ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/SC.cpp
Revision: 1489
Committed: Tue Aug 10 18:34:59 2010 UTC (14 years, 8 months ago) by gezelter
File size: 15768 byte(s)
Log Message:
Migrating Sutton-Chen from Fortran over to C++

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 #include <stdio.h>
43 #include <string.h>
44
45 #include <cmath>
46 #include "nonbonded/SC.hpp"
47 #include "utils/simError.h"
48 #include "types/NonBondedInteractionType.hpp"
49
50 namespace OpenMD {
51
52 bool SC::initialized_ = false;
53 RealType SC::scRcut_ = 0.0;
54 int SC::np_ = 3000;
55 ForceField* SC::forceField_ = NULL;
56 map<int, AtomType*> SC::SClist;
57 map<AtomType*, SCAtomData> SC::SCMap;
58 map<pair<AtomType*, AtomType*>, SCInteractionData> SC::MixingMap;
59
60 SC* SC::_instance = NULL;
61
62 SC* SC::Instance() {
63 if (!_instance) {
64 _instance = new SC();
65 }
66 return _instance;
67 }
68
69 SCParam SC::getSCParam(AtomType* atomType) {
70
71 // Do sanity checking on the AtomType we were passed before
72 // building any data structures:
73 if (!atomType->isSC()) {
74 sprintf( painCave.errMsg,
75 "SC::getSCParam was passed an atomType (%s) that does not\n"
76 "\tappear to be a Sutton-Chen (SC) atom.\n",
77 atomType->getName().c_str());
78 painCave.severity = OPENMD_ERROR;
79 painCave.isFatal = 1;
80 simError();
81 }
82
83 GenericData* data = atomType->getPropertyByName("SC");
84 if (data == NULL) {
85 sprintf( painCave.errMsg, "SC::getSCParam could not find SC\n"
86 "\tparameters for atomType %s.\n",
87 atomType->getName().c_str());
88 painCave.severity = OPENMD_ERROR;
89 painCave.isFatal = 1;
90 simError();
91 }
92
93 SCParamGenericData* scData = dynamic_cast<SCParamGenericData*>(data);
94 if (scData == NULL) {
95 sprintf( painCave.errMsg,
96 "SC::getSCParam could not convert GenericData to SCParamGenericData\n"
97 "\tfor atom type %s\n", atomType->getName().c_str());
98 painCave.severity = OPENMD_ERROR;
99 painCave.isFatal = 1;
100 simError();
101 }
102
103 return scData->getData();
104 }
105
106 RealType SC::getC(AtomType* atomType) {
107 SCParam scParam = getSCParam(atomType);
108 return scParam.c;
109 }
110
111 RealType SC::getM(AtomType* atomType) {
112 SCParam scParam = getSCParam(atomType);
113 return scParam.m;
114 }
115
116 RealType SC::getM(AtomType* atomType1, AtomType* atomType2) {
117 RealType m1 = getM(atomType1);
118 RealType m2 = getM(atomType2);
119 return 0.5 * (m1 + m2);
120 }
121
122 RealType SC::getN(AtomType* atomType) {
123 SCParam scParam = getSCParam(atomType);
124 return scParam.n;
125 }
126
127 RealType SC::getN(AtomType* atomType1, AtomType* atomType2) {
128 RealType n1 = getN(atomType1);
129 RealType n2 = getN(atomType2);
130 return 0.5 * (n1 + n2);
131 }
132
133 RealType SC::getAlpha(AtomType* atomType) {
134 SCParam scParam = getSCParam(atomType);
135 return scParam.alpha;
136 }
137
138 RealType SC::getAlpha(AtomType* atomType1, AtomType* atomType2) {
139 RealType alpha1 = getAlpha(atomType1);
140 RealType alpha2 = getAlpha(atomType2);
141
142 ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
143 std::string DistanceMix = fopts.getDistanceMixingRule();
144 toUpper(DistanceMix);
145
146 if (DistanceMix == "GEOMETRIC")
147 return sqrt(alpha1 * alpha2);
148 else
