1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <stdio.h> |
44 |
#include <string.h> |
45 |
|
46 |
#include <cmath> |
47 |
#include "nonbonded/Morse.hpp" |
48 |
#include "utils/simError.h" |
49 |
#include "types/MorseInteractionType.hpp" |
50 |
|
51 |
using namespace std; |
52 |
|
53 |
namespace OpenMD { |
54 |
|
55 |
Morse::Morse() : name_("Morse"), initialized_(false), forceField_(NULL) {} |
56 |
|
57 |
void Morse::initialize() { |
58 |
|
59 |
ForceField::NonBondedInteractionTypeContainer* nbiTypes = forceField_->getNonBondedInteractionTypes(); |
60 |
ForceField::NonBondedInteractionTypeContainer::MapTypeIterator j; |
61 |
NonBondedInteractionType* nbt; |
62 |
ForceField::NonBondedInteractionTypeContainer::KeyType keys; |
63 |
|
64 |
for (nbt = nbiTypes->beginType(j); nbt != NULL; |
65 |
nbt = nbiTypes->nextType(j)) { |
66 |
|
67 |
if (nbt->isMorse()) { |
68 |
keys = nbiTypes->getKeys(j); |
69 |
AtomType* at1 = forceField_->getAtomType(keys[0]); |
70 |
AtomType* at2 = forceField_->getAtomType(keys[1]); |
71 |
|
72 |
MorseInteractionType* mit = dynamic_cast<MorseInteractionType*>(nbt); |
73 |
|
74 |
if (mit == NULL) { |
75 |
sprintf( painCave.errMsg, |
76 |
"Morse::initialize could not convert NonBondedInteractionType\n" |
77 |
"\tto MorseInteractionType for %s - %s interaction.\n", |
78 |
at1->getName().c_str(), |
79 |
at2->getName().c_str()); |
80 |
painCave.severity = OPENMD_ERROR; |
81 |
painCave.isFatal = 1; |
82 |
simError(); |
83 |
} |
84 |
|
85 |
RealType De = mit->getD(); |
86 |
RealType Re = mit->getR(); |
87 |
RealType beta = mit->getBeta(); |
88 |
|
89 |
MorseType variant = mit->getInteractionType(); |
90 |
addExplicitInteraction(at1, at2, De, Re, beta, variant ); |
91 |
} |
92 |
} |
93 |
initialized_ = true; |
94 |
} |
95 |
|
96 |
void Morse::addExplicitInteraction(AtomType* atype1, AtomType* atype2, |
97 |
RealType De, RealType Re, RealType beta, |
98 |
MorseType mt) { |
99 |
|
100 |
MorseInteractionData mixer; |
101 |
mixer.De = De; |
102 |
mixer.Re = Re; |
103 |
mixer.beta = beta; |
104 |
mixer.variant = mt; |
105 |
|
106 |
pair<AtomType*, AtomType*> key1, key2; |
107 |
key1 = make_pair(atype1, atype2); |
108 |
key2 = make_pair(atype2, atype1); |
109 |
|
110 |
MixingMap[key1] = mixer; |
111 |
if (key2 != key1) { |
112 |
MixingMap[key2] = mixer; |
113 |
} |
114 |
} |
115 |
|
116 |
void Morse::calcForce(InteractionData &idat) { |
117 |
|
118 |
if (!initialized_) initialize(); |
119 |
|
120 |
map<pair<AtomType*, AtomType*>, MorseInteractionData>::iterator it; |
121 |
it = MixingMap.find( idat.atypes ); |
122 |
if (it != MixingMap.end()) { |
123 |
MorseInteractionData mixer = (*it).second; |
124 |
|
125 |
RealType myPot = 0.0; |
126 |
RealType myPotC = 0.0; |
127 |
RealType myDeriv = 0.0; |
128 |
RealType myDerivC = 0.0; |
129 |
|
130 |
RealType De = mixer.De; |
131 |
RealType Re = mixer.Re; |
132 |
RealType beta = mixer.beta; |
