1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
#include <stdio.h> |
43 |
#include <string.h> |
44 |
|
45 |
#include <cmath> |
46 |
#include "nonbonded/RepulsivePower.hpp" |
47 |
#include "utils/simError.h" |
48 |
#include "types/RepulsivePowerInteractionType.hpp" |
49 |
|
50 |
using namespace std; |
51 |
|
52 |
namespace OpenMD { |
53 |
|
54 |
RepulsivePower::RepulsivePower() : name_("RepulsivePower"), |
55 |
initialized_(false), forceField_(NULL) {} |
56 |
|
57 |
void RepulsivePower::initialize() { |
58 |
|
59 |
ForceField::NonBondedInteractionTypeContainer* nbiTypes = forceField_->getNonBondedInteractionTypes(); |
60 |
ForceField::NonBondedInteractionTypeContainer::MapTypeIterator j; |
61 |
ForceField::NonBondedInteractionTypeContainer::KeyType keys; |
62 |
NonBondedInteractionType* nbt; |
63 |
|
64 |
for (nbt = nbiTypes->beginType(j); nbt != NULL; |
65 |
nbt = nbiTypes->nextType(j)) { |
66 |
|
67 |
if (nbt->isRepulsivePower()) { |
68 |
keys = nbiTypes->getKeys(j); |
69 |
AtomType* at1 = forceField_->getAtomType(keys[0]); |
70 |
AtomType* at2 = forceField_->getAtomType(keys[1]); |
71 |
|
72 |
|
73 |
RepulsivePowerInteractionType* rpit = dynamic_cast<RepulsivePowerInteractionType*>(nbt); |
74 |
|
75 |
if (rpit == NULL) { |
76 |
sprintf( painCave.errMsg, |
77 |
"RepulsivePower::initialize could not convert NonBondedInteractionType\n" |
78 |
"\tto RepulsivePowerInteractionType for %s - %s interaction.\n", |
79 |
at1->getName().c_str(), |
80 |
at2->getName().c_str()); |
81 |
painCave.severity = OPENMD_ERROR; |
82 |
painCave.isFatal = 1; |
83 |
simError(); |
84 |
} |
85 |
|
86 |
|
87 |
RealType sigma = rpit->getSigma(); |
88 |
RealType epsilon = rpit->getEpsilon(); |
89 |
int nRep = rpit->getNrep(); |
90 |
|
91 |
addExplicitInteraction(at1, at2, sigma, epsilon, nRep); |
92 |
} |
93 |
} |
94 |
initialized_ = true; |
95 |
} |
96 |
|
97 |
void RepulsivePower::addExplicitInteraction(AtomType* atype1, |
98 |
AtomType* atype2, |
99 |
RealType sigma, |
100 |
RealType epsilon, |
101 |
int nRep) { |
102 |
|
103 |
RPInteractionData mixer; |
104 |
mixer.sigma = sigma; |
105 |
mixer.epsilon = epsilon; |
106 |
mixer.sigmai = 1.0 / mixer.sigma; |
107 |
mixer.nRep = nRep; |
108 |
|
109 |
pair<AtomType*, AtomType*> key1, key2; |
110 |
key1 = make_pair(atype1, atype2); |
111 |
key2 = make_pair(atype2, atype1); |
112 |
|
113 |
MixingMap[key1] = mixer; |
114 |
if (key2 != key1) { |
115 |
MixingMap[key2] = mixer; |
116 |
} |
117 |
} |
118 |
|
119 |
void RepulsivePower::calcForce(InteractionData &idat) { |
120 |
|
121 |
if (!initialized_) initialize(); |
122 |
|
123 |
map<pair<AtomType*, AtomType*>, RPInteractionData>::iterator it; |
124 |
it = MixingMap.find( idat.atypes ); |
125 |
|
126 |
if (it != MixingMap.end()) { |
127 |
|
128 |
RPInteractionData mixer = (*it).second; |
129 |
RealType sigmai = mixer.sigmai; |
130 |
RealType epsilon = mixer.epsilon; |
131 |
int nRep = mixer.nRep; |
132 |
|
133 |
RealType ros; |
134 |
RealType rcos; |
135 |
RealType myPot = 0.0; |
136 |
RealType myPotC = 0.0; |
137 |
RealType myDeriv = 0.0; |
138 |
RealType myDerivC = 0.0; |
139 |
|
140 |
ros = *(idat.rij) * sigmai; |
141 |
|
142 |
getNRepulsionFunc(ros, nRep, myPot, myDeriv); |
143 |
|
144 |
if (idat.shiftedPot) { |
145 |
rcos = *(idat.rcut) * sigmai; |
146 |
getNRepulsionFunc(rcos, nRep, myPotC, myDerivC); |
147 |
myDerivC = 0.0; |
148 |
} else if (idat.shiftedForce) { |
149 |
rcos = *(idat.rcut) * sigmai; |
150 |
getNRepulsionFunc(rcos, nRep, myPotC, myDerivC); |
151 |
myPotC = myPotC + myDerivC * (*(idat.rij) - *(idat.rcut)) * sigmai; |
152 |
} else { |
153 |
myPotC = 0.0; |
154 |
myDerivC = 0.0; |
155 |
} |
156 |
|
157 |
RealType pot_temp = *(idat.vdwMult) * epsilon * (myPot - myPotC); |
158 |
*(idat.vpair) += pot_temp; |
159 |
|
160 |
RealType dudr = *(idat.sw) * *(idat.vdwMult) * epsilon * (myDeriv - |
161 |
myDerivC)*sigmai; |
162 |
|
163 |
(*(idat.pot))[VANDERWAALS_FAMILY] += *(idat.sw) * pot_temp; |
164 |
*(idat.f1) = *(idat.d) * dudr / *(idat.rij); |
165 |
} |
166 |
return; |
167 |
} |
168 |
|
169 |
void RepulsivePower::getNRepulsionFunc(RealType r, int n, RealType &pot, RealType &deriv) { |
170 |
|
171 |
RealType ri = 1.0 / r; |
172 |
RealType rin = pow(ri, n); |
173 |
RealType rin1 = rin * ri; |
174 |
|
175 |
pot = rin; |
176 |
deriv = -n * rin1; |
177 |
|
178 |
return; |
179 |
} |
180 |
|
181 |
|
182 |
RealType RepulsivePower::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
183 |
if (!initialized_) initialize(); |
184 |
map<pair<AtomType*, AtomType*>, RPInteractionData>::iterator it; |
185 |
it = MixingMap.find(atypes); |
186 |
if (it == MixingMap.end()) |
187 |
return 0.0; |
188 |
else { |
189 |
RPInteractionData mixer = (*it).second; |
190 |
return 2.5 * mixer.sigma; |
191 |
} |
192 |
} |
193 |
|
194 |
} |
195 |
|