ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/SHAPES.cpp
Revision: 1501
Committed: Wed Sep 15 19:32:10 2010 UTC (14 years, 8 months ago) by gezelter
File size: 14995 byte(s)
Log Message:
Starting migration of Morse to C++

File Contents

# User Rev Content
1 gezelter 1501 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40     */
41    
42     #include <stdio.h>
43     #include <string.h>
44    
45     #include <cmath>
46     #include "nonbonded/SHAPES.hpp"
47     #include "nonbonded/LJ.hpp"
48     #include "utils/simError.h"
49    
50     using namespace std;
51     namespace OpenMD {
52    
53     bool SHAPES::initialized_ = false;
54     int SHAPES::lMax_ = 64;
55     int SHAPES::mMax_ = 64;
56     ForceField* SHAPES::forceField_ = NULL;
57     map<int, AtomType*> SHAPES::ShapesMap;
58     map<pair<AtomType*, AtomType*>, SHAPESInteractionData> SHAPES::MixingMap;
59    
60     SHAPES* SHAPES::_instance = NULL;
61    
62     SHAPES* SHAPES::Instance() {
63     if (!_instance) {
64     _instance = new SHAPES();
65     }
66     return _instance;
67     }
68    
69     void SHAPES::initialize() {
70    
71     ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
72     ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
73     ForceField::AtomTypeContainer::MapTypeIterator i;
74     AtomType* at;
75    
76     // SHAPES handles all of the SHAPES-SHAPES interactions as well as
77     // SHAPES-LJ cross interactions:
78    
79     for (at = atomTypes->beginType(i); at != NULL;
80     at = atomTypes->nextType(i)) {
81    
82     if (at->isShape() || at->isLennardJones())
83     addType(at);
84     }
85    
86     initialized_ = true;
87     }
88    
89     void SHAPES::addType(AtomType* atomType){
90     // add it to the map:
91     AtomTypeProperties atp = atomType->getATP();
92    
93     pair<map<int,AtomType*>::iterator,bool> ret;
94     ret = ShapesMap.insert( pair<int, AtomType*>(atp.ident, atomType) );
95     if (ret.second == false) {
96     sprintf( painCave.errMsg,
97     "SHAPES already had a previous entry with ident %d\n",
98     atp.ident);
99     painCave.severity = OPENMD_INFO;
100     painCave.isFatal = 0;
101     simError();
102     }
103    
104     if (atomType->isShape()) {
105     ShapeAtomType* sAtomType = dynamic_cast<ShapeAtomType*>(atomType);
106     if (sAtomType == NULL) {
107     sprintf(painCave.errMsg,
108     "SHAPES:: Can't cast to ShapeAtomType");
109     painCave.severity = OPENMD_ERROR;
110     painCave.isFatal = 1;
111     simError();
112     }
113     ShapesMap.insert( pair<int, ShapeAtomType*>(atp.ident, sAtomType) );
114    
115     } else if (atomType->isLennardJones()) {
116     d1 = LJ::Instance()->getSigma(atomType) / sqrt(2.0);
117     e1 = LJ::Instance()->getEpsilon(atomType);
118     } else {
119     sprintf( painCave.errMsg,
120     "SHAPES::addType was passed an atomType (%s) that does not\n"
121     "\tappear to be a Gay-Berne or Lennard-Jones atom.\n",
122     atomType->getName().c_str());
123     painCave.severity = OPENMD_ERROR;
124     painCave.isFatal = 1;
125     simError();
126     }
127    
128    
129     // Now, iterate over all known types and add to the mixing map:
130    
131     map<int, AtomType*>::iterator it;
132     for( it = ShapesMap.begin(); it != SHAPESMap.end(); ++it) {
133    
134     AtomType* atype2 = (*it).second;
135    
136     RealType d2, l2, e2, er2, dw2;
137    
138     if (atype2->isGayBerne()) {
139     GayBerneParam gb2 = getGayBerneParam(atype2);
140     d2 = gb2.SHAPES_d;
141     l2 = gb2.SHAPES_l;
142     e2 = gb2.SHAPES_eps;
143     er2 = gb2.SHAPES_eps_ratio;
144     dw2 = gb2.SHAPES_dw;
145     } else if (atype2->isLennardJones()) {
146     d2 = LJ::Instance()->getSigma(atype2) / sqrt(2.0);
147     e2 = LJ::Instance()->getEpsilon(atype2);
148     l2 = d2;
149     er2 = 1.0;
150     dw2 = 1.0;
151     }
152    
153     SHAPESInteractionData mixer;
154    
155     // Cleaver paper uses sqrt of squares to get sigma0 for
156     // mixed interactions.
