1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
#include <stdio.h> |
43 |
#include <string.h> |
44 |
|
45 |
#include <cmath> |
46 |
#include "nonbonded/Morse.hpp" |
47 |
#include "utils/simError.h" |
48 |
#include "types/NonBondedInteractionType.hpp" |
49 |
|
50 |
using namespace std; |
51 |
|
52 |
namespace OpenMD { |
53 |
|
54 |
Morse::Morse() : name_("Morse"), initialized_(false), forceField_(NULL) {} |
55 |
|
56 |
void Morse::initialize() { |
57 |
|
58 |
stringToEnumMap_["shiftedMorse"] = shiftedMorse; |
59 |
stringToEnumMap_["repulsiveMorse"] = repulsiveMorse; |
60 |
|
61 |
ForceField::NonBondedInteractionTypeContainer* nbiTypes = forceField_->getNonBondedInteractionTypes(); |
62 |
ForceField::NonBondedInteractionTypeContainer::MapTypeIterator j; |
63 |
NonBondedInteractionType* nbt; |
64 |
|
65 |
for (nbt = nbiTypes->beginType(j); nbt != NULL; |
66 |
nbt = nbiTypes->nextType(j)) { |
67 |
|
68 |
if (nbt->isMorse()) { |
69 |
|
70 |
pair<AtomType*, AtomType*> atypes = nbt->getAtomTypes(); |
71 |
|
72 |
GenericData* data = nbt->getPropertyByName("Morse"); |
73 |
if (data == NULL) { |
74 |
sprintf( painCave.errMsg, "Morse::initialize could not find\n" |
75 |
"\tMorse parameters for %s - %s interaction.\n", |
76 |
atypes.first->getName().c_str(), |
77 |
atypes.second->getName().c_str()); |
78 |
painCave.severity = OPENMD_ERROR; |
79 |
painCave.isFatal = 1; |
80 |
simError(); |
81 |
} |
82 |
|
83 |
MorseData* morseData = dynamic_cast<MorseData*>(data); |
84 |
if (morseData == NULL) { |
85 |
sprintf( painCave.errMsg, |
86 |
"Morse::initialize could not convert GenericData to\n" |
87 |
"\tMorseData for %s - %s interaction.\n", |
88 |
atypes.first->getName().c_str(), |
89 |
atypes.second->getName().c_str()); |
90 |
painCave.severity = OPENMD_ERROR; |
91 |
painCave.isFatal = 1; |
92 |
simError(); |
93 |
} |
94 |
|
95 |
MorseParam morseParam = morseData->getData(); |
96 |
|
97 |
RealType De = morseParam.De; |
98 |
RealType Re = morseParam.Re; |
99 |
RealType beta = morseParam.beta; |
100 |
string interactionType = morseParam.interactionType; |
101 |
|
102 |
toUpper(interactionType); |
103 |
map<string, MorseInteractionType>::iterator i; |
104 |
i = stringToEnumMap_.find(interactionType); |
105 |
if (i != stringToEnumMap_.end()) { |
106 |
addExplicitInteraction(atypes.first, atypes.second, |
107 |
De, Re, beta, i->second ); |
108 |
} else { |
109 |
sprintf( painCave.errMsg, |
110 |
"Morse::initialize found unknown Morse interaction type\n" |
111 |
"\t(%s) for %s - %s interaction.\n", |
112 |
morseParam.interactionType.c_str(), |
113 |
atypes.first->getName().c_str(), |
114 |
atypes.second->getName().c_str()); |
115 |
painCave.severity = OPENMD_ERROR; |
116 |
painCave.isFatal = 1; |
117 |
simError(); |
118 |
} |
119 |
} |
120 |
} |
121 |
initialized_ = true; |
122 |
} |
123 |
|
124 |
void Morse::addExplicitInteraction(AtomType* atype1, AtomType* atype2, |
125 |
RealType De, RealType Re, RealType beta, |
126 |
MorseInteractionType mit) { |
127 |
|
128 |
MorseInteractionData mixer; |
129 |
mixer.De = De; |
130 |
mixer.Re = Re; |
131 |
mixer.beta = beta; |
132 |
mixer.interactionType = mit; |
133 |
|
134 |
pair<AtomType*, AtomType*> key1, key2; |
135 |
key1 = make_pair(atype1, atype2); |
136 |
key2 = make_pair(atype2, atype1); |
137 |
|
138 |
MixingMap[key1] = mixer; |
139 |
if (key2 != key1) { |
140 |
MixingMap[key2] = mixer; |
141 |
