ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/MAW.cpp
Revision: 1583
Committed: Thu Jun 16 22:00:08 2011 UTC (13 years, 10 months ago) by gezelter
File size: 10338 byte(s)
Log Message:
Bug squashing

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 #include <stdio.h>
43 #include <string.h>
44 #include <cmath>
45
46 #include "nonbonded/MAW.hpp"
47 #include "utils/simError.h"
48
49 using namespace std;
50
51 namespace OpenMD {
52
53 MAW::MAW() : name_("MAW"), initialized_(false), forceField_(NULL) {}
54
55 void MAW::initialize() {
56
57 ForceField::NonBondedInteractionTypeContainer* nbiTypes = forceField_->getNonBondedInteractionTypes();
58 ForceField::NonBondedInteractionTypeContainer::MapTypeIterator j;
59 NonBondedInteractionType* nbt;
60
61 for (nbt = nbiTypes->beginType(j); nbt != NULL;
62 nbt = nbiTypes->nextType(j)) {
63
64 if (nbt->isMAW()) {
65 pair<AtomType*, AtomType*> atypes = nbt->getAtomTypes();
66
67 GenericData* data = nbt->getPropertyByName("MAW");
68 if (data == NULL) {
69 sprintf( painCave.errMsg, "MAW::initialize could not find\n"
70 "\tMAW parameters for %s - %s interaction.\n",
71 atypes.first->getName().c_str(),
72 atypes.second->getName().c_str());
73 painCave.severity = OPENMD_ERROR;
74 painCave.isFatal = 1;
75 simError();
76 }
77
78 MAWData* mawData = dynamic_cast<MAWData*>(data);
79 if (mawData == NULL) {
80 sprintf( painCave.errMsg,
81 "MAW::initialize could not convert GenericData to\n"
82 "\tMAWData for %s - %s interaction.\n",
83 atypes.first->getName().c_str(),
84 atypes.second->getName().c_str());
85 painCave.severity = OPENMD_ERROR;
86 painCave.isFatal = 1;
87 simError();
88 }
89
90 MAWParam mawParam = mawData->getData();
91
92 RealType De = mawParam.De;
93 RealType beta = mawParam.beta;
94 RealType Re = mawParam.Re;
95 RealType ca1 = mawParam.ca1;
96 RealType cb1 = mawParam.cb1;
97
98 addExplicitInteraction(atypes.first, atypes.second,
99 De, beta, Re, ca1, cb1);
100 }
101 }
102 initialized_ = true;
103 }
104
105 void MAW::addExplicitInteraction(AtomType* atype1, AtomType* atype2,
106 RealType De, RealType beta, RealType Re,
107 RealType ca1, RealType cb1) {
108
109 MAWInteractionData mixer;
110 mixer.De = De;
111 mixer.beta = beta;
112 mixer.Re = Re;
113 mixer.ca1 = ca1;
114 mixer.cb1 = cb1;
115
116 pair<AtomType*, AtomType*> key1, key2;
117 key1 = make_pair(atype1, atype2);
118 key2 = make_pair(atype2, atype1);
119
120 MixingMap[key1] = mixer;
121 if (key2 != key1) {
122 MixingMap[key2] = mixer;
123 }
124 }
125
126 void MAW::calcForce(InteractionData &idat) {
127
128 if (!initialized_) initialize();
129
130 map<pair<AtomType*, AtomType*>, MAWInteractionData>::iterator it;
131 it = MixingMap.find( idat.atypes );
132 if (it != MixingMap.end()) {
133 MAWInteractionData mixer = (*it).second;
134
135 RealType myPot = 0.0;
136 RealType myPotC = 0.0;
137 RealType myDeriv = 0.0;
138 RealType myDerivC = 0.0;
139
140 RealType D_e = mixer.De;
141 RealType R_e = mixer.Re;
142 RealType beta = mixer.beta;
143 RealType ca1 = mixer.ca1;
144 RealType cb1 = mixer.cb1;
145
146 bool j_is_Metal = idat.atypes.second->isMetal();
147
148 Vector3d r;
149 RotMat3x3d Atrans;
150 if (j_is_Metal) {
151 // rotate the inter-particle separation into the two different
152 // body-fixed coordinate systems:
153 r = *(idat.A1) * *(idat.d);
154 Atrans = idat.A1->transpose();
155 } else {
156 // negative sign because this is the vector from j to i:
157 r = -*(idat.A2) * *(idat.d);
158 Atrans = idat.A2->transpose();
159 }
160
161 // V(r) = D_e exp(-a(r-re)(exp(-a(r-re))-2)
162
163 RealType expt = -beta*( *(idat.rij) - R_e);
164 RealType expfnc = exp(expt);
165 RealType expfnc2 = expfnc*expfnc;
166
167 RealType exptC = 0.0;
168 RealType expfncC = 0.0;
169 RealType expfnc2C = 0.0;
170
171 myPot = D_e * (expfnc2 - 2.0 * expfnc);
172 myDeriv = 2.0 * D_e * beta * (expfnc - expfnc2);
173