157    
158     mixer.sigma0 = sqrt(d1*d1 + d2*d2);
159     mixer.xa2 = (l1*l1 - d1*d1)/(l1*l1 + d2*d2);
160     mixer.xai2 = (l2*l2 - d2*d2)/(l2*l2 + d1*d1);
161     mixer.x2 = (l1*l1 - d1*d1) * (l2*l2 - d2*d2) /
162     ((l2*l2 + d1*d1) * (l1*l1 + d2*d2));
163    
164     // assumed LB mixing rules for now:
165    
166     mixer.dw = 0.5 * (dw1 + dw2);
167     mixer.eps0 = sqrt(e1 * e2);
168    
169     RealType er = sqrt(er1 * er2);
170     RealType ermu = pow(er,(1.0 / mu_));
171     RealType xp = (1.0 - ermu) / (1.0 + ermu);
172     RealType ap2 = 1.0 / (1.0 + ermu);
173    
174     mixer.xp2 = xp * xp;
175     mixer.xpap2 = xp * ap2;
176     mixer.xpapi2 = xp / ap2;
177    
178     // only add this pairing if at least one of the atoms is a Gay-Berne atom
179    
180     if (atomType->isGayBerne() || atype2->isGayBerne()) {
181    
182     pair<AtomType*, AtomType*> key1, key2;
183     key1 = make_pair(atomType, atype2);
184     key2 = make_pair(atype2, atomType);
185    
186     MixingMap[key1] = mixer;
187     if (key2 != key1) {
188     MixingMap[key2] = mixer;
189     }
190     }
191     }
192     }
193    
194    
195     RealType SHAPES::getGayBerneCut(int atid) {
196     if (!initialized_) initialize();
197     std::map<int, AtomType*> :: const_iterator it;
198     it = SHAPESMap.find(atid);
199     if (it == SHAPESMap.end()) {
200     sprintf( painCave.errMsg,
201     "SHAPES::getGayBerneCut could not find atid %d in SHAPESMap\n",
202     (atid));
203     painCave.severity = OPENMD_ERROR;
204     painCave.isFatal = 1;
205     simError();
206     }
207    
208     AtomType* atype = it->second;
209    
210     RealType gbCut;
211    
212     if (atype->isGayBerne()) {
213     GayBerneParam gb = getGayBerneParam(atype);
214    
215     // sigma is actually sqrt(2) * l for prolate ellipsoids
216     gbCut = 2.5 * sqrt(2.0) * max(gb.SHAPES_l, gb.SHAPES_d);
217    
218     } else if (atype->isLennardJones()) {
219     gbCut = 2.5 * LJ::Instance()->getSigma(atype);
220     }
221    
222     return gbCut;
223     }
224    
225    
226     void SHAPES::calcForce(AtomType* at1, AtomType* at2, Vector3d d,
227     RealType r, RealType r2, RealType sw,
228     RealType &vpair, RealType &pot,
229     RotMat3x3d A1, RotMat3x3d A2, Vector3d &f1,
230     Vector3d &t1, Vector3d &t2) {
231    
232     if (!initialized_) initialize();
233    
234     pair<AtomType*, AtomType*> key = make_pair(at1, at2);
235     SHAPESInteractionData mixer = MixingMap[key];
236    
237     RealType r3 = r2 * r;
238     RealType r5 = r3 * r2;
239    
240     Vector3d drdi = -d / r;
241     Vector3d drdui = V3Zero;
242     Vector3d drdj = d / r;
243     Vector3d drduj = V3Zero;
244    
245     bool i_is_LJ = at1->isLennardJones();
246     bool j_is_LJ = at2->isLennardJones();
247    
248     RealType sigma_i;
249     RealType s_i;
250     RealType eps_i;
251     Vector3d dsigmaidr;
252     Vector3d disgmaidu;
253     Vector3d dsidr;
254     Vector3d dsidu;
255     Vector3d depsidr;
256     Vector3d depsidu;
257    
258     if (i_is_LJ) {
259     sigma_i = LJ::Instance()->getSigma(at1);
260     s_i = sigma_i;
261     epsilon_i = LJ::Instance()->getEpsilon(at1);
262     dsigmaidr = V3Zero;
263     dsigmaidu = V3Zero;
264     dsidr = V3Zero;
265     dsidu = V3Zero;
266     depsidr = V3Zero;
267     depsidu = V3Zero;
268     } else {
269    
