1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
#include <stdio.h> |
43 |
#include <string.h> |
44 |
|
45 |
#include <cmath> |
46 |
#include "nonbonded/SHAPES.hpp" |
47 |
#include "nonbonded/LJ.hpp" |
48 |
#include "utils/simError.h" |
49 |
|
50 |
using namespace std; |
51 |
namespace OpenMD { |
52 |
|
53 |
|
54 |
SHAPES::SHAPES() { |
55 |
initialized_ = false; |
56 |
lMax_ = 64; |
57 |
mMax_ = 64; |
58 |
forceField_ = NULL; |
59 |
} |
60 |
|
61 |
void SHAPES::initialize() { |
62 |
|
63 |
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
64 |
ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes(); |
65 |
ForceField::AtomTypeContainer::MapTypeIterator i; |
66 |
AtomType* at; |
67 |
|
68 |
// SHAPES handles all of the SHAPES-SHAPES interactions as well as |
69 |
// SHAPES-LJ cross interactions: |
70 |
|
71 |
for (at = atomTypes->beginType(i); at != NULL; |
72 |
at = atomTypes->nextType(i)) { |
73 |
|
74 |
if (at->isShape() || at->isLennardJones()) |
75 |
addType(at); |
76 |
} |
77 |
|
78 |
initialized_ = true; |
79 |
} |
80 |
|
81 |
void SHAPES::addType(AtomType* atomType){ |
82 |
// add it to the map: |
83 |
AtomTypeProperties atp = atomType->getATP(); |
84 |
|
85 |
pair<map<int,AtomType*>::iterator,bool> ret; |
86 |
ret = ShapesMap.insert( pair<int, AtomType*>(atp.ident, atomType) ); |
87 |
if (ret.second == false) { |
88 |
sprintf( painCave.errMsg, |
89 |
"SHAPES already had a previous entry with ident %d\n", |
90 |
atp.ident); |
91 |
painCave.severity = OPENMD_INFO; |
92 |
painCave.isFatal = 0; |
93 |
simError(); |
94 |
} |
95 |
|
96 |
if (atomType->isShape()) { |
97 |
ShapeAtomType* sAtomType = dynamic_cast<ShapeAtomType*>(atomType); |
98 |
if (sAtomType == NULL) { |
99 |
sprintf(painCave.errMsg, |
100 |
"SHAPES:: Can't cast to ShapeAtomType"); |
101 |
painCave.severity = OPENMD_ERROR; |
102 |
painCave.isFatal = 1; |
103 |
simError(); |
104 |
} |
105 |
ShapesMap.insert( pair<int, ShapeAtomType*>(atp.ident, sAtomType) ); |
106 |
|
107 |
} else if (atomType->isLennardJones()) { |
108 |
d1 = getLJSigma(atomType) / sqrt(2.0); |
109 |
e1 = getLJEpsilon(atomType); |
110 |
} else { |
111 |
sprintf( painCave.errMsg, |
112 |
"SHAPES::addType was passed an atomType (%s) that does not\n" |
113 |
"\tappear to be a SHAPES or Lennard-Jones atom.\n", |
114 |
atomType->getName().c_str()); |
115 |
painCave.severity = OPENMD_ERROR; |
116 |
painCave.isFatal = 1; |
117 |
simError(); |
118 |
} |
119 |
|
120 |
|
121 |
// Now, iterate over all known types and add to the mixing map: |
122 |
|
123 |
map<int, AtomType*>::iterator it; |
124 |
for( it = ShapesMap.begin(); it != SHAPESMap.end(); ++it) { |
125 |
|
126 |
AtomType* atype2 = (*it).second; |
127 |
|
128 |
RealType d2, l2, e2, er2, dw2; |
129 |
|
130 |
if (atype2->isGayBerne()) { |
131 |
GayBerneParam gb2 = getGayBerneParam(atype2); |
132 |
d2 = gb2.SHAPES_d; |
133 |
l2 = gb2.SHAPES_l; |
134 |
e2 = gb2.SHAPES_eps; |
135 |
er2 = gb2.SHAPES_eps_ratio; |
136 |
dw2 = gb2.SHAPES_dw; |
137 |
