1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
#include <stdio.h> |
43 |
#include <string.h> |
44 |
|
45 |
#include <cmath> |
46 |
#include "nonbonded/Morse.hpp" |
47 |
#include "utils/simError.h" |
48 |
#include "types/NonBondedInteractionType.hpp" |
49 |
|
50 |
using namespace std; |
51 |
|
52 |
namespace OpenMD { |
53 |
|
54 |
Morse::Morse() : name_("Morse"), initialized_(false), forceField_(NULL), |
55 |
shiftedPot_(false), shiftedFrc_(false) {} |
56 |
|
57 |
void Morse::initialize() { |
58 |
|
59 |
stringToEnumMap_["shiftedMorse"] = shiftedMorse; |
60 |
stringToEnumMap_["repulsiveMorse"] = repulsiveMorse; |
61 |
|
62 |
ForceField::NonBondedInteractionTypeContainer* nbiTypes = forceField_->getNonBondedInteractionTypes(); |
63 |
ForceField::NonBondedInteractionTypeContainer::MapTypeIterator j; |
64 |
NonBondedInteractionType* nbt; |
65 |
|
66 |
for (nbt = nbiTypes->beginType(j); nbt != NULL; |
67 |
nbt = nbiTypes->nextType(j)) { |
68 |
|
69 |
if (nbt->isMorse()) { |
70 |
|
71 |
pair<AtomType*, AtomType*> atypes = nbt->getAtomTypes(); |
72 |
|
73 |
GenericData* data = nbt->getPropertyByName("Morse"); |
74 |
if (data == NULL) { |
75 |
sprintf( painCave.errMsg, "Morse::initialize could not find\n" |
76 |
"\tMorse parameters for %s - %s interaction.\n", |
77 |
atypes.first->getName().c_str(), |
78 |
atypes.second->getName().c_str()); |
79 |
painCave.severity = OPENMD_ERROR; |
80 |
painCave.isFatal = 1; |
81 |
simError(); |
82 |
} |
83 |
|
84 |
MorseData* morseData = dynamic_cast<MorseData*>(data); |
85 |
if (morseData == NULL) { |
86 |
sprintf( painCave.errMsg, |
87 |
"Morse::initialize could not convert GenericData to\n" |
88 |
"\tMorseData for %s - %s interaction.\n", |
89 |
atypes.first->getName().c_str(), |
90 |
atypes.second->getName().c_str()); |
91 |
painCave.severity = OPENMD_ERROR; |
92 |
painCave.isFatal = 1; |
93 |
simError(); |
94 |
} |
95 |
|
96 |
MorseParam morseParam = morseData->getData(); |
97 |
|
98 |
RealType De = morseParam.De; |
99 |
RealType Re = morseParam.Re; |
100 |
RealType beta = morseParam.beta; |
101 |
string interactionType = morseParam.interactionType; |
102 |
|
103 |
toUpper(interactionType); |
104 |
map<string, MorseInteractionType>::iterator i; |
105 |
i = stringToEnumMap_.find(interactionType); |
106 |
if (i != stringToEnumMap_.end()) { |
107 |
addExplicitInteraction(atypes.first, atypes.second, |
108 |
De, Re, beta, i->second ); |
109 |
} else { |
110 |
sprintf( painCave.errMsg, |
111 |
"Morse::initialize found unknown Morse interaction type\n" |
112 |
"\t(%s) for %s - %s interaction.\n", |
113 |
morseParam.interactionType.c_str(), |
114 |
atypes.first->getName().c_str(), |
115 |
atypes.second->getName().c_str()); |
116 |
painCave.severity = OPENMD_ERROR; |
117 |
painCave.isFatal = 1; |
118 |
simError(); |
119 |
} |
120 |
} |
121 |
} |
122 |
initialized_ = true; |
123 |
} |
124 |
|
125 |
void Morse::addExplicitInteraction(AtomType* atype1, AtomType* atype2, |
126 |
RealType De, RealType Re, RealType beta, |
127 |
MorseInteractionType mit) { |
128 |
|
129 |
MorseInteractionData mixer; |
130 |
mixer.De = De; |
131 |
mixer.Re = Re; |
132 |
mixer.beta = beta; |
133 |
mixer.interactionType = mit; |
134 |
|
135 |
pair<AtomType*, AtomType*> key1, key2; |
136 |
key1 = make_pair(atype1, atype2); |
137 |
key2 = make_pair(atype2, atype1); |
138 |
|
139 |
MixingMap[key1] = mixer; |
140 |
if (key2 != key1) { |
141 |
MixingMap[key2] = mixer; |
142 |
} |
143 |
} |
