1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
#include <stdio.h> |
43 |
#include <string.h> |
44 |
#include <cmath> |
45 |
|
46 |
#include "nonbonded/MAW.hpp" |
47 |
#include "utils/simError.h" |
48 |
|
49 |
using namespace std; |
50 |
|
51 |
namespace OpenMD { |
52 |
|
53 |
MAW::MAW() : name_("MAW"), initialized_(false), forceField_(NULL), |
54 |
shiftedPot_(false), shiftedFrc_(false) {} |
55 |
|
56 |
void MAW::initialize() { |
57 |
|
58 |
ForceField::NonBondedInteractionTypeContainer* nbiTypes = forceField_->getNonBondedInteractionTypes(); |
59 |
ForceField::NonBondedInteractionTypeContainer::MapTypeIterator j; |
60 |
NonBondedInteractionType* nbt; |
61 |
|
62 |
for (nbt = nbiTypes->beginType(j); nbt != NULL; |
63 |
nbt = nbiTypes->nextType(j)) { |
64 |
|
65 |
if (nbt->isMAW()) { |
66 |
pair<AtomType*, AtomType*> atypes = nbt->getAtomTypes(); |
67 |
|
68 |
GenericData* data = nbt->getPropertyByName("MAW"); |
69 |
if (data == NULL) { |
70 |
sprintf( painCave.errMsg, "MAW::initialize could not find\n" |
71 |
"\tMAW parameters for %s - %s interaction.\n", |
72 |
atypes.first->getName().c_str(), |
73 |
atypes.second->getName().c_str()); |
74 |
painCave.severity = OPENMD_ERROR; |
75 |
painCave.isFatal = 1; |
76 |
simError(); |
77 |
} |
78 |
|
79 |
MAWData* mawData = dynamic_cast<MAWData*>(data); |
80 |
if (mawData == NULL) { |
81 |
sprintf( painCave.errMsg, |
82 |
"MAW::initialize could not convert GenericData to\n" |
83 |
"\tMAWData for %s - %s interaction.\n", |
84 |
atypes.first->getName().c_str(), |
85 |
atypes.second->getName().c_str()); |
86 |
painCave.severity = OPENMD_ERROR; |
87 |
painCave.isFatal = 1; |
88 |
simError(); |
89 |
} |
90 |
|
91 |
MAWParam mawParam = mawData->getData(); |
92 |
|
93 |
RealType De = mawParam.De; |
94 |
RealType beta = mawParam.beta; |
95 |
RealType Re = mawParam.Re; |
96 |
RealType ca1 = mawParam.ca1; |
97 |
RealType cb1 = mawParam.cb1; |
98 |
|
99 |
addExplicitInteraction(atypes.first, atypes.second, |
100 |
De, beta, Re, ca1, cb1); |
101 |
} |
102 |
} |
103 |
initialized_ = true; |
104 |
} |
105 |
|
106 |
void MAW::addExplicitInteraction(AtomType* atype1, AtomType* atype2, |
107 |
RealType De, RealType beta, RealType Re, |
108 |
RealType ca1, RealType cb1) { |
109 |
|
110 |
MAWInteractionData mixer; |
111 |
mixer.De = De; |
112 |
mixer.beta = beta; |
113 |
mixer.Re = Re; |
114 |
mixer.ca1 = ca1; |
115 |
mixer.cb1 = cb1; |
116 |
|
117 |
pair<AtomType*, AtomType*> key1, key2; |
118 |
key1 = make_pair(atype1, atype2); |
119 |
key2 = make_pair(atype2, atype1); |
120 |
|
121 |
MixingMap[key1] = mixer; |
122 |
if (key2 != key1) { |
123 |
MixingMap[key2] = mixer; |
124 |
} |
125 |
} |
126 |
|
127 |
void MAW::calcForce(InteractionData &idat) { |
128 |
|
129 |
if (!initialized_) initialize(); |
130 |
|
131 |
