ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/SC.cpp
Revision: 1586
Committed: Tue Jun 21 06:34:35 2011 UTC (13 years, 10 months ago) by gezelter
File size: 12194 byte(s)
Log Message:
bug fixes

File Contents

# User Rev Content
1 gezelter 1489 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40     */
41    
42     #include <stdio.h>
43     #include <string.h>
44    
45     #include <cmath>
46     #include "nonbonded/SC.hpp"
47     #include "utils/simError.h"
48     #include "types/NonBondedInteractionType.hpp"
49    
50     namespace OpenMD {
51    
52    
53 gezelter 1502 SC::SC() : name_("SC"), initialized_(false), forceField_(NULL),
54     scRcut_(0.0), np_(3000) {}
55 gezelter 1489
56     SCParam SC::getSCParam(AtomType* atomType) {
57    
58     // Do sanity checking on the AtomType we were passed before
59     // building any data structures:
60     if (!atomType->isSC()) {
61     sprintf( painCave.errMsg,
62     "SC::getSCParam was passed an atomType (%s) that does not\n"
63     "\tappear to be a Sutton-Chen (SC) atom.\n",
64     atomType->getName().c_str());
65     painCave.severity = OPENMD_ERROR;
66     painCave.isFatal = 1;
67     simError();
68     }
69    
70     GenericData* data = atomType->getPropertyByName("SC");
71     if (data == NULL) {
72     sprintf( painCave.errMsg, "SC::getSCParam could not find SC\n"
73     "\tparameters for atomType %s.\n",
74     atomType->getName().c_str());
75     painCave.severity = OPENMD_ERROR;
76     painCave.isFatal = 1;
77     simError();
78     }
79    
80     SCParamGenericData* scData = dynamic_cast<SCParamGenericData*>(data);
81     if (scData == NULL) {
82     sprintf( painCave.errMsg,
83     "SC::getSCParam could not convert GenericData to SCParamGenericData\n"
84     "\tfor atom type %s\n", atomType->getName().c_str());
85     painCave.severity = OPENMD_ERROR;
86     painCave.isFatal = 1;
87     simError();
88     }
89    
90     return scData->getData();
91     }
92    
93     RealType SC::getC(AtomType* atomType) {
94     SCParam scParam = getSCParam(atomType);
95     return scParam.c;
96     }
97    
98     RealType SC::getM(AtomType* atomType) {
99     SCParam scParam = getSCParam(atomType);
100     return scParam.m;
101     }
102    
103     RealType SC::getM(AtomType* atomType1, AtomType* atomType2) {
104     RealType m1 = getM(atomType1);
105     RealType m2 = getM(atomType2);
106     return 0.5 * (m1 + m2);
107     }
108    
109     RealType SC::getN(AtomType* atomType) {
110     SCParam scParam = getSCParam(atomType);
111     return scParam.n;
112     }
113    
114     RealType SC::getN(AtomType* atomType1, AtomType* atomType2) {
115     RealType n1 = getN(atomType1);
116     RealType n2 = getN(atomType2);
117     return 0.5 * (n1 + n2);
118     }
119    
120     RealType SC::getAlpha(AtomType* atomType) {
121     SCParam scParam = getSCParam(atomType);
122     return scParam.alpha;
123     }
124    
125     RealType SC::getAlpha(AtomType* atomType1, AtomType* atomType2) {
126     RealType alpha1 = getAlpha(atomType1);
127     RealType alpha2 = getAlpha(atomType2);
128    
129     ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
130     std::string DistanceMix = fopts.getDistanceMixingRule();
131     toUpper(DistanceMix);
132    
133     if (DistanceMix == "GEOMETRIC")
134     return sqrt(alpha1 * alpha2);
135     else
136     return 0.5 * (alpha1 + alpha2);
137     }
138    
139     RealType SC::getEpsilon(AtomType* atomType) {
140     SCParam scParam = getSCParam(atomType);
141     return scParam.epsilon;
142     }
143    
144     RealType SC::getEpsilon(AtomType* atomType1, AtomType* atomType2) {
145     RealType epsilon1 = getEpsilon(atomType1);
146     RealType epsilon2 = getEpsilon(atomType2);
147     return sqrt(epsilon1 * epsilon2);
148     }
149    
150     void SC::initialize() {
151     // find all of the SC atom Types:
152     ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
153     ForceField::AtomTypeContainer::MapTypeIterator i;
154     AtomType* at;