144 |
|
145 |
void Morse::calcForce(InteractionData idat) { |
146 |
|
147 |
if (!initialized_) initialize(); |
148 |
|
149 |
pair<AtomType*, AtomType*> key = make_pair(idat.atype1, idat.atype2); |
150 |
map<pair<AtomType*, AtomType*>, MorseInteractionData>::iterator it; |
151 |
it = MixingMap.find(key); |
152 |
if (it != MixingMap.end()) { |
153 |
MorseInteractionData mixer = (*it).second; |
154 |
|
155 |
RealType myPot = 0.0; |
156 |
RealType myPotC = 0.0; |
157 |
RealType myDeriv = 0.0; |
158 |
RealType myDerivC = 0.0; |
159 |
|
160 |
RealType De = mixer.De; |
161 |
RealType Re = mixer.Re; |
162 |
RealType beta = mixer.beta; |
163 |
MorseInteractionType interactionType = mixer.interactionType; |
164 |
|
165 |
// V(r) = D_e exp(-a(r-re)(exp(-a(r-re))-2) |
166 |
|
167 |
RealType expt = -beta*(idat.rij - Re); |
168 |
RealType expfnc = exp(expt); |
169 |
RealType expfnc2 = expfnc*expfnc; |
170 |
|
171 |
RealType exptC = 0.0; |
172 |
RealType expfncC = 0.0; |
173 |
RealType expfnc2C = 0.0; |
174 |
|
175 |
if (Morse::shiftedPot_ || Morse::shiftedFrc_) { |
176 |
exptC = -beta*(idat.rcut - Re); |
177 |
expfncC = exp(exptC); |
178 |
expfnc2C = expfncC*expfncC; |
179 |
} |
180 |
|
181 |
|
182 |
switch(interactionType) { |
183 |
case shiftedMorse : { |
184 |
|
185 |
myPot = De * (expfnc2 - 2.0 * expfnc); |
186 |
myDeriv = 2.0 * De * beta * (expfnc - expfnc2); |
187 |
|
188 |
if (Morse::shiftedPot_) { |
189 |
myPotC = De * (expfnc2C - 2.0 * expfncC); |
190 |
myDerivC = 0.0; |
191 |
} else if (Morse::shiftedFrc_) { |
192 |
myPotC = De * (expfnc2C - 2.0 * expfncC); |
193 |
myDerivC = 2.0 * De * beta * (expfnc2C - expfnc2C); |
194 |
myPotC += myDerivC * (idat.rij - idat.rcut); |
195 |
} else { |
196 |
myPotC = 0.0; |
197 |
myDerivC = 0.0; |
198 |
} |
199 |
|
200 |
break; |
201 |
} |
202 |
case repulsiveMorse : { |
203 |
|
204 |
myPot = De * expfnc2; |
205 |
myDeriv = -2.0 * De * beta * expfnc2; |
206 |
|
207 |
if (Morse::shiftedPot_) { |
208 |
myPotC = De * expfnc2C; |
209 |
myDerivC = 0.0; |
210 |
} else if (Morse::shiftedFrc_) { |
211 |
myPotC = De * expfnc2C; |
212 |
myDerivC = -2.0 * De * beta * expfnc2C; |
213 |
myPotC += myDerivC * (idat.rij - idat.rcut); |
214 |
} else { |
215 |
myPotC = 0.0; |
216 |
myDerivC = 0.0; |
217 |
} |
218 |
|
219 |
break; |
220 |
} |
221 |
} |
222 |
|
223 |
RealType pot_temp = idat.vdwMult * (myPot - myPotC); |
224 |
idat.vpair += pot_temp; |
225 |
|
226 |
RealType dudr = idat.sw * idat.vdwMult * (myDeriv - myDerivC); |
227 |
|
228 |
idat.pot += idat.sw * pot_temp; |
229 |
idat.f1 = idat.d * dudr / idat.rij; |
230 |
} |
231 |
return; |
232 |
|
233 |
} |
234 |
|
235 |
RealType Morse::getSuggestedCutoffRadius(AtomType* at1, AtomType* at2) { |
236 |
if (!initialized_) initialize(); |
237 |
pair<AtomType*, AtomType*> key = make_pair(at1, at2); |
238 |
map<pair<AtomType*, AtomType*>, MorseInteractionData>::iterator it; |
239 |
it = MixingMap.find(key); |
240 |
if (it == MixingMap.end()) |
241 |
return 0.0; |
242 |
else { |
243 |
MorseInteractionData mixer = (*it).second; |
244 |
|
245 |
RealType Re = mixer.Re; |
246 |
RealType beta = mixer.beta; |
247 |
// This value of the r corresponds to an energy about 1.48% of |
248 |
// the energy at the bottom of the Morse well. For comparison, the |
249 |
// Lennard-Jones function is about 1.63% of it's minimum value at |
250 |
// a distance of 2.5 sigma. |
251 |
return (4.9 + beta * Re) / beta; |
252 |
} |
253 |
} |
254 |
} |
255 |
|