map<pair<AtomType*, AtomType*>, MAWInteractionData>::iterator it; |
132 |
it = MixingMap.find(idat.atypes); |
133 |
if (it != MixingMap.end()) { |
134 |
MAWInteractionData mixer = (*it).second; |
135 |
|
136 |
RealType myPot = 0.0; |
137 |
RealType myPotC = 0.0; |
138 |
RealType myDeriv = 0.0; |
139 |
RealType myDerivC = 0.0; |
140 |
|
141 |
RealType D_e = mixer.De; |
142 |
RealType R_e = mixer.Re; |
143 |
RealType beta = mixer.beta; |
144 |
RealType ca1 = mixer.ca1; |
145 |
RealType cb1 = mixer.cb1; |
146 |
|
147 |
bool j_is_Metal = idat.atypes.second->isMetal(); |
148 |
|
149 |
Vector3d r; |
150 |
RotMat3x3d Atrans; |
151 |
if (j_is_Metal) { |
152 |
// rotate the inter-particle separation into the two different |
153 |
// body-fixed coordinate systems: |
154 |
r = idat.A1 * idat.d; |
155 |
Atrans = idat.A1.transpose(); |
156 |
} else { |
157 |
// negative sign because this is the vector from j to i: |
158 |
r = -idat.A2 * idat.d; |
159 |
Atrans = idat.A2.transpose(); |
160 |
} |
161 |
|
162 |
// V(r) = D_e exp(-a(r-re)(exp(-a(r-re))-2) |
163 |
|
164 |
RealType expt = -beta*(idat.rij - R_e); |
165 |
RealType expfnc = exp(expt); |
166 |
RealType expfnc2 = expfnc*expfnc; |
167 |
|
168 |
RealType exptC = 0.0; |
169 |
RealType expfncC = 0.0; |
170 |
RealType expfnc2C = 0.0; |
171 |
|
172 |
myPot = D_e * (expfnc2 - 2.0 * expfnc); |
173 |
myDeriv = 2.0 * D_e * beta * (expfnc - expfnc2); |
174 |
|
175 |
if (MAW::shiftedPot_ || MAW::shiftedFrc_) { |
176 |
exptC = -beta*(idat.rcut - R_e); |
177 |
expfncC = exp(exptC); |
178 |
expfnc2C = expfncC*expfncC; |
179 |
} |
180 |
|
181 |
if (MAW::shiftedPot_) { |
182 |
myPotC = D_e * (expfnc2C - 2.0 * expfncC); |
183 |
myDerivC = 0.0; |
184 |
} else if (MAW::shiftedFrc_) { |
185 |
myPotC = D_e * (expfnc2C - 2.0 * expfncC); |
186 |
myDerivC = 2.0 * D_e * beta * (expfnc2C - expfnc2C); |
187 |
myPotC += myDerivC * (idat.rij - idat.rcut); |
188 |
} else { |
189 |
myPotC = 0.0; |
190 |
myDerivC = 0.0; |
191 |
} |
192 |
|
193 |
RealType x = r.x(); |
194 |
RealType y = r.y(); |
195 |
RealType z = r.z(); |
196 |
RealType x2 = x * x; |
197 |
RealType y2 = y * y; |
198 |
RealType z2 = z * z; |
199 |
|
200 |
RealType r3 = idat.r2 * idat.rij; |
201 |
RealType r4 = idat.r2 * idat.r2; |
202 |
|
203 |
// angular modulation of morse part of potential to approximate |
204 |
// the squares of the two HOMO lone pair orbitals in water: |
205 |
//********************** old form************************* |
206 |
// s = 1 / (4 pi) |
207 |
// ta1 = (s - pz)^2 = (1 - sqrt(3)*cos(theta))^2 / (4 pi) |
208 |
// b1 = px^2 = 3 * (sin(theta)*cos(phi))^2 / (4 pi) |
209 |
//********************** old form************************* |
210 |
// we'll leave out the 4 pi for now |
211 |
|
212 |
// new functional form just using the p orbitals. |
213 |
