1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <stdio.h> |
44 |
#include <string.h> |
45 |
|
46 |
#include <cmath> |
47 |
#include "nonbonded/SC.hpp" |
48 |
#include "utils/simError.h" |
49 |
#include "types/NonBondedInteractionType.hpp" |
50 |
|
51 |
namespace OpenMD { |
52 |
|
53 |
|
54 |
SC::SC() : name_("SC"), initialized_(false), forceField_(NULL), |
55 |
scRcut_(0.0), np_(3000) {} |
56 |
|
57 |
SCParam SC::getSCParam(AtomType* atomType) { |
58 |
|
59 |
// Do sanity checking on the AtomType we were passed before |
60 |
// building any data structures: |
61 |
if (!atomType->isSC()) { |
62 |
sprintf( painCave.errMsg, |
63 |
"SC::getSCParam was passed an atomType (%s) that does not\n" |
64 |
"\tappear to be a Sutton-Chen (SC) atom.\n", |
65 |
atomType->getName().c_str()); |
66 |
painCave.severity = OPENMD_ERROR; |
67 |
painCave.isFatal = 1; |
68 |
simError(); |
69 |
} |
70 |
|
71 |
GenericData* data = atomType->getPropertyByName("SC"); |
72 |
if (data == NULL) { |
73 |
sprintf( painCave.errMsg, "SC::getSCParam could not find SC\n" |
74 |
"\tparameters for atomType %s.\n", |
75 |
atomType->getName().c_str()); |
76 |
painCave.severity = OPENMD_ERROR; |
77 |
painCave.isFatal = 1; |
78 |
simError(); |
79 |
} |
80 |
|
81 |
SCParamGenericData* scData = dynamic_cast<SCParamGenericData*>(data); |
82 |
if (scData == NULL) { |
83 |
sprintf( painCave.errMsg, |
84 |
"SC::getSCParam could not convert GenericData to SCParamGenericData\n" |
85 |
"\tfor atom type %s\n", atomType->getName().c_str()); |
86 |
painCave.severity = OPENMD_ERROR; |
87 |
painCave.isFatal = 1; |
88 |
simError(); |
89 |
} |
90 |
|
91 |
return scData->getData(); |
92 |
} |
93 |
|
94 |
RealType SC::getC(AtomType* atomType) { |
95 |
SCParam scParam = getSCParam(atomType); |
96 |
return scParam.c; |
97 |
} |
98 |
|
99 |
RealType SC::getM(AtomType* atomType) { |
100 |
SCParam scParam = getSCParam(atomType); |
101 |
return scParam.m; |
102 |
} |
103 |
|
104 |
RealType SC::getM(AtomType* atomType1, AtomType* atomType2) { |
105 |
RealType m1 = getM(atomType1); |
106 |
RealType m2 = getM(atomType2); |
107 |
return 0.5 * (m1 + m2); |
108 |
} |
109 |
|
110 |
RealType SC::getN(AtomType* atomType) { |
111 |
SCParam scParam = getSCParam(atomType); |
112 |
return scParam.n; |
113 |
} |
114 |
|
115 |
RealType SC::getN(AtomType* atomType1, AtomType* atomType2) { |
116 |
RealType n1 = getN(atomType1); |
117 |
RealType n2 = getN(atomType2); |
118 |
return 0.5 * (n1 + n2); |
119 |
} |
120 |
|
121 |
RealType SC::getAlpha(AtomType* atomType) { |
122 |
SCParam scParam = getSCParam(atomType); |
123 |
return scParam.alpha; |
124 |
} |
125 |
|
126 |
RealType SC::getAlpha(AtomType* atomType1, AtomType* atomType2) { |
127 |
RealType alpha1 = getAlpha(atomType1); |
128 |
RealType alpha2 = getAlpha(atomType2); |