155    
156     for (at = atomTypes->beginType(i); at != NULL;
157     at = atomTypes->nextType(i)) {
158     if (at->isSC())
159     addType(at);
160     }
161     initialized_ = true;
162     }
163    
164    
165    
166     void SC::addType(AtomType* atomType){
167    
168     SCAtomData scAtomData;
169    
170     scAtomData.c = getC(atomType);
171     scAtomData.m = getM(atomType);
172     scAtomData.n = getN(atomType);
173     scAtomData.alpha = getAlpha(atomType);
174     scAtomData.epsilon = getEpsilon(atomType);
175     scAtomData.rCut = 2.0 * scAtomData.alpha;
176    
177     // add it to the map:
178     AtomTypeProperties atp = atomType->getATP();
179    
180     pair<map<int,AtomType*>::iterator,bool> ret;
181     ret = SClist.insert( pair<int, AtomType*>(atp.ident, atomType) );
182     if (ret.second == false) {
183     sprintf( painCave.errMsg,
184     "SC already had a previous entry with ident %d\n",
185     atp.ident);
186     painCave.severity = OPENMD_INFO;
187     painCave.isFatal = 0;
188     simError();
189     }
190    
191     SCMap[atomType] = scAtomData;
192    
193     // Now, iterate over all known types and add to the mixing map:
194    
195     map<AtomType*, SCAtomData>::iterator it;
196     for( it = SCMap.begin(); it != SCMap.end(); ++it) {
197    
198     AtomType* atype2 = (*it).first;
199    
200     SCInteractionData mixer;
201    
202     mixer.alpha = getAlpha(atomType, atype2);
203     mixer.rCut = 2.0 * mixer.alpha;
204     mixer.epsilon = getEpsilon(atomType, atype2);
205     mixer.m = getM(atomType, atype2);
206     mixer.n = getN(atomType, atype2);
207    
208     RealType dr = mixer.rCut / (np_ - 1);
209     vector<RealType> rvals;
210     vector<RealType> vvals;
211     vector<RealType> phivals;
212    
213     rvals.push_back(0.0);
214     vvals.push_back(0.0);
215     phivals.push_back(0.0);
216    
217     for (int k = 1; k < np_; k++) {
218     RealType r = dr * k;
219     rvals.push_back(r);
220     vvals.push_back( mixer.epsilon * pow(mixer.alpha/r, mixer.n) );
221     phivals.push_back( pow(mixer.alpha/r, mixer.m) );
222     }
223    
224     mixer.vCut = mixer.epsilon * pow(mixer.alpha/mixer.rCut, mixer.n);
225    
226     CubicSpline* V = new CubicSpline();
227     V->addPoints(rvals, vvals);
228    
229     CubicSpline* phi = new CubicSpline();
230     phi->addPoints(rvals, phivals);
231    
232     mixer.V = V;
233     mixer.phi = phi;
234    
235     mixer.explicitlySet = false;
236    
237     pair<AtomType*, AtomType*> key1, key2;
238     key1 = make_pair(atomType, atype2);
239     key2 = make_pair(atype2, atomType);
240    
241     MixingMap[key1] = mixer;
242     if (key2 != key1) {
243     MixingMap[key2] = mixer;
244     }
245     }
246     return;
247     }
248    
249     void SC::addExplicitInteraction(AtomType* atype1, AtomType* atype2,
250     RealType epsilon, RealType m, RealType n,
251     RealType alpha) {
252    
253     // in case these weren't already in the map
254     addType(atype1);
255     addType(atype2);
256    
257     SCInteractionData mixer;
258    
259     mixer.epsilon = epsilon;
260     mixer.m = m;
261     mixer.n = n;
262     mixer.alpha = alpha;
263     mixer.rCut = 2.0 * mixer.alpha;
264    
265     RealType dr = mixer.rCut / (np_ - 1);
266     vector<RealType> rvals;
267     vector<RealType> vvals;
268     vector<RealType> phivals;
269    
270     rvals.push_back(0.0);
271     vvals.push_back(0.0);
272     phivals.push_back(0.0);
273    
274     for (int k = 1; k < np_; k++) {
275     RealType r = dr * k;
276     rvals.push_back(r);
277     vvals.push_back( mixer.epsilon * pow(mixer.alpha/r, mixer.n) );
278     phivals.push_back( pow(mixer.alpha/r, mixer.m) );
279     }
280    
281     mixer.vCut = mixer.epsilon * pow(mixer.alpha/mixer.rCut, mixer.n);
282    
283     CubicSpline* V = new CubicSpline();
284     V->addPoints(rvals, vvals);
285    
286     CubicSpline* phi = new CubicSpline();
287     phi->addPoints(rvals, phivals);
288    
289     mixer.V = V;
