1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <stdio.h> |
44 |
#include <string.h> |
45 |
|
46 |
#include <cmath> |
47 |
#include "nonbonded/RepulsivePower.hpp" |
48 |
#include "utils/simError.h" |
49 |
#include "types/RepulsivePowerInteractionType.hpp" |
50 |
|
51 |
using namespace std; |
52 |
|
53 |
namespace OpenMD { |
54 |
|
55 |
RepulsivePower::RepulsivePower() : name_("RepulsivePower"), |
56 |
initialized_(false), forceField_(NULL) {} |
57 |
|
58 |
void RepulsivePower::initialize() { |
59 |
|
60 |
ForceField::NonBondedInteractionTypeContainer* nbiTypes = forceField_->getNonBondedInteractionTypes(); |
61 |
ForceField::NonBondedInteractionTypeContainer::MapTypeIterator j; |
62 |
ForceField::NonBondedInteractionTypeContainer::KeyType keys; |
63 |
NonBondedInteractionType* nbt; |
64 |
|
65 |
for (nbt = nbiTypes->beginType(j); nbt != NULL; |
66 |
nbt = nbiTypes->nextType(j)) { |
67 |
|
68 |
if (nbt->isRepulsivePower()) { |
69 |
keys = nbiTypes->getKeys(j); |
70 |
AtomType* at1 = forceField_->getAtomType(keys[0]); |
71 |
AtomType* at2 = forceField_->getAtomType(keys[1]); |
72 |
|
73 |
|
74 |
RepulsivePowerInteractionType* rpit = dynamic_cast<RepulsivePowerInteractionType*>(nbt); |
75 |
|
76 |
if (rpit == NULL) { |
77 |
sprintf( painCave.errMsg, |
78 |
"RepulsivePower::initialize could not convert NonBondedInteractionType\n" |
79 |
"\tto RepulsivePowerInteractionType for %s - %s interaction.\n", |
80 |
at1->getName().c_str(), |
81 |
at2->getName().c_str()); |
82 |
painCave.severity = OPENMD_ERROR; |
83 |
painCave.isFatal = 1; |
84 |
simError(); |
85 |
} |
86 |
|
87 |
|
88 |
RealType sigma = rpit->getSigma(); |
89 |
RealType epsilon = rpit->getEpsilon(); |
90 |
int nRep = rpit->getNrep(); |
91 |
|
92 |
addExplicitInteraction(at1, at2, sigma, epsilon, nRep); |
93 |
} |
94 |
} |
95 |
initialized_ = true; |
96 |
} |
97 |
|
98 |
void RepulsivePower::addExplicitInteraction(AtomType* atype1, |
99 |
AtomType* atype2, |
100 |
RealType sigma, |
101 |
RealType epsilon, |
102 |
int nRep) { |
103 |
|
104 |
RPInteractionData mixer; |
105 |
mixer.sigma = sigma; |
106 |
mixer.epsilon = epsilon; |
107 |
mixer.sigmai = 1.0 / mixer.sigma; |
108 |
mixer.nRep = nRep; |
109 |
|
110 |
pair<AtomType*, AtomType*> key1, key2; |
111 |
key1 = make_pair(atype1, atype2); |
112 |
key2 = make_pair(atype2, atype1); |
113 |
|
114 |
MixingMap[key1] = mixer; |
115 |
if (key2 != key1) { |
116 |
MixingMap[key2] = mixer; |
117 |
} |
118 |
} |
119 |
|
120 |
void RepulsivePower::calcForce(InteractionData &idat) { |
121 |
|
122 |
if (!initialized_) initialize(); |
123 |
|
124 |
map<pair<AtomType*, AtomType*>, RPInteractionData>::iterator it; |
125 |
it = MixingMap.find( idat.atypes ); |
126 |
|
127 |
if (it != MixingMap.end()) { |
128 |
|
129 |
RPInteractionData mixer = (*it).second; |
130 |
RealType sigmai = mixer.sigmai; |
131 |
RealType epsilon = mixer.epsilon; |
132 |
int nRep = mixer.nRep; |
133 |
|
134 |
RealType ros; |
135 |
RealType rcos; |
136 |
RealType myPot = 0.0; |
137 |
RealType myPotC = 0.0; |
138 |
RealType myDeriv = 0.0; |
139 |
RealType myDerivC = 0.0; |
140 |
|
141 |
ros = *(idat.rij) * sigmai; |
142 |
|
143 |
getNRepulsionFunc(ros, nRep, myPot, myDeriv); |
144 |
|
145 |
if (idat.shiftedPot) { |
146 |
rcos = *(idat.rcut) * sigmai; |
147 |
getNRepulsionFunc(rcos, nRep, myPotC, myDerivC); |
148 |
myDerivC = 0.0; |
149 |
} else if (idat.shiftedForce) { |
150 |
rcos = *(idat.rcut) * sigmai; |
151 |
getNRepulsionFunc(rcos, nRep, myPotC, myDerivC); |
152 |
myPotC = myPotC + myDerivC * (*(idat.rij) - *(idat.rcut)) * sigmai; |
153 |
} else { |
154 |
myPotC = 0.0; |
155 |
myDerivC = 0.0; |
156 |
} |
157 |
|
158 |
RealType pot_temp = *(idat.vdwMult) * epsilon * (myPot - myPotC); |
159 |
*(idat.vpair) += pot_temp; |
160 |
|
161 |
RealType dudr = *(idat.sw) * *(idat.vdwMult) * epsilon * (myDeriv - |
162 |
myDerivC)*sigmai; |
163 |
|
164 |
(*(idat.pot))[VANDERWAALS_FAMILY] += *(idat.sw) * pot_temp; |
165 |
*(idat.f1) = *(idat.d) * dudr / *(idat.rij); |
166 |
} |
167 |
return; |
168 |
} |
169 |
|
170 |
void RepulsivePower::getNRepulsionFunc(RealType r, int n, RealType &pot, RealType &deriv) { |
171 |
|
172 |
RealType ri = 1.0 / r; |
173 |
RealType rin = pow(ri, n); |
174 |
RealType rin1 = rin * ri; |
175 |
|
176 |
pot = rin; |
177 |
deriv = -n * rin1; |
178 |
|
179 |
return; |
180 |
} |
181 |
|
182 |
|
183 |
RealType RepulsivePower::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
184 |
if (!initialized_) initialize(); |
185 |
map<pair<AtomType*, AtomType*>, RPInteractionData>::iterator it; |
186 |
it = MixingMap.find(atypes); |
187 |
if (it == MixingMap.end()) |
188 |
return 0.0; |
189 |
else { |
190 |
RPInteractionData mixer = (*it).second; |
191 |
return 2.5 * mixer.sigma; |
192 |
} |
193 |
} |
194 |
|
195 |
} |
196 |
|