149 return 0.5 * (alpha1 + alpha2);
150 }
151
152 RealType SC::getEpsilon(AtomType* atomType) {
153 SCParam scParam = getSCParam(atomType);
154 return scParam.epsilon;
155 }
156
157 RealType SC::getEpsilon(AtomType* atomType1, AtomType* atomType2) {
158 RealType epsilon1 = getEpsilon(atomType1);
159 RealType epsilon2 = getEpsilon(atomType2);
160 return sqrt(epsilon1 * epsilon2);
161 }
162
163 void SC::initialize() {
164 // find all of the SC atom Types:
165 ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
166 ForceField::AtomTypeContainer::MapTypeIterator i;
167 AtomType* at;
168
169 for (at = atomTypes->beginType(i); at != NULL;
170 at = atomTypes->nextType(i)) {
171 if (at->isSC())
172 addType(at);
173 }
174 initialized_ = true;
175 }
176
177
178
179 void SC::addType(AtomType* atomType){
180
181 SCAtomData scAtomData;
182
183 scAtomData.c = getC(atomType);
184 scAtomData.m = getM(atomType);
185 scAtomData.n = getN(atomType);
186 scAtomData.alpha = getAlpha(atomType);
187 scAtomData.epsilon = getEpsilon(atomType);
188 scAtomData.rCut = 2.0 * scAtomData.alpha;
189
190 // add it to the map:
191 AtomTypeProperties atp = atomType->getATP();
192
193 pair<map<int,AtomType*>::iterator,bool> ret;
194 ret = SClist.insert( pair<int, AtomType*>(atp.ident, atomType) );
195 if (ret.second == false) {
196 sprintf( painCave.errMsg,
197 "SC already had a previous entry with ident %d\n",
198 atp.ident);
199 painCave.severity = OPENMD_INFO;
200 painCave.isFatal = 0;
201 simError();
202 }
203
204 SCMap[atomType] = scAtomData;
205
206 // Now, iterate over all known types and add to the mixing map:
207
208 map<AtomType*, SCAtomData>::iterator it;
209 for( it = SCMap.begin(); it != SCMap.end(); ++it) {
210
211 AtomType* atype2 = (*it).first;
212
213 SCInteractionData mixer;
214
215 mixer.alpha = getAlpha(atomType, atype2);
216 mixer.rCut = 2.0 * mixer.alpha;
217 mixer.epsilon = getEpsilon(atomType, atype2);
218 mixer.m = getM(atomType, atype2);
219 mixer.n = getN(atomType, atype2);
220
221 RealType dr = mixer.rCut / (np_ - 1);
222 vector<RealType> rvals;
223 vector<RealType> vvals;
224 vector<RealType> phivals;
225
226 rvals.push_back(0.0);
227 vvals.push_back(0.0);
228 phivals.push_back(0.0);
229
230 for (int k = 1; k < np_; k++) {
231 RealType r = dr * k;
232 rvals.push_back(r);
233 vvals.push_back( mixer.epsilon * pow(mixer.alpha/r, mixer.n) );
234 phivals.push_back( pow(mixer.alpha/r, mixer.m) );
235 }
236
237 mixer.vCut = mixer.epsilon * pow(mixer.alpha/mixer.rCut, mixer.n);
238
239 CubicSpline* V = new CubicSpline();
240 V->addPoints(rvals, vvals);
241
242 CubicSpline* phi = new CubicSpline();
243 phi->addPoints(rvals, phivals);
244
245 mixer.V = V;
246 mixer.phi = phi;
247
248 mixer.explicitlySet = false;
249
250 pair<AtomType*, AtomType*> key1, key2;
251 key1 = make_pair(atomType, atype2);
252 key2 = make_pair(atype2, atomType);
253
254 MixingMap[key1] = mixer;
255 if (key2 != key1) {
256 MixingMap[key2] = mixer;
257 }
258 }
259 return;
260 }
261
262 void SC::addExplicitInteraction(AtomType* atype1, AtomType* atype2,
263 RealType epsilon, RealType m, RealType n,
264 RealType alpha) {
265
266 // in case these weren't already in the map
267 addType(atype1);
268 addType(atype2);
269
270 SCInteractionData mixer;