174 if (idat.shiftedPot || idat.shiftedForce) {
175 exptC = -beta*( *(idat.rcut) - R_e);
176 expfncC = exp(exptC);
177 expfnc2C = expfncC*expfncC;
178 }
179
180 if (idat.shiftedPot) {
181 myPotC = D_e * (expfnc2C - 2.0 * expfncC);
182 myDerivC = 0.0;
183 } else if (idat.shiftedForce) {
184 myPotC = D_e * (expfnc2C - 2.0 * expfncC);
185 myDerivC = 2.0 * D_e * beta * (expfnc2C - expfnc2C);
186 myPotC += myDerivC * ( *(idat.rij) - *(idat.rcut) );
187 } else {
188 myPotC = 0.0;
189 myDerivC = 0.0;
190 }
191
192 RealType x = r.x();
193 RealType y = r.y();
194 RealType z = r.z();
195 RealType x2 = x * x;
196 RealType y2 = y * y;
197 RealType z2 = z * z;
198
199 RealType r3 = *(idat.r2) * *(idat.rij) ;
200 RealType r4 = *(idat.r2) * *(idat.r2);
201
202 // angular modulation of morse part of potential to approximate
203 // the squares of the two HOMO lone pair orbitals in water:
204 //********************** old form*************************
205 // s = 1 / (4 pi)
206 // ta1 = (s - pz)^2 = (1 - sqrt(3)*cos(theta))^2 / (4 pi)
207 // b1 = px^2 = 3 * (sin(theta)*cos(phi))^2 / (4 pi)
208 //********************** old form*************************
209 // we'll leave out the 4 pi for now
210
211 // new functional form just using the p orbitals.
212 // Vmorse(r)*[a*p_x + b p_z + (1-a-b)]
213 // which is
214 // Vmorse(r)*[a sin^2(theta) cos^2(phi) + b cos(theta) + (1-a-b)]
215 // Vmorse(r)*[a*x2/r2 + b*z/r + (1-a-b)]
216
217 RealType Vmorse = (myPot - myPotC);
218 RealType Vang = ca1 * x2 / *(idat.r2) +
219 cb1 * z / *(idat.rij) + (0.8 - ca1 / 3.0);
220
221 RealType pot_temp = *(idat.vdwMult) * Vmorse * Vang;
222 *(idat.vpair) += pot_temp;
223 (*(idat.pot))[VANDERWAALS_FAMILY] += *(idat.sw) * pot_temp;
224
225 Vector3d dVmorsedr = (myDeriv - myDerivC) * Vector3d(x, y, z) / *(idat.rij) ;
226
227 Vector3d dVangdr = Vector3d(-2.0 * ca1 * x2 * x / r4 + 2.0 * ca1 * x / *(idat.r2) - cb1 * x * z / r3,
228 -2.0 * ca1 * x2 * y / r4 - cb1 * z * y / r3,
229 -2.0 * ca1 * x2 * z / r4 + cb1 / *(idat.rij) - cb1 * z2 / r3);
230
231 // chain rule to put these back on x, y, z
232
233 Vector3d dvdr = Vang * dVmorsedr + Vmorse * dVangdr;
234
235 // Torques for Vang using method of Price:
236 // S. L. Price, A. J. Stone, and M. Alderton, Mol. Phys. 52, 987 (1984).
237
238 Vector3d dVangdu = Vector3d(cb1 * y / *(idat.rij) ,
239 2.0 * ca1 * x * z / *(idat.r2) - cb1 * x / *(idat.rij),
240 -2.0 * ca1 * y * x / *(idat.r2));
241
242 // do the torques first since they are easy:
243 // remember that these are still in the body fixed axes
244
245 Vector3d trq = *(idat.vdwMult) * Vmorse * dVangdu * *(idat.sw);
246
247 // go back to lab frame using transpose of rotation matrix:
248
249 if (j_is_Metal) {
250 *(idat.t1) += Atrans * trq;
251 } else {
252 *(idat.t2) += Atrans * trq;
253 }
254
255 // Now, on to the forces (still in body frame of water)
256
257 Vector3d ftmp = *(idat.vdwMult) * *(idat.sw) * dvdr;
258
259 // rotate the terms back into the lab frame:
260 Vector3d flab;
261 if (j_is_Metal) {
262 flab = Atrans * ftmp;
263 } else {
264 flab = - Atrans * ftmp;
265 }
266
267 *(idat.f1) += flab;
268 }
269 return;
270
271 }
272
273 RealType MAW::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
274 if (!initialized_) initialize();
275 map<pair<AtomType*, AtomType*>, MAWInteractionData>::iterator it;
276 it = MixingMap.find(atypes);
277 if (it == MixingMap.end())
278 return 0.0;
279 else {
280 MAWInteractionData mixer = (*it).second;
281
282 RealType R_e = mixer.Re;
283 RealType beta = mixer.beta;
284 // This value of the r corresponds to an energy about 1.48% of
285 // the energy at the bottom of the Morse well. For comparison, the
286 // Lennard-Jones function is about 1.63% of it's minimum value at
287 // a distance of 2.5 sigma.
288 return (4.9 + beta * R_e) / beta;
289 }
290 }
291 }
292

Properties

Name Value
svn:eol-style native