290     mixer.phi = phi;
291    
292     mixer.explicitlySet = true;
293    
294     pair<AtomType*, AtomType*> key1, key2;
295     key1 = make_pair(atype1, atype2);
296     key2 = make_pair(atype2, atype1);
297    
298     MixingMap[key1] = mixer;
299     if (key2 != key1) {
300     MixingMap[key2] = mixer;
301     }
302     return;
303     }
304    
305 gezelter 1545 void SC::calcDensity(InteractionData &idat) {
306 gezelter 1489
307     if (!initialized_) initialize();
308    
309 gezelter 1571 SCInteractionData mixer = MixingMap[ idat.atypes ];
310 gezelter 1489
311 gezelter 1502 RealType rcij = mixer.rCut;
312 gezelter 1489
313 gezelter 1554 if ( *(idat.rij) < rcij) {
314 gezelter 1575 RealType rho = mixer.phi->getValueAt( *(idat.rij) );
315     *(idat.rho1) += rho;
316     *(idat.rho2) += rho;
317     }
318 gezelter 1554
319 gezelter 1489 return;
320     }
321    
322 gezelter 1545 void SC::calcFunctional(SelfData &sdat) {
323 gezelter 1489
324     if (!initialized_) initialize();
325    
326 gezelter 1545 SCAtomData data1 = SCMap[sdat.atype];
327 gezelter 1575
328     RealType u = - data1.c * data1.epsilon * sqrt( *(sdat.rho) );
329     *(sdat.frho) = u;
330 gezelter 1554 *(sdat.dfrhodrho) = 0.5 * *(sdat.frho) / *(sdat.rho);
331 gezelter 1575
332 gezelter 1583 (*(sdat.pot))[METALLIC_FAMILY] += u;
333 gezelter 1575 *(sdat.particlePot) += u;
334 gezelter 1489
335     return;
336     }
337 gezelter 1502
338 gezelter 1489
339 gezelter 1536 void SC::calcForce(InteractionData &idat) {
340 gezelter 1489
341     if (!initialized_) initialize();
342    
343 gezelter 1571 SCAtomData data1 = SCMap[idat.atypes.first];
344     SCAtomData data2 = SCMap[idat.atypes.second];
345 gezelter 1489
346 gezelter 1571 SCInteractionData mixer = MixingMap[idat.atypes];
347 gezelter 1489
348     RealType rcij = mixer.rCut;
349    
350 gezelter 1554 if ( *(idat.rij) < rcij) {
351 gezelter 1502 RealType vcij = mixer.vCut;
352    
353     pair<RealType, RealType> res;
354    
355 gezelter 1554 res = mixer.phi->getValueAndDerivativeAt( *(idat.rij) );
356 gezelter 1502 RealType rhtmp = res.first;
357     RealType drhodr = res.second;
358    
359 gezelter 1554 res = mixer.V->getValueAndDerivativeAt( *(idat.rij) );
360 gezelter 1502 RealType vptmp = res.first;
361     RealType dvpdr = res.second;
362    
363     RealType pot_temp = vptmp - vcij;
364 gezelter 1554 *(idat.vpair) += pot_temp;
365 gezelter 1502
366 gezelter 1554 RealType dudr = drhodr * ( *(idat.dfrho1) + *(idat.dfrho2) ) + dvpdr;
367 gezelter 1502
368 gezelter 1554 *(idat.f1) += *(idat.d) * dudr / *(idat.rij) ;
369 gezelter 1489
370 gezelter 1575 // particlePot is the difference between the full potential and
371     // the full potential without the presence of a particular
372 gezelter 1502 // particle (atom1).
373     //
374 gezelter 1575 // This reduces the density at other particle locations, so we
375     // need to recompute the density at atom2 assuming atom1 didn't
376     // contribute. This then requires recomputing the density
377     // functional for atom2 as well.
378    
379     *(idat.particlePot1) -= data2.c * data2.epsilon *
380     sqrt( *(idat.rho2) - rhtmp) + *(idat.frho2);
381    
382 gezelter 1586 *(idat.particlePot2) -= data1.c * data1.epsilon *
383 gezelter 1575 sqrt( *(idat.rho1) - rhtmp) + *(idat.frho1);
384 gezelter 1489
385 gezelter 1582 (*(idat.pot))[METALLIC_FAMILY] += pot_temp;
386 gezelter 1502 }
387    
388 gezelter 1489 return;
389     }
390 gezelter 1505
391 gezelter 1545 RealType SC::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
392 gezelter 1505 if (!initialized_) initialize();
393 gezelter 1545
394 gezelter 1505 map<pair<AtomType*, AtomType*>, SCInteractionData>::iterator it;
395 gezelter 1545 it = MixingMap.find(atypes);
396 gezelter 1505 if (it == MixingMap.end())
397     return 0.0;
398     else {
399     SCInteractionData mixer = (*it).second;
400     return mixer.rCut;
401     }
402     }
403 gezelter 1489 }

Properties

Name Value
svn:eol-style native