271
272 mixer.epsilon = epsilon;
273 mixer.m = m;
274 mixer.n = n;
275 mixer.alpha = alpha;
276 mixer.rCut = 2.0 * mixer.alpha;
277
278 RealType dr = mixer.rCut / (np_ - 1);
279 vector<RealType> rvals;
280 vector<RealType> vvals;
281 vector<RealType> phivals;
282
283 rvals.push_back(0.0);
284 vvals.push_back(0.0);
285 phivals.push_back(0.0);
286
287 for (int k = 1; k < np_; k++) {
288 RealType r = dr * k;
289 rvals.push_back(r);
290 vvals.push_back( mixer.epsilon * pow(mixer.alpha/r, mixer.n) );
291 phivals.push_back( pow(mixer.alpha/r, mixer.m) );
292 }
293
294 mixer.vCut = mixer.epsilon * pow(mixer.alpha/mixer.rCut, mixer.n);
295
296 CubicSpline* V = new CubicSpline();
297 V->addPoints(rvals, vvals);
298
299 CubicSpline* phi = new CubicSpline();
300 phi->addPoints(rvals, phivals);
301
302 mixer.V = V;
303 mixer.phi = phi;
304
305 mixer.explicitlySet = true;
306
307 pair<AtomType*, AtomType*> key1, key2;
308 key1 = make_pair(atype1, atype2);
309 key2 = make_pair(atype2, atype1);
310
311 MixingMap[key1] = mixer;
312 if (key2 != key1) {
313 MixingMap[key2] = mixer;
314 }
315 return;
316 }
317
318 void SC::calcDensity(AtomType* at1, AtomType* at2, const RealType rij,
319 RealType &rho_i_at_j, RealType &rho_j_at_i) {
320
321 if (!initialized_) initialize();
322
323 SCInteractionData mixer = MixingMap[make_pair(at1, at2)];
324
325 rho_i_at_j = mixer.phi->getValueAt(rij);
326 rho_j_at_i = rho_i_at_j;
327
328 return;
329 }
330
331 void SC::calcFunctional(AtomType* at1, RealType rho, RealType &frho,
332 RealType &dfrhodrho) {
333
334 if (!initialized_) initialize();
335
336 SCAtomData data1 = SCMap[at1];
337
338 frho = - data1.c * data1.epsilon * sqrt(rho);
339 dfrhodrho = 0.5 * frho / rho;
340
341 return;
342 }
343
344
345 void SC::calcForce(AtomType* at1, AtomType* at2, Vector3d d,
346 RealType rij, RealType r2, RealType sw,
347 RealType &vpair, RealType &pot, Vector3d &f1,
348 RealType rho_i, RealType rho_j,
349 RealType dfrhodrho_i, RealType dfrhodrho_j,
350 RealType &fshift_i, RealType &fshift_j) {
351
352 if (!initialized_) initialize();
353
354 SCAtomData data1 = SCMap[at1];
355 SCAtomData data2 = SCMap[at1];
356
357 SCInteractionData mixer = MixingMap[make_pair(at1, at2)];
358
359 RealType rcij = mixer.rCut;
360 RealType vcij = mixer.vCut;
361
362 pair<RealType, RealType> res;
363
364 res = mixer.phi->getValueAndDerivativeAt(rij);
365 RealType rhtmp = res.first;
366 RealType drhodr = res.second;
367
368 res = mixer.V->getValueAndDerivativeAt(rij);
369 RealType vptmp = res.first;
370 RealType dvpdr = res.second;
371
372 RealType pot_temp = vptmp - vcij;
373 vpair += pot_temp;
374
375 RealType dudr = drhodr * (dfrhodrho_i + dfrhodrho_j) + dvpdr;
376
377 f1 += d * dudr / rij;
378
379 // particle_pot is the difference between the full potential
380 // and the full potential without the presence of a particular
381 // particle (atom1).
382 //
383 // This reduces the density at other particle locations, so
384 // we need to recompute the density at atom2 assuming atom1
385 // didn't contribute. This then requires recomputing the
386 // density functional for atom2 as well.
387 //
388 // Most of the particle_pot heavy lifting comes from the
389 // pair interaction, and will be handled by vpair.
