ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/SC.cpp
Revision: 1505
Committed: Sun Oct 3 22:18:59 2010 UTC (14 years, 6 months ago) by gezelter
File size: 12209 byte(s)
Log Message:
Less busted than it was on last check-in, but still won't completely
build.


File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 #include <stdio.h>
43 #include <string.h>
44
45 #include <cmath>
46 #include "nonbonded/SC.hpp"
47 #include "utils/simError.h"
48 #include "types/NonBondedInteractionType.hpp"
49
50 namespace OpenMD {
51
52
53 SC::SC() : name_("SC"), initialized_(false), forceField_(NULL),
54 scRcut_(0.0), np_(3000) {}
55
56 SCParam SC::getSCParam(AtomType* atomType) {
57
58 // Do sanity checking on the AtomType we were passed before
59 // building any data structures:
60 if (!atomType->isSC()) {
61 sprintf( painCave.errMsg,
62 "SC::getSCParam was passed an atomType (%s) that does not\n"
63 "\tappear to be a Sutton-Chen (SC) atom.\n",
64 atomType->getName().c_str());
65 painCave.severity = OPENMD_ERROR;
66 painCave.isFatal = 1;
67 simError();
68 }
69
70 GenericData* data = atomType->getPropertyByName("SC");
71 if (data == NULL) {
72 sprintf( painCave.errMsg, "SC::getSCParam could not find SC\n"
73 "\tparameters for atomType %s.\n",
74 atomType->getName().c_str());
75 painCave.severity = OPENMD_ERROR;
76 painCave.isFatal = 1;
77 simError();
78 }
79
80 SCParamGenericData* scData = dynamic_cast<SCParamGenericData*>(data);
81 if (scData == NULL) {
82 sprintf( painCave.errMsg,
83 "SC::getSCParam could not convert GenericData to SCParamGenericData\n"
84 "\tfor atom type %s\n", atomType->getName().c_str());
85 painCave.severity = OPENMD_ERROR;
86 painCave.isFatal = 1;
87 simError();
88 }
89
90 return scData->getData();
91 }
92
93 RealType SC::getC(AtomType* atomType) {
94 SCParam scParam = getSCParam(atomType);
95 return scParam.c;
96 }
97
98 RealType SC::getM(AtomType* atomType) {
99 SCParam scParam = getSCParam(atomType);
100 return scParam.m;
101 }
102
103 RealType SC::getM(AtomType* atomType1, AtomType* atomType2) {
104 RealType m1 = getM(atomType1);
105 RealType m2 = getM(atomType2);
106 return 0.5 * (m1 + m2);
107 }
108
109 RealType SC::getN(AtomType* atomType) {
110 SCParam scParam = getSCParam(atomType);
111 return scParam.n;
112 }
113
114 RealType SC::getN(AtomType* atomType1, AtomType* atomType2) {
115 RealType n1 = getN(atomType1);
116 RealType n2 = getN(atomType2);
117 return 0.5 * (n1 + n2);
118 }
119
120 RealType SC::getAlpha(AtomType* atomType) {
121 SCParam scParam = getSCParam(atomType);
122 return scParam.alpha;
123 }
124
125 RealType SC::getAlpha(AtomType* atomType1, AtomType* atomType2) {
126 RealType alpha1 = getAlpha(atomType1);
127 RealType alpha2 = getAlpha(atomType2);
128
129 ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
130 std::string DistanceMix = fopts.getDistanceMixingRule();
131 toUpper(DistanceMix);
132
133 if (DistanceMix == "GEOMETRIC")
134 return sqrt(alpha1 * alpha2);
135 else
136 return 0.5 * (alpha1 + alpha2);
137 }
138
139 RealType SC::getEpsilon(AtomType* atomType) {
140 SCParam scParam = getSCParam(atomType);
141 return scParam.epsilon;
142 }
143
144 RealType SC::getEpsilon(AtomType* atomType1, AtomType* atomType2) {
145 RealType epsilon1 = getEpsilon(atomType1);
146 RealType epsilon2 = getEpsilon(atomType2);
147 return sqrt(epsilon1 * epsilon2);
148 }
