ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/MAW.cpp
Revision: 1532
Committed: Wed Dec 29 19:59:21 2010 UTC (14 years, 4 months ago) by gezelter
File size: 10385 byte(s)
Log Message:
Added MAW to the C++ side, removed a whole bunch more fortran. 

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 #include <stdio.h>
43 #include <string.h>
44 #include <cmath>
45
46 #include "nonbonded/MAW.hpp"
47 #include "utils/simError.h"
48
49 using namespace std;
50
51 namespace OpenMD {
52
53 MAW::MAW() : name_("MAW"), initialized_(false), forceField_(NULL),
54 shiftedPot_(false), shiftedFrc_(false) {}
55
56 void MAW::initialize() {
57
58 ForceField::NonBondedInteractionTypeContainer* nbiTypes = forceField_->getNonBondedInteractionTypes();
59 ForceField::NonBondedInteractionTypeContainer::MapTypeIterator j;
60 NonBondedInteractionType* nbt;
61
62 for (nbt = nbiTypes->beginType(j); nbt != NULL;
63 nbt = nbiTypes->nextType(j)) {
64
65 if (nbt->isMAW()) {
66 pair<AtomType*, AtomType*> atypes = nbt->getAtomTypes();
67
68 GenericData* data = nbt->getPropertyByName("MAW");
69 if (data == NULL) {
70 sprintf( painCave.errMsg, "MAW::initialize could not find\n"
71 "\tMAW parameters for %s - %s interaction.\n",
72 atypes.first->getName().c_str(),
73 atypes.second->getName().c_str());
74 painCave.severity = OPENMD_ERROR;
75 painCave.isFatal = 1;
76 simError();
77 }
78
79 MAWData* mawData = dynamic_cast<MAWData*>(data);
80 if (mawData == NULL) {
81 sprintf( painCave.errMsg,
82 "MAW::initialize could not convert GenericData to\n"
83 "\tMAWData for %s - %s interaction.\n",
84 atypes.first->getName().c_str(),
85 atypes.second->getName().c_str());
86 painCave.severity = OPENMD_ERROR;
87 painCave.isFatal = 1;
88 simError();
89 }
90
91 MAWParam mawParam = mawData->getData();
92
93 RealType De = mawParam.De;
94 RealType beta = mawParam.beta;
95 RealType Re = mawParam.Re;
96 RealType ca1 = mawParam.ca1;
97 RealType cb1 = mawParam.cb1;
98
99 addExplicitInteraction(atypes.first, atypes.second,
100 De, beta, Re, ca1, cb1);
101 }
102 }
103 initialized_ = true;
104 }
105
106 void MAW::addExplicitInteraction(AtomType* atype1, AtomType* atype2,
107 RealType De, RealType beta, RealType Re,
108 RealType ca1, RealType cb1) {
109
110 MAWInteractionData mixer;
111 mixer.De = De;
112 mixer.beta = beta;
113 mixer.Re = Re;
114 mixer.ca1 = ca1;
115 mixer.cb1 = cb1;
116
117 pair<AtomType*, AtomType*> key1, key2;
118 key1 = make_pair(atype1, atype2);
119 key2 = make_pair(atype2, atype1);
120
121 MixingMap[key1] = mixer;
122 if (key2 != key1) {
123 MixingMap[key2] = mixer;
124 }
125 }
126
127 void MAW::calcForce(InteractionData idat) {
128
129 if (!initialized_) initialize();
130
131 pair<AtomType*, AtomType*> key = make_pair(idat.atype1, idat.atype2);
132 map<pair<AtomType*, AtomType*>, MAWInteractionData>::iterator it;
133 it = MixingMap.find(key);
134 if (it != MixingMap.end()) {
