2);
329 }
330
331 if (i_is_LJ || j_is_LJ)
332 g = 0.0;
333 else
334 g = dot(ul1, ul2);
335
336 RealType au = a / r;
337 RealType bu = b / r;
338
339 RealType au2 = au * au;
340 RealType bu2 = bu * bu;
341 RealType g2 = g * g;
342
343 RealType H = (xa2 * au2 + xai2 * bu2 - 2.0*x2*au*bu*g) / (1.0 - x2*g2);
344 RealType Hp = (xpap2*au2 + xpapi2*bu2 - 2.0*xp2*au*bu*g) / (1.0 - xp2*g2);
345
346 RealType sigma = sigma0 / sqrt(1.0 - H);
347 RealType e1 = 1.0 / sqrt(1.0 - x2*g2);
348 RealType e2 = 1.0 - Hp;
349 RealType eps = eps0 * pow(e1,nu_) * pow(e2,mu_);
350 RealType BigR = dw*sigma0 / (r - sigma + dw*sigma0);
351
352 RealType R3 = BigR*BigR*BigR;
353 RealType R6 = R3*R3;
354 RealType R7 = R6 * BigR;
355 RealType R12 = R6*R6;
356 RealType R13 = R6*R7;
357
358 RealType U = vdwMult * 4.0 * eps * (R12 - R6);
359
360 RealType s3 = sigma*sigma*sigma;
361 RealType s03 = sigma0*sigma0*sigma0;
362
363 RealType pref1 = - vdwMult * 8.0 * eps * mu_ * (R12 - R6) / (e2 * r);
364
365 RealType pref2 = vdwMult * 8.0 * eps * s3 * (6.0*R13 - 3.0*R7) /(dw*r*s03);
366
367 RealType dUdr = - (pref1 * Hp + pref2 * (sigma0*sigma0*r/s3 + H));
368
369 RealType dUda = pref1 * (xpap2*au - xp2*bu*g) / (1.0 - xp2 * g2)
370 + pref2 * (xa2 * au - x2 *bu*g) / (1.0 - x2 * g2);
371
372 RealType dUdb = pref1 * (xpapi2*bu - xp2*au*g) / (1.0 - xp2 * g2)
373 + pref2 * (xai2 * bu - x2 *au*g) / (1.0 - x2 * g2);
374
375 RealType dUdg = 4.0 * eps * nu_ * (R12 - R6) * x2 * g / (1.0 - x2*g2)
376 + 8.0 * eps * mu_ * (R12 - R6) * (xp2*au*bu - Hp*xp2*g) /
377 (1.0 - xp2 * g2) / e2 + 8.0 * eps * s3 * (3.0 * R7 - 6.0 * R13) *
378 (x2 * au * bu - H * x2 * g) / (1.0 - x2 * g2) / (dw * s03);
379
380
381 Vector3d rhat = d / r;
382 Vector3d rxu1 = cross(d, ul1);
383 Vector3d rxu2 = cross(d, ul2);
384 Vector3d uxu = cross(ul1, ul2);
385
386 pot += U*sw;
387 f1 += dUdr * rhat + dUda * ul1 + dUdb * ul2;
388 t1 += dUda * rxu1 - dUdg * uxu;
389 t2 += dUdb * rxu2 - dUdg * uxu;
390 vpair += U*sw;
391
392 return;
393
394 }
395
396 void SHAPES::do_gb_pair(int *atid1, int *atid2, RealType *d, RealType *r,
397 RealType *r2, RealType *sw, RealType *vdwMult,
398 RealType *vpair, RealType *pot, RealType *A1,
399 RealType *A2, RealType *f1, RealType *t1, RealType *t2) {
400
401 if (!initialized_) initialize();
402
403 AtomType* atype1 = SHAPESMap[*atid1];
404 AtomType* atype2 = SHAPESMap[*atid2];
405
406 Vector3d disp(d);
407 Vector3d frc(f1);
408 Vector3d trq1(t1);
409 Vector3d trq2(t2);
410 RotMat3x3d Ai(A1);
411 RotMat3x3d Aj(A2);
412
413 // Fortran has the opposite matrix ordering from c++, so we'll use
414 // transpose here. When we finish the conversion to C++, this wrapper
415 // will disappear, as will the transpose below:
416
417 calcForce(atype1, atype2, disp, *r, *r2, *sw, *vdwMult, *vpair, *pot,
418 Ai, Aj, frc, trq1, trq1);
419
420 f1[0] = frc.x();
421 f1[1] = frc.y();
422 f1[2] = frc.z();
423
424 t1[0] = trq1.x();
425 t1[1] = trq1.y();
426 t1[2] = trq1.z();
427
428 t2[0] = trq2.x();
429 t2[1] = trq2.y();
430 t2[2] = trq2.z();
431
432 return;
433 }
434 }
435
436 extern "C" {
437
438 #define fortranGetGayBerneCut FC_FUNC(getgaybernecut, GETGAYBERNECUT)
439 #define fortranDoSHAPESPair FC_FUNC(do_gb_pair, DO_SHAPES_PAIR)
440
441 RealType fortranGetGayBerneCut(int* atid) {
442 return OpenMD::SHAPES::Instance()->getGayBerneCut(*atid);
443 }
444
445 void fortranDoSHAPESPair(int *atid1, int *atid2, RealType *d, RealType *r,
446 RealType *r2, RealType *sw, RealType *vdwMult,
447 RealType *vpair, RealType *pot, RealType *A1,
448 RealType *A2, RealType *f1, RealType *t1, RealType *t2){
449
450 return OpenMD::SHAPES::Instance()->do_gb_pair(atid1, atid2, d, r, r2, sw,
451 vdwMult, vpair, pot, A1, A2, f1,
452 t1, t2);
453 }
454 }

Properties

Name Value
svn:eol-style native