149
150 void SC::initialize() {
151 // find all of the SC atom Types:
152 ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
153 ForceField::AtomTypeContainer::MapTypeIterator i;
154 AtomType* at;
155
156 for (at = atomTypes->beginType(i); at != NULL;
157 at = atomTypes->nextType(i)) {
158 if (at->isSC())
159 addType(at);
160 }
161 initialized_ = true;
162 }
163
164
165
166 void SC::addType(AtomType* atomType){
167
168 SCAtomData scAtomData;
169
170 scAtomData.c = getC(atomType);
171 scAtomData.m = getM(atomType);
172 scAtomData.n = getN(atomType);
173 scAtomData.alpha = getAlpha(atomType);
174 scAtomData.epsilon = getEpsilon(atomType);
175 scAtomData.rCut = 2.0 * scAtomData.alpha;
176
177 // add it to the map:
178 AtomTypeProperties atp = atomType->getATP();
179
180 pair<map<int,AtomType*>::iterator,bool> ret;
181 ret = SClist.insert( pair<int, AtomType*>(atp.ident, atomType) );
182 if (ret.second == false) {
183 sprintf( painCave.errMsg,
184 "SC already had a previous entry with ident %d\n",
185 atp.ident);
186 painCave.severity = OPENMD_INFO;
187 painCave.isFatal = 0;
188 simError();
189 }
190
191 SCMap[atomType] = scAtomData;
192
193 // Now, iterate over all known types and add to the mixing map:
194
195 map<AtomType*, SCAtomData>::iterator it;
196 for( it = SCMap.begin(); it != SCMap.end(); ++it) {
197
198 AtomType* atype2 = (*it).first;
199
200 SCInteractionData mixer;
201
202 mixer.alpha = getAlpha(atomType, atype2);
203 mixer.rCut = 2.0 * mixer.alpha;
204 mixer.epsilon = getEpsilon(atomType, atype2);
205 mixer.m = getM(atomType, atype2);
206 mixer.n = getN(atomType, atype2);
207
208 RealType dr = mixer.rCut / (np_ - 1);
209 vector<RealType> rvals;
210 vector<RealType> vvals;
211 vector<RealType> phivals;
212
213 rvals.push_back(0.0);
214 vvals.push_back(0.0);
215 phivals.push_back(0.0);
216
217 for (int k = 1; k < np_; k++) {
218 RealType r = dr * k;
219 rvals.push_back(r);
220 vvals.push_back( mixer.epsilon * pow(mixer.alpha/r, mixer.n) );
221 phivals.push_back( pow(mixer.alpha/r, mixer.m) );
222 }
223
224 mixer.vCut = mixer.epsilon * pow(mixer.alpha/mixer.rCut, mixer.n);
225
226 CubicSpline* V = new CubicSpline();
227 V->addPoints(rvals, vvals);
228
229 CubicSpline* phi = new CubicSpline();
230 phi->addPoints(rvals, phivals);
231
232 mixer.V = V;
233 mixer.phi = phi;
234
235 mixer.explicitlySet = false;
236
237 pair<AtomType*, AtomType*> key1, key2;
238 key1 = make_pair(atomType, atype2);
239 key2 = make_pair(atype2, atomType);
240
241 MixingMap[key1] = mixer;
242 if (key2 != key1) {
243 MixingMap[key2] = mixer;
244 }
245 }
246 return;
247 }
248
249 void SC::addExplicitInteraction(AtomType* atype1, AtomType* atype2,
250 RealType epsilon, RealType m, RealType n,
251 RealType alpha) {
252
253 // in case these weren't already in the map
254 addType(atype1);
255 addType(atype2);
256
257 SCInteractionData mixer;
258
259 mixer.epsilon = epsilon;
260 mixer.m = m;
261 mixer.n = n;
262 mixer.alpha = alpha;
263 mixer.rCut = 2.0 * mixer.alpha;
264
265 RealType dr = mixer.rCut / (np_ - 1);
266 vector<RealType> rvals;
267 vector<RealType> vvals;
268 vector<RealType> phivals;
269
270 rvals.push_back(0.0);
271 vvals.push_back(0.0);
272 phivals.push_back(0.0);
273
274 for (int k = 1; k < np_; k++) {
275 RealType r = dr * k;
276 rvals.push_back(r);
277 vvals.push_back( mixer.epsilon * pow(mixer.alpha/r, mixer.n) );