129 |
|
130 |
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
131 |
std::string DistanceMix = fopts.getDistanceMixingRule(); |
132 |
toUpper(DistanceMix); |
133 |
|
134 |
if (DistanceMix == "GEOMETRIC") |
135 |
return sqrt(alpha1 * alpha2); |
136 |
else |
137 |
return 0.5 * (alpha1 + alpha2); |
138 |
} |
139 |
|
140 |
RealType SC::getEpsilon(AtomType* atomType) { |
141 |
SCParam scParam = getSCParam(atomType); |
142 |
return scParam.epsilon; |
143 |
} |
144 |
|
145 |
RealType SC::getEpsilon(AtomType* atomType1, AtomType* atomType2) { |
146 |
RealType epsilon1 = getEpsilon(atomType1); |
147 |
RealType epsilon2 = getEpsilon(atomType2); |
148 |
return sqrt(epsilon1 * epsilon2); |
149 |
} |
150 |
|
151 |
void SC::initialize() { |
152 |
// find all of the SC atom Types: |
153 |
ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes(); |
154 |
ForceField::AtomTypeContainer::MapTypeIterator i; |
155 |
AtomType* at; |
156 |
|
157 |
for (at = atomTypes->beginType(i); at != NULL; |
158 |
at = atomTypes->nextType(i)) { |
159 |
if (at->isSC()) |
160 |
addType(at); |
161 |
} |
162 |
initialized_ = true; |
163 |
} |
164 |
|
165 |
|
166 |
|
167 |
void SC::addType(AtomType* atomType){ |
168 |
|
169 |
SCAtomData scAtomData; |
170 |
|
171 |
scAtomData.c = getC(atomType); |
172 |
scAtomData.m = getM(atomType); |
173 |
scAtomData.n = getN(atomType); |
174 |
scAtomData.alpha = getAlpha(atomType); |
175 |
scAtomData.epsilon = getEpsilon(atomType); |
176 |
scAtomData.rCut = 2.0 * scAtomData.alpha; |
177 |
|
178 |
// add it to the map: |
179 |
AtomTypeProperties atp = atomType->getATP(); |
180 |
|
181 |
pair<map<int,AtomType*>::iterator,bool> ret; |
182 |
ret = SClist.insert( pair<int, AtomType*>(atp.ident, atomType) ); |
183 |
if (ret.second == false) { |
184 |
sprintf( painCave.errMsg, |
185 |
"SC already had a previous entry with ident %d\n", |
186 |
atp.ident); |
187 |
painCave.severity = OPENMD_INFO; |
188 |
painCave.isFatal = 0; |
189 |
simError(); |
190 |
} |
191 |
|
192 |
SCMap[atomType] = scAtomData; |
193 |
|
194 |
// Now, iterate over all known types and add to the mixing map: |
195 |
|
196 |
map<AtomType*, SCAtomData>::iterator it; |
197 |
for( it = SCMap.begin(); it != SCMap.end(); ++it) { |
198 |
|
199 |
AtomType* atype2 = (*it).first; |
200 |
|
201 |
SCInteractionData mixer; |
202 |
|
203 |
mixer.alpha = getAlpha(atomType, atype2); |
204 |
mixer.rCut = 2.0 * mixer.alpha; |
205 |
mixer.epsilon = getEpsilon(atomType, atype2); |
206 |
mixer.m = getM(atomType, atype2); |
207 |
mixer.n = getN(atomType, atype2); |
208 |
|
209 |
RealType dr = mixer.rCut / (np_ - 1); |
210 |
vector<RealType> rvals; |
211 |
vector<RealType> vvals; |
212 |
vector<RealType> phivals; |
213 |
|
214 |
rvals.push_back(0.0); |
215 |
vvals.push_back(0.0); |
216 |