} else if (atype2->isLennardJones()) { |
138 |
d2 = getLJSigma(atype2) / sqrt(2.0); |
139 |
e2 = getLJEpsilon(atype2); |
140 |
l2 = d2; |
141 |
er2 = 1.0; |
142 |
dw2 = 1.0; |
143 |
} |
144 |
|
145 |
SHAPESInteractionData mixer; |
146 |
|
147 |
// Cleaver paper uses sqrt of squares to get sigma0 for |
148 |
// mixed interactions. |
149 |
|
150 |
mixer.sigma0 = sqrt(d1*d1 + d2*d2); |
151 |
mixer.xa2 = (l1*l1 - d1*d1)/(l1*l1 + d2*d2); |
152 |
mixer.xai2 = (l2*l2 - d2*d2)/(l2*l2 + d1*d1); |
153 |
mixer.x2 = (l1*l1 - d1*d1) * (l2*l2 - d2*d2) / |
154 |
((l2*l2 + d1*d1) * (l1*l1 + d2*d2)); |
155 |
|
156 |
// assumed LB mixing rules for now: |
157 |
|
158 |
mixer.dw = 0.5 * (dw1 + dw2); |
159 |
mixer.eps0 = sqrt(e1 * e2); |
160 |
|
161 |
RealType er = sqrt(er1 * er2); |
162 |
RealType ermu = pow(er,(1.0 / mu_)); |
163 |
RealType xp = (1.0 - ermu) / (1.0 + ermu); |
164 |
RealType ap2 = 1.0 / (1.0 + ermu); |
165 |
|
166 |
mixer.xp2 = xp * xp; |
167 |
mixer.xpap2 = xp * ap2; |
168 |
mixer.xpapi2 = xp / ap2; |
169 |
|
170 |
// only add this pairing if at least one of the atoms is a Gay-Berne atom |
171 |
|
172 |
if (atomType->isGayBerne() || atype2->isGayBerne()) { |
173 |
|
174 |
pair<AtomType*, AtomType*> key1, key2; |
175 |
key1 = make_pair(atomType, atype2); |
176 |
key2 = make_pair(atype2, atomType); |
177 |
|
178 |
MixingMap[key1] = mixer; |
179 |
if (key2 != key1) { |
180 |
MixingMap[key2] = mixer; |
181 |
} |
182 |
} |
183 |
} |
184 |
} |
185 |
|
186 |
|
187 |
LJParam SHAPES::getLJParam(AtomType* atomType) { |
188 |
|
189 |
// Do sanity checking on the AtomType we were passed before |
190 |
// building any data structures: |
191 |
if (!atomType->isLennardJones()) { |
192 |
sprintf( painCave.errMsg, |
193 |
"SHAPES::getLJParam was passed an atomType (%s) that does not\n" |
194 |
"\tappear to be a Lennard-Jones atom.\n", |
195 |
atomType->getName().c_str()); |
196 |
painCave.severity = OPENMD_ERROR; |
197 |
painCave.isFatal = 1; |
198 |
simError(); |
199 |
} |
200 |
|
201 |
GenericData* data = atomType->getPropertyByName("LennardJones"); |
202 |
if (data == NULL) { |
203 |
sprintf( painCave.errMsg, "SHAPES::getLJParam could not find Lennard-Jones\n" |
204 |
"\tparameters for atomType %s.\n", atomType->getName().c_str()); |
205 |
painCave.severity = OPENMD_ERROR; |
206 |
painCave.isFatal = 1; |
207 |
simError(); |
208 |
} |
209 |
|
210 |
LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data); |
211 |
if (ljData == NULL) { |
212 |
sprintf( painCave.errMsg, |
213 |
"SHAPES::getLJParam could not convert GenericData to LJParam for\n" |
214 |
"\tatom type %s\n", atomType->getName().c_str()); |
215 |
painCave.severity = OPENMD_ERROR; |
216 |
painCave.isFatal = 1; |
217 |
simError(); |
218 |
} |
219 |
|
220 |
return ljData->getData(); |
221 |
} |
222 |
|
223 |
RealType SHAPES::getLJEpsilon(AtomType* atomType) { |
224 |
LJParam ljParam = getLJParam(atomType); |
225 |
return ljParam.epsilon; |
226 |
} |
227 |
RealType SHAPES::getLJSigma(AtomType* atomType) { |
228 |