270     // rotate the inter-particle separation into the two different
271     // body-fixed coordinate systems:
272    
273     Vector3d ri = A1 * d;
274    
275     RealType xi = ri.x() / r;
276     RealType yi = ri.y() / r;
277     RealType zi = ri.z() / r;
278     RealType xi2 = xi * xi;
279     RealType yi2 = yi * yi;
280     RealType zi2 = zi * zi;
281     RealType cti = zi / r;
282    
283     if (cti > 1.0) cti = 1.0;
284     if (cti < -1.0_dp) cti = -1.0;
285    
286     Vector3d dctidr(-zi * xi / r3,
287     -zi * yi / r3,
288     1.0 / r - zi2 / r3);
289    
290     Vector3d dctidu(yi / r,
291     -zi / r,
292     0.0);
293    
294     // this is an attempt to try to truncate the singularity when
295     // sin(theta) is near 0.0:
296    
297     RealType sti2 = 1.0 - cti*cti;
298     if (fabs(sti2) < 1.0e-12) {
299     RealType proji = sqrt(r * 1.0e-12);
300     Vector3d dcpidx(1.0 / proji,
301     0.0,
302    
303     dcpidx = 1.0_dp / proji
304     dcpidy = 0.0_dp
305     dcpidux = xi / proji
306     dcpiduy = 0.0_dp
307     dspidx = 0.0_dp
308     dspidy = 1.0_dp / proji
309     dspidux = 0.0_dp
310     dspiduy = yi / proji
311     else
312     proji = sqrt(xi2 + yi2)
313     proji3 = proji*proji*proji
314     dcpidx = 1.0_dp / proji - xi2 / proji3
315     dcpidy = - xi * yi / proji3
316     dcpidux = xi / proji - (xi2 * xi) / proji3
317     dcpiduy = - (xi * yi2) / proji3
318     dspidx = - xi * yi / proji3
319     dspidy = 1.0_dp / proji - yi2 / proji3
320     dspidux = - (yi * xi2) / proji3
321     dspiduy = yi / proji - (yi2 * yi) / proji3
322     endif
323    
324     cpi = xi / proji
325     dcpidz = 0.0_dp
326     dcpiduz = 0.0_dp
327    
328     spi = yi / proji
329     dspidz = 0.0_dp
330     dspiduz = 0.0_dp
331    
332    
333    
334    
335     RealType sigma0 = mixer.sigma0;
336     RealType dw = mixer.dw;
337     RealType eps0 = mixer.eps0;
338     RealType x2 = mixer.x2;
339     RealType xa2 = mixer.xa2;
340     RealType xai2 = mixer.xai2;
341     RealType xp2 = mixer.xp2;
342     RealType xpap2 = mixer.xpap2;
343     RealType xpapi2 = mixer.xpapi2;
344    
345     Vector3d ul1 = A1.getRow(2);
346     Vector3d ul2 = A2.getRow(2);
347    
348     RealType a, b, g;
349    
350    
351     if (i_is_LJ) {
352     a = 0.0;
353     ul1 = V3Zero;
354     } else {
355     a = dot(d, ul1);
356     }
357    
358     if (j_is_LJ) {
359     b = 0.0;
360     ul2 = V3Zero;
361     } else {
362     b = dot(d, ul2);
363     }
364    
365     if (i_is_LJ || j_is_LJ)
366     g = 0.0;
367     else
368     g = dot(ul1, ul2);
369    
370     RealType au = a / r;
371     RealType bu = b / r;
372    
373     RealType au2 = au * au;
374     RealType bu2 = bu * bu;
375     RealType g2 = g * g;
376    
377     RealType H = (xa2 * au2 + xai2 * bu2 - 2.0*x2*au*bu*g) / (1.0 - x2*g2);
378     RealType Hp = (xpap2*au2 + xpapi2*bu2 - 2.0*xp2*au*bu*g) / (1.0 - xp2*g2);
379    
380     RealType sigma = sigma0 / sqrt(1.0 - H);
381     RealType e1 = 1.0 / sqrt(1.0 - x2*g2);
382     RealType e2 = 1.0 - Hp;
383     RealType eps = eps0 * pow(e1,nu_) * pow(e2,mu_);
384     RealType BigR = dw*sigma0 / (r - sigma + dw*sigma0);
385    
386     RealType R3 = BigR*BigR*BigR;
387     RealType R6 = R3*R3;
388     RealType R7 = R6 * BigR;
389     RealType R12 = R6*R6;
390     RealType R13 = R6*R7;
391    