} |
142 |
} |
143 |
|
144 |
void Morse::calcForce(InteractionData &idat) { |
145 |
|
146 |
if (!initialized_) initialize(); |
147 |
|
148 |
map<pair<AtomType*, AtomType*>, MorseInteractionData>::iterator it; |
149 |
it = MixingMap.find( idat.atypes ); |
150 |
if (it != MixingMap.end()) { |
151 |
MorseInteractionData mixer = (*it).second; |
152 |
|
153 |
RealType myPot = 0.0; |
154 |
RealType myPotC = 0.0; |
155 |
RealType myDeriv = 0.0; |
156 |
RealType myDerivC = 0.0; |
157 |
|
158 |
RealType De = mixer.De; |
159 |
RealType Re = mixer.Re; |
160 |
RealType beta = mixer.beta; |
161 |
MorseInteractionType interactionType = mixer.interactionType; |
162 |
|
163 |
// V(r) = D_e exp(-a(r-re)(exp(-a(r-re))-2) |
164 |
|
165 |
RealType expt = -beta*( *(idat.rij) - Re); |
166 |
RealType expfnc = exp(expt); |
167 |
RealType expfnc2 = expfnc*expfnc; |
168 |
|
169 |
RealType exptC = 0.0; |
170 |
RealType expfncC = 0.0; |
171 |
RealType expfnc2C = 0.0; |
172 |
|
173 |
if (idat.shiftedPot || idat.shiftedForce) { |
174 |
exptC = -beta*( *(idat.rcut) - Re); |
175 |
expfncC = exp(exptC); |
176 |
expfnc2C = expfncC*expfncC; |
177 |
} |
178 |
|
179 |
|
180 |
switch(interactionType) { |
181 |
case shiftedMorse : { |
182 |
|
183 |
myPot = De * (expfnc2 - 2.0 * expfnc); |
184 |
myDeriv = 2.0 * De * beta * (expfnc - expfnc2); |
185 |
|
186 |
if (idat.shiftedPot) { |
187 |
myPotC = De * (expfnc2C - 2.0 * expfncC); |
188 |
myDerivC = 0.0; |
189 |
} else if (idat.shiftedForce) { |
190 |
myPotC = De * (expfnc2C - 2.0 * expfncC); |
191 |
myDerivC = 2.0 * De * beta * (expfnc2C - expfnc2C); |
192 |
myPotC += myDerivC * ( *(idat.rij) - *(idat.rcut) ); |
193 |
} else { |
194 |
myPotC = 0.0; |
195 |
myDerivC = 0.0; |
196 |
} |
197 |
|
198 |
break; |
199 |
} |
200 |
case repulsiveMorse : { |
201 |
|
202 |
myPot = De * expfnc2; |
203 |
myDeriv = -2.0 * De * beta * expfnc2; |
204 |
|
205 |
if (idat.shiftedPot) { |
206 |
myPotC = De * expfnc2C; |
207 |
myDerivC = 0.0; |
208 |
} else if (idat.shiftedForce) { |
209 |
myPotC = De * expfnc2C; |
210 |
myDerivC = -2.0 * De * beta * expfnc2C; |
211 |
myPotC += myDerivC * ( *(idat.rij) - *(idat.rcut)); |
212 |
} else { |
213 |
myPotC = 0.0; |
214 |
myDerivC = 0.0; |
215 |
} |
216 |
|
217 |
break; |
218 |
} |
219 |
} |
220 |
|
221 |
RealType pot_temp = *(idat.vdwMult) * (myPot - myPotC); |
222 |
*(idat.vpair) += pot_temp; |
223 |
|
224 |
RealType dudr = *(idat.sw) * *(idat.vdwMult) * (myDeriv - myDerivC); |
225 |
|
226 |
(*(idat.pot))[VANDERWAALS_FAMILY] += *(idat.sw) * pot_temp; |
227 |
*(idat.f1) = *(idat.d) * dudr / *(idat.rij); |
228 |
} |
229 |
return; |
230 |
|
231 |
} |
232 |
|
233 |
RealType Morse::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
234 |
if (!initialized_) initialize(); |
235 |
map<pair<AtomType*, AtomType*>, MorseInteractionData>::iterator it; |
236 |
it = MixingMap.find(atypes); |
237 |
if (it == MixingMap.end()) |
238 |
return 0.0; |
239 |
else { |
240 |
MorseInteractionData mixer = (*it).second; |
241 |
|
242 |
RealType Re = mixer.Re; |
243 |
RealType beta = mixer.beta; |
244 |
// This value of the r corresponds to an energy about 1.48% of |
245 |
// the energy at the bottom of the Morse well. For comparison, the |
246 |
// Lennard-Jones function is about 1.63% of it's minimum value at |
247 |
// a distance of 2.5 sigma. |
248 |
return (4.9 + beta * Re) / beta; |
249 |
} |
250 |
} |
251 |
} |
252 |
|