| 124 |
|
} |
| 125 |
|
} |
| 126 |
|
|
| 127 |
< |
void MAW::calcForce(InteractionData idat) { |
| 127 |
> |
void MAW::calcForce(InteractionData &idat) { |
| 128 |
|
|
| 129 |
|
if (!initialized_) initialize(); |
| 130 |
|
|
| 131 |
– |
pair<AtomType*, AtomType*> key = make_pair(idat.atype1, idat.atype2); |
| 131 |
|
map<pair<AtomType*, AtomType*>, MAWInteractionData>::iterator it; |
| 132 |
< |
it = MixingMap.find(key); |
| 132 |
> |
it = MixingMap.find( *(idat.atypes) ); |
| 133 |
|
if (it != MixingMap.end()) { |
| 134 |
|
MAWInteractionData mixer = (*it).second; |
| 135 |
|
|
| 144 |
|
RealType ca1 = mixer.ca1; |
| 145 |
|
RealType cb1 = mixer.cb1; |
| 146 |
|
|
| 147 |
< |
bool j_is_Metal = idat.atype2->isMetal(); |
| 147 |
> |
bool j_is_Metal = idat.atypes->second->isMetal(); |
| 148 |
|
|
| 149 |
|
Vector3d r; |
| 150 |
|
RotMat3x3d Atrans; |
| 151 |
|
if (j_is_Metal) { |
| 152 |
|
// rotate the inter-particle separation into the two different |
| 153 |
|
// body-fixed coordinate systems: |
| 154 |
< |
r = idat.A1 * idat.d; |
| 155 |
< |
Atrans = idat.A1.transpose(); |
| 154 |
> |
r = *(idat.A1) * *(idat.d); |
| 155 |
> |
Atrans = idat.A1->transpose(); |
| 156 |
|
} else { |
| 157 |
|
// negative sign because this is the vector from j to i: |
| 158 |
< |
r = -idat.A2 * idat.d; |
| 159 |
< |
Atrans = idat.A2.transpose(); |
| 158 |
> |
r = -*(idat.A2) * *(idat.d); |
| 159 |
> |
Atrans = idat.A2->transpose(); |
| 160 |
|
} |
| 161 |
|
|
| 162 |
|
// V(r) = D_e exp(-a(r-re)(exp(-a(r-re))-2) |
| 163 |
|
|
| 164 |
< |
RealType expt = -beta*(idat.rij - R_e); |
| 164 |
> |
RealType expt = -beta*( *(idat.rij) - R_e); |
| 165 |
|
RealType expfnc = exp(expt); |
| 166 |
|
RealType expfnc2 = expfnc*expfnc; |
| 167 |
|
|
| 173 |
|
myDeriv = 2.0 * D_e * beta * (expfnc - expfnc2); |
| 174 |
|
|
| 175 |
|
if (MAW::shiftedPot_ || MAW::shiftedFrc_) { |
| 176 |
< |
exptC = -beta*(idat.rcut - R_e); |
| 176 |
> |
exptC = -beta*( *(idat.rcut) - R_e); |
| 177 |
|
expfncC = exp(exptC); |
| 178 |
|
expfnc2C = expfncC*expfncC; |
| 179 |
|
} |
| 184 |
|
} else if (MAW::shiftedFrc_) { |
| 185 |
|
myPotC = D_e * (expfnc2C - 2.0 * expfncC); |
| 186 |
|
myDerivC = 2.0 * D_e * beta * (expfnc2C - expfnc2C); |
| 187 |
< |
myPotC += myDerivC * (idat.rij - idat.rcut); |
| 187 |
> |
myPotC += myDerivC * ( *(idat.rij) - *(idat.rcut) ); |
| 188 |
|
} else { |
| 189 |
|
myPotC = 0.0; |
| 190 |
|
myDerivC = 0.0; |
| 197 |
|
RealType y2 = y * y; |
| 198 |
|
RealType z2 = z * z; |
| 199 |
|
|
| 200 |
< |
RealType r3 = idat.r2 * idat.rij; |
| 201 |
< |
RealType r4 = idat.r2 * idat.r2; |
| 200 |
> |
RealType r3 = *(idat.r2) * *(idat.rij) ; |
| 201 |
> |
RealType r4 = *(idat.r2) * *(idat.r2); |
| 202 |
|
|
| 203 |
|
// angular modulation of morse part of potential to approximate |
| 204 |
|
// the squares of the two HOMO lone pair orbitals in water: |
| 216 |
|
// Vmorse(r)*[a*x2/r2 + b*z/r + (1-a-b)] |
| 217 |
|
|
| 218 |
|
RealType Vmorse = (myPot - myPotC); |
| 219 |
< |
RealType Vang = ca1 * x2 / idat.r2 + cb1 * z / idat.rij + (0.8 - ca1 / 3.0); |
| 220 |
< |
|
| 221 |
< |
RealType pot_temp = idat.vdwMult * Vmorse * Vang; |
| 222 |
< |
idat.vpair += pot_temp; |
| 223 |
< |
idat.pot += idat.sw * pot_temp; |
| 219 |
> |
RealType Vang = ca1 * x2 / *(idat.r2) + |
