ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/MAW.cpp
Revision: 1874
Committed: Wed May 15 15:09:35 2013 UTC (11 years, 11 months ago) by gezelter
File size: 10029 byte(s)
Log Message:
Fixed a bunch of cppcheck warnings.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include <stdio.h>
44 #include <string.h>
45 #include <cmath>
46
47 #include "nonbonded/MAW.hpp"
48 #include "utils/simError.h"
49
50 using namespace std;
51
52 namespace OpenMD {
53
54 MAW::MAW() : name_("MAW"), initialized_(false), forceField_(NULL) {}
55
56 void MAW::initialize() {
57
58 ForceField::NonBondedInteractionTypeContainer* nbiTypes = forceField_->getNonBondedInteractionTypes();
59 ForceField::NonBondedInteractionTypeContainer::MapTypeIterator j;
60 NonBondedInteractionType* nbt;
61 ForceField::NonBondedInteractionTypeContainer::KeyType keys;
62
63 for (nbt = nbiTypes->beginType(j); nbt != NULL;
64 nbt = nbiTypes->nextType(j)) {
65
66 if (nbt->isMAW()) {
67 keys = nbiTypes->getKeys(j);
68 AtomType* at1 = forceField_->getAtomType(keys[0]);
69 AtomType* at2 = forceField_->getAtomType(keys[1]);
70
71 MAWInteractionType* mit = dynamic_cast<MAWInteractionType*>(nbt);
72
73 if (mit == NULL) {
74 sprintf( painCave.errMsg,
75 "MAW::initialize could not convert NonBondedInteractionType\n"
76 "\tto MAWInteractionType for %s - %s interaction.\n",
77 at1->getName().c_str(),
78 at2->getName().c_str());
79 painCave.severity = OPENMD_ERROR;
80 painCave.isFatal = 1;
81 simError();
82 }
83
84 RealType De = mit->getD();
85 RealType beta = mit->getBeta();
86 RealType Re = mit->getR();
87 RealType ca1 = mit->getCA1();
88 RealType cb1 = mit->getCB1();
89
90 addExplicitInteraction(at1, at2,
91 De, beta, Re, ca1, cb1);
92 }
93 }
94 initialized_ = true;
95 }
96
97 void MAW::addExplicitInteraction(AtomType* atype1, AtomType* atype2,
98 RealType De, RealType beta, RealType Re,
99 RealType ca1, RealType cb1) {
100
101 MAWInteractionData mixer;
102 mixer.De = De;
103 mixer.beta = beta;
104 mixer.Re = Re;
105 mixer.ca1 = ca1;
106 mixer.cb1 = cb1;
107
108 pair<AtomType*, AtomType*> key1, key2;
109 key1 = make_pair(atype1, atype2);
110 key2 = make_pair(atype2, atype1);
111
112 MixingMap[key1] = mixer;
113 if (key2 != key1) {
114 MixingMap[key2] = mixer;
115 }
116 }
117
118 void MAW::calcForce(InteractionData &idat) {
119
120 if (!initialized_) initialize();
121
122 map<pair<AtomType*, AtomType*>, MAWInteractionData>::iterator it;
123 it = MixingMap.find( idat.atypes );
124 if (it != MixingMap.end()) {
125 MAWInteractionData mixer = (*it).second;
126
127 RealType myPot = 0.0;
128 RealType myPotC = 0.0;
129 RealType myDeriv = 0.0;
130 RealType myDerivC = 0.0;
131
132 RealType D_e = mixer.De;
133 RealType R_e = mixer.Re;
134 RealType beta = mixer.beta;
135 RealType ca1 = mixer.ca1;
136 RealType cb1 = mixer.cb1;
137
138 bool j_is_Metal = idat.atypes.second->isMetal();
139
140 Vector3d r;
141 RotMat3x3d Atrans;
142 if (j_is_Metal) {
143 // rotate the inter-particle separation into the two different
144 // body-fixed coordinate systems:
145 r = *(idat.A1) * *(idat.d);
146 Atrans = idat.A1->transpose();
147 } else {
148 // negative sign because this is the vector from j to i:
149 r = -*(idat.A2) * *(idat.d);
150 Atrans = idat.A2->transpose();
151 }
152
153 // V(r) = D_e exp(-a(r-re)(exp(-a(r-re))-2)
154
155 RealType expt = -beta*( *(idat.rij) - R_e);
156 RealType expfnc = exp(expt);
157 RealType expfnc2 = expfnc*expfnc;
158
159 RealType exptC = 0.0;
160 RealType expfncC = 0.0;
161 RealType expfnc2C = 0.0;
162
163 myPot = D_e * (expfnc2 - 2.0 * expfnc);
164 myDeriv = 2.0 * D_e * beta * (expfnc - expfnc2);
165
166 if (idat.shiftedPot || idat.shiftedForce) {
167 exptC = -beta*( *(idat.rcut) - R_e);
168 expfncC = exp(exptC);
169 expfnc2C = expfncC*expfncC;
170 }
171
172 if (idat.shiftedPot) {
173 myPotC = D_e * (expfnc2C - 2.0 * expfncC);
174 myDerivC = 0.0;
175 } else if (idat.shiftedForce) {
176 myPotC = D_e * (expfnc2C - 2.0 * expfncC);
177 myDerivC = 2.0 * D_e * beta * (expfncC - expfnc2C);
178 myPotC += myDerivC * ( *(idat.rij) - *(idat.rcut) );
179 } else {
180 myPotC = 0.0;
181 myDerivC = 0.0;
182 }
183
184 RealType x = r.x();
185 RealType y = r.y();
186 RealType z = r.z();
187 RealType x2 = x * x;
188 RealType z2 = z * z;
189
190 RealType r3 = *(idat.r2) * *(idat.rij) ;
191 RealType r4 = *(idat.r2) * *(idat.r2);
192
193 // angular modulation of morse part of potential to approximate
194 // the squares of the two HOMO lone pair orbitals in water:
195 //********************** old form*************************
196 // s = 1 / (4 pi)
197 // ta1 = (s - pz)^2 = (1 - sqrt(3)*cos(theta))^2 / (4 pi)
198 // b1 = px^2 = 3 * (sin(theta)*cos(phi))^2 / (4 pi)
199 //********************** old form*************************
200 // we'll leave out the 4 pi for now
201
202 // new functional form just using the p orbitals.