phivals.push_back(0.0); |
217 |
|
218 |
for (int k = 1; k < np_; k++) { |
219 |
RealType r = dr * k; |
220 |
rvals.push_back(r); |
221 |
vvals.push_back( mixer.epsilon * pow(mixer.alpha/r, mixer.n) ); |
222 |
phivals.push_back( pow(mixer.alpha/r, mixer.m) ); |
223 |
} |
224 |
|
225 |
mixer.vCut = mixer.epsilon * pow(mixer.alpha/mixer.rCut, mixer.n); |
226 |
|
227 |
CubicSpline* V = new CubicSpline(); |
228 |
V->addPoints(rvals, vvals); |
229 |
|
230 |
CubicSpline* phi = new CubicSpline(); |
231 |
phi->addPoints(rvals, phivals); |
232 |
|
233 |
mixer.V = V; |
234 |
mixer.phi = phi; |
235 |
|
236 |
mixer.explicitlySet = false; |
237 |
|
238 |
pair<AtomType*, AtomType*> key1, key2; |
239 |
key1 = make_pair(atomType, atype2); |
240 |
key2 = make_pair(atype2, atomType); |
241 |
|
242 |
MixingMap[key1] = mixer; |
243 |
if (key2 != key1) { |
244 |
MixingMap[key2] = mixer; |
245 |
} |
246 |
} |
247 |
return; |
248 |
} |
249 |
|
250 |
void SC::addExplicitInteraction(AtomType* atype1, AtomType* atype2, |
251 |
RealType epsilon, RealType m, RealType n, |
252 |
RealType alpha) { |
253 |
|
254 |
// in case these weren't already in the map |
255 |
addType(atype1); |
256 |
addType(atype2); |
257 |
|
258 |
SCInteractionData mixer; |
259 |
|
260 |
mixer.epsilon = epsilon; |
261 |
mixer.m = m; |
262 |
mixer.n = n; |
263 |
mixer.alpha = alpha; |
264 |
mixer.rCut = 2.0 * mixer.alpha; |
265 |
|
266 |
RealType dr = mixer.rCut / (np_ - 1); |
267 |
vector<RealType> rvals; |
268 |
vector<RealType> vvals; |
269 |
vector<RealType> phivals; |
270 |
|
271 |
rvals.push_back(0.0); |
272 |
vvals.push_back(0.0); |
273 |
phivals.push_back(0.0); |
274 |
|
275 |
for (int k = 1; k < np_; k++) { |
276 |
RealType r = dr * k; |
277 |
rvals.push_back(r); |
278 |
vvals.push_back( mixer.epsilon * pow(mixer.alpha/r, mixer.n) ); |
279 |
phivals.push_back( pow(mixer.alpha/r, mixer.m) ); |
280 |
} |
281 |
|
282 |
mixer.vCut = mixer.epsilon * pow(mixer.alpha/mixer.rCut, mixer.n); |
283 |
|
284 |
CubicSpline* V = new CubicSpline(); |
285 |
V->addPoints(rvals, vvals); |
286 |
|
287 |
CubicSpline* phi = new CubicSpline(); |
288 |
phi->addPoints(rvals, phivals); |
289 |
|
290 |
mixer.V = V; |
291 |
mixer.phi = phi; |
292 |
|
293 |
mixer.explicitlySet = true; |
294 |
|
295 |
pair<AtomType*, AtomType*> key1, key2; |
296 |
key1 = make_pair(atype1, atype2); |
297 |
key2 = make_pair(atype2, atype1); |
298 |
|
299 |
MixingMap[key1] = mixer; |
300 |
if (key2 != key1) { |
301 |
MixingMap[key2] = mixer; |
302 |
} |
303 |
return; |
304 |
} |
305 |
|
306 |
void SC::calcDensity(InteractionData &idat) { |
307 |
|
308 |
if (!initialized_) initialize(); |
309 |
|
310 |
SCInteractionData mixer = MixingMap[ idat.atypes ]; |
311 |
|
312 |
RealType rcij = mixer.rCut; |
313 |
|
314 |
if ( *(idat.rij) < rcij) { |
315 |