| 220 |
> |
cb1 * z / *(idat.rij) + (0.8 - ca1 / 3.0); |
| 221 |
> |
|
| 222 |
> |
RealType pot_temp = *(idat.vdwMult) * Vmorse * Vang; |
| 223 |
> |
*(idat.vpair) += pot_temp; |
| 224 |
> |
idat.pot[VANDERWAALS_FAMILY] += *(idat.sw) * pot_temp; |
| 225 |
|
|
| 226 |
< |
Vector3d dVmorsedr = (myDeriv - myDerivC) * Vector3d(x, y, z) / idat.rij; |
| 227 |
< |
|
| 228 |
< |
Vector3d dVangdr = Vector3d(-2.0 * ca1 * x2 * x / r4 + 2.0 * ca1 * x / idat.r2 - cb1 * x * z / r3, |
| 229 |
< |
-2.0 * ca1 * x2 * y / r4 - cb1 * z * y / r3, |
| 230 |
< |
-2.0 * ca1 * x2 * z / r4 + cb1 / idat.rij - cb1 * z2 / r3); |
| 226 |
> |
Vector3d dVmorsedr = (myDeriv - myDerivC) * Vector3d(x, y, z) / *(idat.rij) ; |
| 227 |
|
|
| 228 |
+ |
Vector3d dVangdr = Vector3d(-2.0 * ca1 * x2 * x / r4 + 2.0 * ca1 * x / *(idat.r2) - cb1 * x * z / r3, |
| 229 |
+ |
-2.0 * ca1 * x2 * y / r4 - cb1 * z * y / r3, |
| 230 |
+ |
-2.0 * ca1 * x2 * z / r4 + cb1 / *(idat.rij) - cb1 * z2 / r3); |
| 231 |
+ |
|
| 232 |
|
// chain rule to put these back on x, y, z |
| 233 |
|
|
| 234 |
|
Vector3d dvdr = Vang * dVmorsedr + Vmorse * dVangdr; |
| 236 |
|
// Torques for Vang using method of Price: |
| 237 |
|
// S. L. Price, A. J. Stone, and M. Alderton, Mol. Phys. 52, 987 (1984). |
| 238 |
|
|
| 239 |
< |
Vector3d dVangdu = Vector3d(cb1 * y / idat.rij, |
| 240 |
< |
2.0 * ca1 * x * z / idat.r2 - cb1 * x / idat.rij, |
| 241 |
< |
-2.0 * ca1 * y * x / idat.r2); |
| 239 |
> |
Vector3d dVangdu = Vector3d(cb1 * y / *(idat.rij) , |
| 240 |
> |
2.0 * ca1 * x * z / *(idat.r2) - cb1 * x / *(idat.rij), |
| 241 |
> |
-2.0 * ca1 * y * x / *(idat.r2)); |
| 242 |
|
|
| 243 |
|
// do the torques first since they are easy: |
| 244 |
|
// remember that these are still in the body fixed axes |
| 245 |
|
|
| 246 |
< |
Vector3d trq = idat.vdwMult * Vmorse * dVangdu * idat.sw; |
| 246 |
> |
Vector3d trq = *(idat.vdwMult) * Vmorse * dVangdu * *(idat.sw); |
| 247 |
|
|
| 248 |
|
// go back to lab frame using transpose of rotation matrix: |
| 249 |
|
|
| 250 |
|
if (j_is_Metal) { |
| 251 |
< |
idat.t1 += Atrans * trq; |
| 251 |
> |
*(idat.t1) += Atrans * trq; |
| 252 |
|
} else { |
| 253 |
< |
idat.t2 += Atrans * trq; |
| 253 |
> |
*(idat.t2) += Atrans * trq; |
| 254 |
|
} |
| 255 |
|
|
| 256 |
|
// Now, on to the forces (still in body frame of water) |
| 257 |
|
|
| 258 |
< |
Vector3d ftmp = idat.vdwMult * idat.sw * dvdr; |
| 258 |
> |
Vector3d ftmp = *(idat.vdwMult) * *(idat.sw) * dvdr; |
| 259 |
|
|
| 260 |
|
// rotate the terms back into the lab frame: |
| 261 |
|
Vector3d flab; |
| 265 |
|
flab = - Atrans * ftmp; |
| 266 |
|
} |
| 267 |
|
|
| 268 |
< |
idat.f1 += flab; |
| 268 |
> |
*(idat.f1) += flab; |
| 269 |
|
} |
| 270 |
|
return; |
| 271 |
|
|
| 272 |
|
} |
| 273 |
|
|
| 274 |
< |
RealType MAW::getSuggestedCutoffRadius(AtomType* at1, AtomType* at2) { |
| 274 |
> |
RealType MAW::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
| 275 |
|
if (!initialized_) initialize(); |
| 276 |
– |
pair<AtomType*, AtomType*> key = make_pair(at1, at2); |
| 276 |
|
map<pair<AtomType*, AtomType*>, MAWInteractionData>::iterator it; |
| 277 |
< |
it = MixingMap.find(key); |
| 277 |
> |
it = MixingMap.find(atypes); |
| 278 |
|
if (it == MixingMap.end()) |
| 279 |
|
return 0.0; |
| 280 |
|
else { |