// Vmorse(r)*[a*p_x + b p_z + (1-a-b)] |
214 |
// which is |
215 |
// Vmorse(r)*[a sin^2(theta) cos^2(phi) + b cos(theta) + (1-a-b)] |
216 |
// Vmorse(r)*[a*x2/r2 + b*z/r + (1-a-b)] |
217 |
|
218 |
RealType Vmorse = (myPot - myPotC); |
219 |
RealType Vang = ca1 * x2 / idat.r2 + cb1 * z / idat.rij + (0.8 - ca1 / 3.0); |
220 |
|
221 |
RealType pot_temp = idat.vdwMult * Vmorse * Vang; |
222 |
idat.vpair += pot_temp; |
223 |
idat.pot[0] += idat.sw * pot_temp; |
224 |
|
225 |
Vector3d dVmorsedr = (myDeriv - myDerivC) * Vector3d(x, y, z) / idat.rij; |
226 |
|
227 |
Vector3d dVangdr = Vector3d(-2.0 * ca1 * x2 * x / r4 + 2.0 * ca1 * x / idat.r2 - cb1 * x * z / r3, |
228 |
-2.0 * ca1 * x2 * y / r4 - cb1 * z * y / r3, |
229 |
-2.0 * ca1 * x2 * z / r4 + cb1 / idat.rij - cb1 * z2 / r3); |
230 |
|
231 |
// chain rule to put these back on x, y, z |
232 |
|
233 |
Vector3d dvdr = Vang * dVmorsedr + Vmorse * dVangdr; |
234 |
|
235 |
// Torques for Vang using method of Price: |
236 |
// S. L. Price, A. J. Stone, and M. Alderton, Mol. Phys. 52, 987 (1984). |
237 |
|
238 |
Vector3d dVangdu = Vector3d(cb1 * y / idat.rij, |
239 |
2.0 * ca1 * x * z / idat.r2 - cb1 * x / idat.rij, |
240 |
-2.0 * ca1 * y * x / idat.r2); |
241 |
|
242 |
// do the torques first since they are easy: |
243 |
// remember that these are still in the body fixed axes |
244 |
|
245 |
Vector3d trq = idat.vdwMult * Vmorse * dVangdu * idat.sw; |
246 |
|
247 |
// go back to lab frame using transpose of rotation matrix: |
248 |
|
249 |
if (j_is_Metal) { |
250 |
idat.t1 += Atrans * trq; |
251 |
} else { |
252 |
idat.t2 += Atrans * trq; |
253 |
} |
254 |
|
255 |
// Now, on to the forces (still in body frame of water) |
256 |
|
257 |
Vector3d ftmp = idat.vdwMult * idat.sw * dvdr; |
258 |
|
259 |
// rotate the terms back into the lab frame: |
260 |
Vector3d flab; |
261 |
if (j_is_Metal) { |
262 |
flab = Atrans * ftmp; |
263 |
} else { |
264 |
flab = - Atrans * ftmp; |
265 |
} |
266 |
|
267 |
idat.f1 += flab; |
268 |
} |
269 |
return; |
270 |
|
271 |
} |
272 |
|
273 |
RealType MAW::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
274 |
if (!initialized_) initialize(); |
275 |
map<pair<AtomType*, AtomType*>, MAWInteractionData>::iterator it; |
276 |
it = MixingMap.find(atypes); |
277 |
if (it == MixingMap.end()) |
278 |
return 0.0; |
279 |
else { |
280 |
MAWInteractionData mixer = (*it).second; |
281 |
|
282 |
RealType R_e = mixer.Re; |
283 |
RealType beta = mixer.beta; |
284 |
// This value of the r corresponds to an energy about 1.48% of |
285 |
// the energy at the bottom of the Morse well. For comparison, the |
286 |
// Lennard-Jones function is about 1.63% of it's minimum value at |
287 |
// a distance of 2.5 sigma. |
288 |
return (4.9 + beta * R_e) / beta; |
289 |
} |
290 |
} |
291 |
} |
292 |
|