203 // Vmorse(r)*[a*p_x + b p_z + (1-a-b)]
204 // which is
205 // Vmorse(r)*[a sin^2(theta) cos^2(phi) + b cos(theta) + (1-a-b)]
206 // Vmorse(r)*[a*x2/r2 + b*z/r + (1-a-b)]
207
208 RealType Vmorse = (myPot - myPotC);
209 RealType Vang = ca1 * x2 / *(idat.r2) +
210 cb1 * z / *(idat.rij) + (0.8 - ca1 / 3.0);
211
212 RealType pot_temp = *(idat.vdwMult) * Vmorse * Vang;
213 *(idat.vpair) += pot_temp;
214 (*(idat.pot))[VANDERWAALS_FAMILY] += *(idat.sw) * pot_temp;
215
216 Vector3d dVmorsedr = (myDeriv - myDerivC) * Vector3d(x, y, z) / *(idat.rij) ;
217
218 Vector3d dVangdr = Vector3d(-2.0 * ca1 * x2 * x / r4 + 2.0 * ca1 * x / *(idat.r2) - cb1 * x * z / r3,
219 -2.0 * ca1 * x2 * y / r4 - cb1 * z * y / r3,
220 -2.0 * ca1 * x2 * z / r4 + cb1 / *(idat.rij) - cb1 * z2 / r3);
221
222 // chain rule to put these back on x, y, z
223
224 Vector3d dvdr = Vang * dVmorsedr + Vmorse * dVangdr;
225
226 // Torques for Vang using method of Price:
227 // S. L. Price, A. J. Stone, and M. Alderton, Mol. Phys. 52, 987 (1984).
228
229 Vector3d dVangdu = Vector3d(cb1 * y / *(idat.rij) ,
230 2.0 * ca1 * x * z / *(idat.r2) - cb1 * x / *(idat.rij),
231 -2.0 * ca1 * y * x / *(idat.r2));
232
233 // do the torques first since they are easy:
234 // remember that these are still in the body fixed axes
235
236 Vector3d trq = *(idat.vdwMult) * Vmorse * dVangdu * *(idat.sw);
237
238 // go back to lab frame using transpose of rotation matrix:
239
240 if (j_is_Metal) {
241 *(idat.t1) += Atrans * trq;
242 } else {
243 *(idat.t2) += Atrans * trq;
244 }
245
246 // Now, on to the forces (still in body frame of water)
247
248 Vector3d ftmp = *(idat.vdwMult) * *(idat.sw) * dvdr;
249
250 // rotate the terms back into the lab frame:
251 Vector3d flab;
252 if (j_is_Metal) {
253 flab = Atrans * ftmp;
254 } else {
255 flab = - Atrans * ftmp;
256 }
257
258 *(idat.f1) += flab;
259 }
260 return;
261
262 }
263
264 RealType MAW::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
265 if (!initialized_) initialize();
266 map<pair<AtomType*, AtomType*>, MAWInteractionData>::iterator it;
267 it = MixingMap.find(atypes);
268 if (it == MixingMap.end())
269 return 0.0;
270 else {
271 MAWInteractionData mixer = (*it).second;
272
273 RealType R_e = mixer.Re;
274 RealType beta = mixer.beta;
275 // This value of the r corresponds to an energy about 1.48% of
276 // the energy at the bottom of the Morse well. For comparison, the
277 // Lennard-Jones function is about 1.63% of it's minimum value at
278 // a distance of 2.5 sigma.
279 return (4.9 + beta * R_e) / beta;
280 }
281 }
282 }
283

Properties

Name Value
svn:eol-style native