LJParam ljParam = getLJParam(atomType); |
229 |
return ljParam.sigma; |
230 |
} |
231 |
|
232 |
RealType SHAPES::getGayBerneCut(int atid) { |
233 |
if (!initialized_) initialize(); |
234 |
std::map<int, AtomType*> :: const_iterator it; |
235 |
it = SHAPESMap.find(atid); |
236 |
if (it == SHAPESMap.end()) { |
237 |
sprintf( painCave.errMsg, |
238 |
"SHAPES::getGayBerneCut could not find atid %d in SHAPESMap\n", |
239 |
(atid)); |
240 |
painCave.severity = OPENMD_ERROR; |
241 |
painCave.isFatal = 1; |
242 |
simError(); |
243 |
} |
244 |
|
245 |
AtomType* atype = it->second; |
246 |
|
247 |
RealType gbCut; |
248 |
|
249 |
if (atype->isGayBerne()) { |
250 |
GayBerneParam gb = getGayBerneParam(atype); |
251 |
|
252 |
// sigma is actually sqrt(2) * l for prolate ellipsoids |
253 |
gbCut = 2.5 * sqrt(2.0) * max(gb.SHAPES_l, gb.SHAPES_d); |
254 |
|
255 |
} else if (atype->isLennardJones()) { |
256 |
gbCut = 2.5 * LJ::Instance()->getSigma(atype); |
257 |
} |
258 |
|
259 |
return gbCut; |
260 |
} |
261 |
|
262 |
|
263 |
void SHAPES::calcForce(AtomType* at1, AtomType* at2, Vector3d d, |
264 |
RealType r, RealType r2, RealType sw, |
265 |
RealType &vpair, RealType &pot, |
266 |
RotMat3x3d A1, RotMat3x3d A2, Vector3d &f1, |
267 |
Vector3d &t1, Vector3d &t2) { |
268 |
|
269 |
if (!initialized_) initialize(); |
270 |
|
271 |
pair<AtomType*, AtomType*> key = make_pair(at1, at2); |
272 |
SHAPESInteractionData mixer = MixingMap[key]; |
273 |
|
274 |
RealType r3 = r2 * r; |
275 |
RealType r5 = r3 * r2; |
276 |
|
277 |
Vector3d drdi = -d / r; |
278 |
Vector3d drdui = V3Zero; |
279 |
Vector3d drdj = d / r; |
280 |
Vector3d drduj = V3Zero; |
281 |
|
282 |
bool i_is_LJ = at1->isLennardJones(); |
283 |
bool j_is_LJ = at2->isLennardJones(); |
284 |
|
285 |
RealType sigma_i; |
286 |
RealType s_i; |
287 |
RealType eps_i; |
288 |
Vector3d dsigmaidr; |
289 |
Vector3d disgmaidu; |
290 |
Vector3d dsidr; |
291 |
Vector3d dsidu; |
292 |
Vector3d depsidr; |
293 |
Vector3d depsidu; |
294 |
|
295 |
if (i_is_LJ) { |
296 |
sigma_i = LJ::Instance()->getSigma(at1); |
297 |
s_i = sigma_i; |
298 |
epsilon_i = LJ::Instance()->getEpsilon(at1); |
299 |
dsigmaidr = V3Zero; |
300 |
dsigmaidu = V3Zero; |
301 |
dsidr = V3Zero; |
302 |
dsidu = V3Zero; |
303 |
depsidr = V3Zero; |
304 |
depsidu = V3Zero; |
305 |
} else { |
306 |
|
307 |
// rotate the inter-particle separation into the two different |
308 |
// body-fixed coordinate systems: |
309 |
|
310 |
Vector3d ri = A1 * d; |
311 |
|
312 |
RealType xi = ri.x() / r; |
313 |
RealType yi = ri.y() / r; |
314 |
RealType zi = ri.z() / r; |
315 |
RealType xi2 = xi * xi; |
316 |
RealType yi2 = yi * yi; |
317 |
RealType zi2 = zi * zi; |
318 |
RealType cti = zi / r; |
319 |
|
320 |
if (cti > 1.0) cti = 1.0; |
321 |
if (cti < -1.0_dp) cti = -1.0; |
322 |
|
323 |
Vector3d dctidr(-zi * xi / r3, |
324 |
-zi * yi / r3, |
325 |
1.0 / r - zi2 / r3); |
326 |
|
327 |
Vector3d dctidu(yi / r, |
328 |
-zi / r, |
329 |
0.0); |
330 |
|
331 |
// this is an attempt to try to truncate the singularity when |