390
391 fshift_i = - data1.c * data1.epsilon * sqrt(rho_i - rhtmp);
392 fshift_j = - data2.c * data2.epsilon * sqrt(rho_j - rhtmp);
393
394 pot += pot_temp;
395
396 return;
397 }
398
399
400 void SC::calc_sc_prepair_rho(int *atid1, int *atid2, RealType *rij,
401 RealType* rho_i_at_j, RealType* rho_j_at_i){
402
403 if (!initialized_) initialize();
404
405 AtomType* atype1 = SClist[*atid1];
406 AtomType* atype2 = SClist[*atid2];
407
408 calcDensity(atype1, atype2, *rij, *rho_i_at_j, *rho_j_at_i);
409
410 return;
411 }
412
413 void SC::calc_sc_preforce_Frho(int *atid1, RealType *rho, RealType *frho,
414 RealType *dfrhodrho) {
415
416 if (!initialized_) initialize();
417
418 AtomType* atype1 = SClist[*atid1];
419
420 calcFunctional(atype1, *rho, *frho, *dfrhodrho);
421
422 return;
423 }
424
425 RealType SC::getSCcut(int *atid1) {
426
427 if (!initialized_) initialize();
428
429 AtomType* atype1 = SClist[*atid1];
430
431 return 2.0 * getAlpha(atype1);
432 }
433
434 void SC::do_sc_pair(int *atid1, int *atid2, RealType *d, RealType *rij,
435 RealType *r2, RealType *sw, RealType *vpair,
436 RealType *pot, RealType *f1, RealType *rho1,
437 RealType *rho2, RealType *dfrho1, RealType *dfrho2,
438 RealType *fshift1, RealType *fshift2) {
439
440 if (!initialized_) initialize();
441
442 AtomType* atype1 = SClist[*atid1];
443 AtomType* atype2 = SClist[*atid2];
444
445 Vector3d disp(d[0], d[1], d[2]);
446 Vector3d frc(f1[0], f1[1], f1[2]);
447
448 calcForce(atype1, atype2, disp, *rij, *r2, *sw, *vpair, *pot, frc,
449 *rho1, *rho2, *dfrho1, *dfrho2, *fshift1, *fshift2);
450
451 f1[0] = frc.x();
452 f1[1] = frc.y();
453 f1[2] = frc.z();
454
455 return;
456 }
457
458 void SC::setCutoffSC(RealType *thisRcut) {
459 scRcut_ = *thisRcut;
460 }
461 }
462
463 extern "C" {
464
465 #define fortranCalcDensity FC_FUNC(calc_sc_prepair_rho, CALC_SC_PREPAIR_RHO)
466 #define fortranCalcFunctional FC_FUNC(calc_sc_preforce_frho, CALC_SC_PREFORCE_FRHO)
467 #define fortranCalcForce FC_FUNC(do_sc_pair, DO_SC_PAIR)
468 #define fortranSetCutoffSC FC_FUNC(setcutoffsc, SETCUTOFFSC)
469 #define fortranGetSCcut FC_FUNC(getsccut, GETSCCUT)
470
471
472 void fortranCalcDensity(int *atid1, int *atid2, RealType *rij,
473 RealType *rho_i_at_j, RealType *rho_j_at_i) {
474
475 return OpenMD::SC::Instance()->calc_sc_prepair_rho(atid1, atid2, rij,
476 rho_i_at_j,
477 rho_j_at_i);
478 }
479 void fortranCalcFunctional(int *atid1, RealType *rho, RealType *frho,
480 RealType *dfrhodrho) {
481
482 return OpenMD::SC::Instance()->calc_sc_preforce_Frho(atid1, rho, frho,
483 dfrhodrho);
484
485 }
486 void fortranSetCutoffSC(RealType *rcut) {
487 return OpenMD::SC::Instance()->setCutoffSC(rcut);
488 }
489 void fortranCalcForce(int *atid1, int *atid2, RealType *d, RealType *rij,
490 RealType *r2, RealType *sw, RealType *vpair,
491 RealType *pot, RealType *f1, RealType *rho1,
492 RealType *rho2, RealType *dfrho1, RealType *dfrho2,
493 RealType *fshift1, RealType *fshift2){
494
495 return OpenMD::SC::Instance()->do_sc_pair(atid1, atid2, d, rij,
496 r2, sw, vpair,
497 pot, f1, rho1,
498 rho2, dfrho1, dfrho2,
499 fshift1, fshift2);
500 }
501 RealType fortranGetSCcut(int* atid) {
502 return OpenMD::SC::Instance()->getSCcut(atid);
503 }
504
505 }

Properties

Name Value
svn:eol-style native