| 35 |
|
* |
| 36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
| 39 |
|
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
| 40 |
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
| 41 |
|
*/ |
| 54 |
|
SC::SC() : name_("SC"), initialized_(false), forceField_(NULL), |
| 55 |
|
scRcut_(0.0), np_(3000) {} |
| 56 |
|
|
| 57 |
+ |
SC::~SC() { |
| 58 |
+ |
initialized_ = false; |
| 59 |
+ |
|
| 60 |
+ |
map<pair<AtomType*, AtomType*>, SCInteractionData>::iterator it; |
| 61 |
+ |
for (it = MixingMap.begin(); it != MixingMap.end(); ++it) { |
| 62 |
+ |
SCInteractionData mixer = (*it).second; |
| 63 |
+ |
delete mixer.V; |
| 64 |
+ |
delete mixer.phi; |
| 65 |
+ |
} |
| 66 |
+ |
|
| 67 |
+ |
MixingMap.clear(); |
| 68 |
+ |
SCMap.clear(); |
| 69 |
+ |
SClist.clear(); |
| 70 |
+ |
} |
| 71 |
+ |
|
| 72 |
|
RealType SC::getM(AtomType* atomType1, AtomType* atomType2) { |
| 73 |
|
SuttonChenAdapter sca1 = SuttonChenAdapter(atomType1); |
| 74 |
|
SuttonChenAdapter sca2 = SuttonChenAdapter(atomType2); |
| 293 |
|
*(sdat.dfrhodrho) = 0.5 * *(sdat.frho) / *(sdat.rho); |
| 294 |
|
|
| 295 |
|
(*(sdat.pot))[METALLIC_FAMILY] += u; |
| 296 |
< |
*(sdat.particlePot) += u; |
| 297 |
< |
|
| 296 |
> |
if (sdat.doParticlePot) { |
| 297 |
> |
*(sdat.particlePot) += u; |
| 298 |
> |
} |
| 299 |
> |
|
| 300 |
|
return; |
| 301 |
|
} |
| 302 |
|
|
| 332 |
|
|
| 333 |
|
*(idat.f1) += *(idat.d) * dudr / *(idat.rij) ; |
| 334 |
|
|
| 335 |
< |
// particlePot is the difference between the full potential and |
| 336 |
< |
// the full potential without the presence of a particular |
| 337 |
< |
// particle (atom1). |
| 338 |
< |
// |
| 339 |
< |
// This reduces the density at other particle locations, so we |
| 340 |
< |
// need to recompute the density at atom2 assuming atom1 didn't |
| 341 |
< |
// contribute. This then requires recomputing the density |
| 342 |
< |
// functional for atom2 as well. |
| 343 |
< |
|
| 344 |
< |
*(idat.particlePot1) -= data2.c * data2.epsilon * |
| 345 |
< |
sqrt( *(idat.rho2) - rhtmp) + *(idat.frho2); |
| 335 |
> |
if (idat.doParticlePot) { |
| 336 |
> |
// particlePot is the difference between the full potential and |
| 337 |
> |
// the full potential without the presence of a particular |
| 338 |
> |
// particle (atom1). |
| 339 |
> |
// |
| 340 |
> |
// This reduces the density at other particle locations, so we |
| 341 |
> |
// need to recompute the density at atom2 assuming atom1 didn't |
| 342 |
> |
// contribute. This then requires recomputing the density |
| 343 |
> |
// functional for atom2 as well. |
| 344 |
> |
|
| 345 |
> |
*(idat.particlePot1) -= data2.c * data2.epsilon * |
| 346 |
> |
sqrt( *(idat.rho2) - rhtmp) + *(idat.frho2); |
| 347 |
|
|
| 348 |
< |
*(idat.particlePot2) -= data1.c * data1.epsilon * |
| 349 |
< |
sqrt( *(idat.rho1) - rhtmp) + *(idat.frho1); |
| 348 |
> |
*(idat.particlePot2) -= data1.c * data1.epsilon * |
| 349 |
> |
sqrt( *(idat.rho1) - rhtmp) + *(idat.frho1); |
| 350 |
> |
} |
| 351 |
|
|
| 352 |
|
(*(idat.pot))[METALLIC_FAMILY] += pot_temp; |
| 353 |
|
} |