332 |
// sin(theta) is near 0.0: |
333 |
|
334 |
RealType sti2 = 1.0 - cti*cti; |
335 |
if (fabs(sti2) < 1.0e-12) { |
336 |
RealType proji = sqrt(r * 1.0e-12); |
337 |
Vector3d dcpidx(1.0 / proji, |
338 |
0.0, |
339 |
|
340 |
dcpidx = 1.0_dp / proji |
341 |
dcpidy = 0.0_dp |
342 |
dcpidux = xi / proji |
343 |
dcpiduy = 0.0_dp |
344 |
dspidx = 0.0_dp |
345 |
dspidy = 1.0_dp / proji |
346 |
dspidux = 0.0_dp |
347 |
dspiduy = yi / proji |
348 |
else |
349 |
proji = sqrt(xi2 + yi2) |
350 |
proji3 = proji*proji*proji |
351 |
dcpidx = 1.0_dp / proji - xi2 / proji3 |
352 |
dcpidy = - xi * yi / proji3 |
353 |
dcpidux = xi / proji - (xi2 * xi) / proji3 |
354 |
dcpiduy = - (xi * yi2) / proji3 |
355 |
dspidx = - xi * yi / proji3 |
356 |
dspidy = 1.0_dp / proji - yi2 / proji3 |
357 |
dspidux = - (yi * xi2) / proji3 |
358 |
dspiduy = yi / proji - (yi2 * yi) / proji3 |
359 |
endif |
360 |
|
361 |
cpi = xi / proji |
362 |
dcpidz = 0.0_dp |
363 |
dcpiduz = 0.0_dp |
364 |
|
365 |
spi = yi / proji |
366 |
dspidz = 0.0_dp |
367 |
dspiduz = 0.0_dp |
368 |
|
369 |
|
370 |
|
371 |
|
372 |
RealType sigma0 = mixer.sigma0; |
373 |
RealType dw = mixer.dw; |
374 |
RealType eps0 = mixer.eps0; |
375 |
RealType x2 = mixer.x2; |
376 |
RealType xa2 = mixer.xa2; |
377 |
RealType xai2 = mixer.xai2; |
378 |
RealType xp2 = mixer.xp2; |
379 |
RealType xpap2 = mixer.xpap2; |
380 |
RealType xpapi2 = mixer.xpapi2; |
381 |
|
382 |
Vector3d ul1 = A1.getRow(2); |
383 |
Vector3d ul2 = A2.getRow(2); |
384 |
|
385 |
RealType a, b, g; |
386 |
|
387 |
|
388 |
if (i_is_LJ) { |
389 |
a = 0.0; |
390 |
ul1 = V3Zero; |
391 |
} else { |
392 |
a = dot(d, ul1); |
393 |
} |
394 |
|
395 |
if (j_is_LJ) { |
396 |
b = 0.0; |
397 |
ul2 = V3Zero; |
398 |
} else { |
399 |
b = dot(d, ul2); |
400 |
} |
401 |
|
402 |
if (i_is_LJ || j_is_LJ) |
403 |
g = 0.0; |
404 |
else |
405 |
g = dot(ul1, ul2); |
406 |
|
407 |
RealType au = a / r; |
408 |
RealType bu = b / r; |
409 |
|
410 |
RealType au2 = au * au; |
411 |
RealType bu2 = bu * bu; |
412 |
RealType g2 = g * g; |
413 |
|
414 |
RealType H = (xa2 * au2 + xai2 * bu2 - 2.0*x2*au*bu*g) / (1.0 - x2*g2); |
415 |
RealType Hp = (xpap2*au2 + xpapi2*bu2 - 2.0*xp2*au*bu*g) / (1.0 - xp2*g2); |
416 |
|
417 |
RealType sigma = sigma0 / sqrt(1.0 - H); |
418 |
RealType e1 = 1.0 / sqrt(1.0 - x2*g2); |
419 |
RealType e2 = 1.0 - Hp; |
420 |
RealType eps = eps0 * pow(e1,nu_) * pow(e2,mu_); |
421 |
RealType BigR = dw*sigma0 / (r - sigma + dw*sigma0); |
422 |
|
423 |
RealType R3 = BigR*BigR*BigR; |
424 |
RealType R6 = R3*R3; |
425 |
RealType R7 = R6 * BigR; |
426 |
RealType R12 = R6*R6; |
427 |
RealType R13 = R6*R7; |
428 |
|
429 |
RealType U = vdwMult * 4.0 * eps * (R12 - R6); |
430 |
|
431 |
RealType s3 = sigma*sigma*sigma; |
432 |
RealType s03 = sigma0*sigma0*sigma0; |
433 |
|
434 |
RealType pref1 = - vdwMult * 8.0 * eps * mu_ * (R12 - R6) / (e2 * r); |
435 |
|
436 |
RealType pref2 = vdwMult * 8.0 * eps * s3 * (6.0*R13 - 3.0*R7) /(dw*r*s03); |
437 |
|
438 |