133 |
MorseType variant = mixer.variant; |
134 |
|
135 |
// V(r) = D_e exp(-a(r-re)(exp(-a(r-re))-2) |
136 |
|
137 |
RealType expt = -beta*( *(idat.rij) - Re); |
138 |
RealType expfnc = exp(expt); |
139 |
RealType expfnc2 = expfnc*expfnc; |
140 |
|
141 |
RealType exptC = 0.0; |
142 |
RealType expfncC = 0.0; |
143 |
RealType expfnc2C = 0.0; |
144 |
|
145 |
if (idat.shiftedPot || idat.shiftedForce) { |
146 |
exptC = -beta*( *(idat.rcut) - Re); |
147 |
expfncC = exp(exptC); |
148 |
expfnc2C = expfncC*expfncC; |
149 |
} |
150 |
|
151 |
|
152 |
switch(variant) { |
153 |
case mtShifted : { |
154 |
|
155 |
myPot = De * (expfnc2 - 2.0 * expfnc); |
156 |
myDeriv = 2.0 * De * beta * (expfnc - expfnc2); |
157 |
|
158 |
if (idat.shiftedPot) { |
159 |
myPotC = De * (expfnc2C - 2.0 * expfncC); |
160 |
myDerivC = 0.0; |
161 |
} else if (idat.shiftedForce) { |
162 |
myPotC = De * (expfnc2C - 2.0 * expfncC); |
163 |
myDerivC = 2.0 * De * beta * (expfncC - expfnc2C); |
164 |
myPotC += myDerivC * ( *(idat.rij) - *(idat.rcut) ); |
165 |
} else { |
166 |
myPotC = 0.0; |
167 |
myDerivC = 0.0; |
168 |
} |
169 |
|
170 |
break; |
171 |
} |
172 |
case mtRepulsive : { |
173 |
|
174 |
myPot = De * expfnc2; |
175 |
myDeriv = -2.0 * De * beta * expfnc2; |
176 |
|
177 |
if (idat.shiftedPot) { |
178 |
myPotC = De * expfnc2C; |
179 |
myDerivC = 0.0; |
180 |
} else if (idat.shiftedForce) { |
181 |
myPotC = De * expfnc2C; |
182 |
myDerivC = -2.0 * De * beta * expfnc2C; |
183 |
myPotC += myDerivC * ( *(idat.rij) - *(idat.rcut)); |
184 |
} else { |
185 |
myPotC = 0.0; |
186 |
myDerivC = 0.0; |
187 |
} |
188 |
|
189 |
break; |
190 |
} |
191 |
case mtUnknown: { |
192 |
// don't know what to do so don't do anything |
193 |
break; |
194 |
} |
195 |
} |
196 |
|
197 |
RealType pot_temp = *(idat.vdwMult) * (myPot - myPotC); |
198 |
*(idat.vpair) += pot_temp; |
199 |
|
200 |
RealType dudr = *(idat.sw) * *(idat.vdwMult) * (myDeriv - myDerivC); |
201 |
|
202 |
(*(idat.pot))[VANDERWAALS_FAMILY] += *(idat.sw) * pot_temp; |
203 |
*(idat.f1) = *(idat.d) * dudr / *(idat.rij); |
204 |
} |
205 |
return; |
206 |
|
207 |
} |
208 |
|
209 |
RealType Morse::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
210 |
if (!initialized_) initialize(); |
211 |
map<pair<AtomType*, AtomType*>, MorseInteractionData>::iterator it; |
212 |
it = MixingMap.find(atypes); |
213 |
if (it == MixingMap.end()) |
214 |
return 0.0; |
215 |
else { |
216 |
MorseInteractionData mixer = (*it).second; |
217 |
|
218 |
RealType Re = mixer.Re; |
219 |
RealType beta = mixer.beta; |
220 |
// This value of the r corresponds to an energy about 1.48% of |
221 |
// the energy at the bottom of the Morse well. For comparison, the |
222 |
// Lennard-Jones function is about 1.63% of it's minimum value at |
223 |
// a distance of 2.5 sigma. |
224 |
return (4.9 + beta * Re) / beta; |
225 |
} |
226 |
} |
227 |
} |
228 |
|