392     RealType U = vdwMult * 4.0 * eps * (R12 - R6);
393    
394     RealType s3 = sigma*sigma*sigma;
395     RealType s03 = sigma0*sigma0*sigma0;
396    
397     RealType pref1 = - vdwMult * 8.0 * eps * mu_ * (R12 - R6) / (e2 * r);
398    
399     RealType pref2 = vdwMult * 8.0 * eps * s3 * (6.0*R13 - 3.0*R7) /(dw*r*s03);
400    
401     RealType dUdr = - (pref1 * Hp + pref2 * (sigma0*sigma0*r/s3 + H));
402    
403     RealType dUda = pref1 * (xpap2*au - xp2*bu*g) / (1.0 - xp2 * g2)
404     + pref2 * (xa2 * au - x2 *bu*g) / (1.0 - x2 * g2);
405    
406     RealType dUdb = pref1 * (xpapi2*bu - xp2*au*g) / (1.0 - xp2 * g2)
407     + pref2 * (xai2 * bu - x2 *au*g) / (1.0 - x2 * g2);
408    
409     RealType dUdg = 4.0 * eps * nu_ * (R12 - R6) * x2 * g / (1.0 - x2*g2)
410     + 8.0 * eps * mu_ * (R12 - R6) * (xp2*au*bu - Hp*xp2*g) /
411     (1.0 - xp2 * g2) / e2 + 8.0 * eps * s3 * (3.0 * R7 - 6.0 * R13) *
412     (x2 * au * bu - H * x2 * g) / (1.0 - x2 * g2) / (dw * s03);
413    
414    
415     Vector3d rhat = d / r;
416     Vector3d rxu1 = cross(d, ul1);
417     Vector3d rxu2 = cross(d, ul2);
418     Vector3d uxu = cross(ul1, ul2);
419    
420     pot += U*sw;
421     f1 += dUdr * rhat + dUda * ul1 + dUdb * ul2;
422     t1 += dUda * rxu1 - dUdg * uxu;
423     t2 += dUdb * rxu2 - dUdg * uxu;
424     vpair += U*sw;
425    
426     return;
427    
428     }
429    
430     void SHAPES::do_gb_pair(int *atid1, int *atid2, RealType *d, RealType *r,
431     RealType *r2, RealType *sw, RealType *vdwMult,
432     RealType *vpair, RealType *pot, RealType *A1,
433     RealType *A2, RealType *f1, RealType *t1, RealType *t2) {
434    
435     if (!initialized_) initialize();
436    
437     AtomType* atype1 = SHAPESMap[*atid1];
438     AtomType* atype2 = SHAPESMap[*atid2];
439    
440     Vector3d disp(d);
441     Vector3d frc(f1);
442     Vector3d trq1(t1);
443     Vector3d trq2(t2);
444     RotMat3x3d Ai(A1);
445     RotMat3x3d Aj(A2);
446    
447     // Fortran has the opposite matrix ordering from c++, so we'll use
448     // transpose here. When we finish the conversion to C++, this wrapper
449     // will disappear, as will the transpose below:
450    
451     calcForce(atype1, atype2, disp, *r, *r2, *sw, *vdwMult, *vpair, *pot,
452     Ai, Aj, frc, trq1, trq1);
453    
454     f1[0] = frc.x();
455     f1[1] = frc.y();
456     f1[2] = frc.z();
457    
458     t1[0] = trq1.x();
459     t1[1] = trq1.y();
460     t1[2] = trq1.z();
461    
462     t2[0] = trq2.x();
463     t2[1] = trq2.y();
464     t2[2] = trq2.z();
465    
466     return;
467     }
468     }
469    
470     extern "C" {
471    
472     #define fortranGetGayBerneCut FC_FUNC(getgaybernecut, GETGAYBERNECUT)
473     #define fortranDoSHAPESPair FC_FUNC(do_gb_pair, DO_SHAPES_PAIR)
474    
475     RealType fortranGetGayBerneCut(int* atid) {
476     return OpenMD::SHAPES::Instance()->getGayBerneCut(*atid);
477     }
478    
479     void fortranDoSHAPESPair(int *atid1, int *atid2, RealType *d, RealType *r,
480     RealType *r2, RealType *sw, RealType *vdwMult,
481     RealType *vpair, RealType *pot, RealType *A1,
482     RealType *A2, RealType *f1, RealType *t1, RealType *t2){
483    
484     return OpenMD::SHAPES::Instance()->do_gb_pair(atid1, atid2, d, r, r2, sw,
485     vdwMult, vpair, pot, A1, A2, f1,
486     t1, t2);
487     }
488     }

Properties

Name Value
svn:eol-style native