278 phivals.push_back( pow(mixer.alpha/r, mixer.m) );
279 }
280
281 mixer.vCut = mixer.epsilon * pow(mixer.alpha/mixer.rCut, mixer.n);
282
283 CubicSpline* V = new CubicSpline();
284 V->addPoints(rvals, vvals);
285
286 CubicSpline* phi = new CubicSpline();
287 phi->addPoints(rvals, phivals);
288
289 mixer.V = V;
290 mixer.phi = phi;
291
292 mixer.explicitlySet = true;
293
294 pair<AtomType*, AtomType*> key1, key2;
295 key1 = make_pair(atype1, atype2);
296 key2 = make_pair(atype2, atype1);
297
298 MixingMap[key1] = mixer;
299 if (key2 != key1) {
300 MixingMap[key2] = mixer;
301 }
302 return;
303 }
304
305 void SC::calcDensity(DensityData ddat) {
306
307 if (!initialized_) initialize();
308
309 SCInteractionData mixer = MixingMap[make_pair(ddat.atype1, ddat.atype2)];
310
311 RealType rcij = mixer.rCut;
312
313 if (ddat.rij < rcij) {
314 ddat.rho_i_at_j = mixer.phi->getValueAt(ddat.rij);
315 ddat.rho_j_at_i = ddat.rho_i_at_j;
316 } else {
317 ddat.rho_i_at_j = 0.0;
318 ddat.rho_j_at_i = 0.0;
319 }
320
321 return;
322 }
323
324 void SC::calcFunctional(FunctionalData fdat) {
325
326 if (!initialized_) initialize();
327
328 SCAtomData data1 = SCMap[fdat.atype];
329
330 fdat.frho = - data1.c * data1.epsilon * sqrt(fdat.rho);
331 fdat.dfrhodrho = 0.5 * fdat.frho / fdat.rho;
332
333 return;
334 }
335
336
337 void SC::calcForce(InteractionData idat) {
338
339 if (!initialized_) initialize();
340
341 SCAtomData data1 = SCMap[idat.atype1];
342 SCAtomData data2 = SCMap[idat.atype2];
343
344 SCInteractionData mixer = MixingMap[make_pair(idat.atype1, idat.atype2)];
345
346 RealType rcij = mixer.rCut;
347
348 if (idat.rij < rcij) {
349 RealType vcij = mixer.vCut;
350
351 pair<RealType, RealType> res;
352
353 res = mixer.phi->getValueAndDerivativeAt(idat.rij);
354 RealType rhtmp = res.first;
355 RealType drhodr = res.second;
356
357 res = mixer.V->getValueAndDerivativeAt(idat.rij);
358 RealType vptmp = res.first;
359 RealType dvpdr = res.second;
360
361 RealType pot_temp = vptmp - vcij;
362 idat.vpair += pot_temp;
363
364 RealType dudr = drhodr * (idat.dfrho1 + idat.dfrho2) + dvpdr;
365
366 idat.f1 += idat.d * dudr / idat.rij;
367
368 // particle_pot is the difference between the full potential
369 // and the full potential without the presence of a particular
370 // particle (atom1).
371 //
372 // This reduces the density at other particle locations, so
373 // we need to recompute the density at atom2 assuming atom1
374 // didn't contribute. This then requires recomputing the
375 // density functional for atom2 as well.
376 //
377 // Most of the particle_pot heavy lifting comes from the
378 // pair interaction, and will be handled by vpair.
379
380 idat.fshift1 = - data1.c * data1.epsilon * sqrt(idat.rho1 - rhtmp);
381 idat.fshift2 = - data2.c * data2.epsilon * sqrt(idat.rho2 - rhtmp);
382
383 idat.pot += pot_temp;
384 }
385
386 return;
387 }
388
389 RealType SC::getSuggestedCutoffRadius(AtomType* at1, AtomType* at2) {
390 if (!initialized_) initialize();
391 pair<AtomType*, AtomType*> key = make_pair(at1, at2);
392 map<pair<AtomType*, AtomType*>, SCInteractionData>::iterator it;
393 it = MixingMap.find(key);
394 if (it == MixingMap.end())
395 return 0.0;
396 else {
397 SCInteractionData mixer = (*it).second;
398 return mixer.rCut;
399 }
400 }
401 }

Properties

Name Value
svn:eol-style native