RealType rho = mixer.phi->getValueAt( *(idat.rij) ); |
316 |
*(idat.rho1) += rho; |
317 |
*(idat.rho2) += rho; |
318 |
} |
319 |
|
320 |
return; |
321 |
} |
322 |
|
323 |
void SC::calcFunctional(SelfData &sdat) { |
324 |
|
325 |
if (!initialized_) initialize(); |
326 |
|
327 |
SCAtomData data1 = SCMap[sdat.atype]; |
328 |
|
329 |
RealType u = - data1.c * data1.epsilon * sqrt( *(sdat.rho) ); |
330 |
*(sdat.frho) = u; |
331 |
*(sdat.dfrhodrho) = 0.5 * *(sdat.frho) / *(sdat.rho); |
332 |
|
333 |
(*(sdat.pot))[METALLIC_FAMILY] += u; |
334 |
*(sdat.particlePot) += u; |
335 |
|
336 |
return; |
337 |
} |
338 |
|
339 |
|
340 |
void SC::calcForce(InteractionData &idat) { |
341 |
|
342 |
if (!initialized_) initialize(); |
343 |
|
344 |
SCAtomData data1 = SCMap[idat.atypes.first]; |
345 |
SCAtomData data2 = SCMap[idat.atypes.second]; |
346 |
|
347 |
SCInteractionData mixer = MixingMap[idat.atypes]; |
348 |
|
349 |
RealType rcij = mixer.rCut; |
350 |
|
351 |
if ( *(idat.rij) < rcij) { |
352 |
RealType vcij = mixer.vCut; |
353 |
|
354 |
pair<RealType, RealType> res; |
355 |
|
356 |
res = mixer.phi->getValueAndDerivativeAt( *(idat.rij) ); |
357 |
RealType rhtmp = res.first; |
358 |
RealType drhodr = res.second; |
359 |
|
360 |
res = mixer.V->getValueAndDerivativeAt( *(idat.rij) ); |
361 |
RealType vptmp = res.first; |
362 |
RealType dvpdr = res.second; |
363 |
|
364 |
RealType pot_temp = vptmp - vcij; |
365 |
*(idat.vpair) += pot_temp; |
366 |
|
367 |
RealType dudr = drhodr * ( *(idat.dfrho1) + *(idat.dfrho2) ) + dvpdr; |
368 |
|
369 |
*(idat.f1) += *(idat.d) * dudr / *(idat.rij) ; |
370 |
|
371 |
// particlePot is the difference between the full potential and |
372 |
// the full potential without the presence of a particular |
373 |
// particle (atom1). |
374 |
// |
375 |
// This reduces the density at other particle locations, so we |
376 |
// need to recompute the density at atom2 assuming atom1 didn't |
377 |
// contribute. This then requires recomputing the density |
378 |
// functional for atom2 as well. |
379 |
|
380 |
*(idat.particlePot1) -= data2.c * data2.epsilon * |
381 |
sqrt( *(idat.rho2) - rhtmp) + *(idat.frho2); |
382 |
|
383 |
*(idat.particlePot2) -= data1.c * data1.epsilon * |
384 |
sqrt( *(idat.rho1) - rhtmp) + *(idat.frho1); |
385 |
|
386 |
(*(idat.pot))[METALLIC_FAMILY] += pot_temp; |
387 |
} |
388 |
|
389 |
return; |
390 |
} |
391 |
|
392 |
RealType SC::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
393 |
if (!initialized_) initialize(); |
394 |
|
395 |
map<pair<AtomType*, AtomType*>, SCInteractionData>::iterator it; |
396 |
it = MixingMap.find(atypes); |
397 |
if (it == MixingMap.end()) |
398 |
return 0.0; |
399 |
else { |
400 |
SCInteractionData mixer = (*it).second; |
401 |
return mixer.rCut; |
402 |
} |
403 |
} |
404 |
} |