RealType dUdr = - (pref1 * Hp + pref2 * (sigma0*sigma0*r/s3 + H)); |
439 |
|
440 |
RealType dUda = pref1 * (xpap2*au - xp2*bu*g) / (1.0 - xp2 * g2) |
441 |
+ pref2 * (xa2 * au - x2 *bu*g) / (1.0 - x2 * g2); |
442 |
|
443 |
RealType dUdb = pref1 * (xpapi2*bu - xp2*au*g) / (1.0 - xp2 * g2) |
444 |
+ pref2 * (xai2 * bu - x2 *au*g) / (1.0 - x2 * g2); |
445 |
|
446 |
RealType dUdg = 4.0 * eps * nu_ * (R12 - R6) * x2 * g / (1.0 - x2*g2) |
447 |
+ 8.0 * eps * mu_ * (R12 - R6) * (xp2*au*bu - Hp*xp2*g) / |
448 |
(1.0 - xp2 * g2) / e2 + 8.0 * eps * s3 * (3.0 * R7 - 6.0 * R13) * |
449 |
(x2 * au * bu - H * x2 * g) / (1.0 - x2 * g2) / (dw * s03); |
450 |
|
451 |
|
452 |
Vector3d rhat = d / r; |
453 |
Vector3d rxu1 = cross(d, ul1); |
454 |
Vector3d rxu2 = cross(d, ul2); |
455 |
Vector3d uxu = cross(ul1, ul2); |
456 |
|
457 |
pot += U*sw; |
458 |
f1 += dUdr * rhat + dUda * ul1 + dUdb * ul2; |
459 |
t1 += dUda * rxu1 - dUdg * uxu; |
460 |
t2 += dUdb * rxu2 - dUdg * uxu; |
461 |
vpair += U*sw; |
462 |
|
463 |
return; |
464 |
|
465 |
} |
466 |
|
467 |
void SHAPES::do_gb_pair(int *atid1, int *atid2, RealType *d, RealType *r, |
468 |
RealType *r2, RealType *sw, RealType *vdwMult, |
469 |
RealType *vpair, RealType *pot, RealType *A1, |
470 |
RealType *A2, RealType *f1, RealType *t1, RealType *t2) { |
471 |
|
472 |
if (!initialized_) initialize(); |
473 |
|
474 |
AtomType* atype1 = SHAPESMap[*atid1]; |
475 |
AtomType* atype2 = SHAPESMap[*atid2]; |
476 |
|
477 |
Vector3d disp(d); |
478 |
Vector3d frc(f1); |
479 |
Vector3d trq1(t1); |
480 |
Vector3d trq2(t2); |
481 |
RotMat3x3d Ai(A1); |
482 |
RotMat3x3d Aj(A2); |
483 |
|
484 |
// Fortran has the opposite matrix ordering from c++, so we'll use |
485 |
// transpose here. When we finish the conversion to C++, this wrapper |
486 |
// will disappear, as will the transpose below: |
487 |
|
488 |
calcForce(atype1, atype2, disp, *r, *r2, *sw, *vdwMult, *vpair, *pot, |
489 |
Ai, Aj, frc, trq1, trq1); |
490 |
|
491 |
f1[0] = frc.x(); |
492 |
f1[1] = frc.y(); |
493 |
f1[2] = frc.z(); |
494 |
|
495 |
t1[0] = trq1.x(); |
496 |
t1[1] = trq1.y(); |
497 |
t1[2] = trq1.z(); |
498 |
|
499 |
t2[0] = trq2.x(); |
500 |
t2[1] = trq2.y(); |
501 |
t2[2] = trq2.z(); |
502 |
|
503 |
return; |
504 |
} |
505 |
} |
506 |
|
507 |
extern "C" { |
508 |
|
509 |
#define fortranGetGayBerneCut FC_FUNC(getgaybernecut, GETGAYBERNECUT) |
510 |
#define fortranDoSHAPESPair FC_FUNC(do_gb_pair, DO_SHAPES_PAIR) |
511 |
|
512 |
RealType fortranGetGayBerneCut(int* atid) { |
513 |
return OpenMD::SHAPES::Instance()->getGayBerneCut(*atid); |
514 |
} |
515 |
|
516 |
void fortranDoSHAPESPair(int *atid1, int *atid2, RealType *d, RealType *r, |
517 |
RealType *r2, RealType *sw, RealType *vdwMult, |
518 |
RealType *vpair, RealType *pot, RealType *A1, |
519 |
RealType *A2, RealType *f1, RealType *t1, RealType *t2){ |
520 |
|
521 |
return OpenMD::SHAPES::Instance()->do_gb_pair(atid1, atid2, d, r, r2, sw, |
522 |
vdwMult, vpair, pot, A1, A2, f1, |
523 |
t1, t2); |
524 |
} |
525 |
} |