135 MAWInteractionData mixer = (*it).second;
136
137 RealType myPot = 0.0;
138 RealType myPotC = 0.0;
139 RealType myDeriv = 0.0;
140 RealType myDerivC = 0.0;
141
142 RealType D_e = mixer.De;
143 RealType R_e = mixer.Re;
144 RealType beta = mixer.beta;
145 RealType ca1 = mixer.ca1;
146 RealType cb1 = mixer.cb1;
147
148 bool j_is_Metal = idat.atype2->isMetal();
149
150 Vector3d r;
151 RotMat3x3d Atrans;
152 if (j_is_Metal) {
153 // rotate the inter-particle separation into the two different
154 // body-fixed coordinate systems:
155 r = idat.A1 * idat.d;
156 Atrans = idat.A1.transpose();
157 } else {
158 // negative sign because this is the vector from j to i:
159 r = -idat.A2 * idat.d;
160 Atrans = idat.A2.transpose();
161 }
162
163 // V(r) = D_e exp(-a(r-re)(exp(-a(r-re))-2)
164
165 RealType expt = -beta*(idat.rij - R_e);
166 RealType expfnc = exp(expt);
167 RealType expfnc2 = expfnc*expfnc;
168
169 RealType exptC = 0.0;
170 RealType expfncC = 0.0;
171 RealType expfnc2C = 0.0;
172
173 myPot = D_e * (expfnc2 - 2.0 * expfnc);
174 myDeriv = 2.0 * D_e * beta * (expfnc - expfnc2);
175
176 if (MAW::shiftedPot_ || MAW::shiftedFrc_) {
177 exptC = -beta*(idat.rcut - R_e);
178 expfncC = exp(exptC);
179 expfnc2C = expfncC*expfncC;
180 }
181
182 if (MAW::shiftedPot_) {
183 myPotC = D_e * (expfnc2C - 2.0 * expfncC);
184 myDerivC = 0.0;
185 } else if (MAW::shiftedFrc_) {
186 myPotC = D_e * (expfnc2C - 2.0 * expfncC);
187 myDerivC = 2.0 * D_e * beta * (expfnc2C - expfnc2C);
188 myPotC += myDerivC * (idat.rij - idat.rcut);
189 } else {
190 myPotC = 0.0;
191 myDerivC = 0.0;
192 }
193
194 RealType x = r.x();
195 RealType y = r.y();
196 RealType z = r.z();
197 RealType x2 = x * x;
198 RealType y2 = y * y;
199 RealType z2 = z * z;
200
201 RealType r3 = idat.r2 * idat.rij;
202 RealType r4 = idat.r2 * idat.r2;
203
204 // angular modulation of morse part of potential to approximate
205 // the squares of the two HOMO lone pair orbitals in water:
206 //********************** old form*************************
207 // s = 1 / (4 pi)
208 // ta1 = (s - pz)^2 = (1 - sqrt(3)*cos(theta))^2 / (4 pi)
209 // b1 = px^2 = 3 * (sin(theta)*cos(phi))^2 / (4 pi)
210 //********************** old form*************************
211 // we'll leave out the 4 pi for now
212
213 // new functional form just using the p orbitals.
214 // Vmorse(r)*[a*p_x + b p_z + (1-a-b)]
215 // which is
216 // Vmorse(r)*[a sin^2(theta) cos^2(phi) + b cos(theta) + (1-a-b)]
217 // Vmorse(r)*[a*x2/r2 + b*z/r + (1-a-b)]
218
219 RealType Vmorse = (myPot - myPotC);
220 RealType Vang = ca1 * x2 / idat.r2 + cb1 * z / idat.rij + (0.8 - ca1 / 3.0);
221
222 RealType pot_temp = idat.vdwMult * Vmorse * Vang;
223 idat.vpair += pot_temp;
224 idat.pot += idat.sw * pot_temp;
225
226 Vector3d dVmorsedr = (myDeriv - myDerivC) * Vector3d(x, y, z) / idat.rij;
227
228 Vector3d dVangdr = Vector3d(-2.0 * ca1 * x2 * x / r4 + 2.0 * ca1 * x / idat.r2 - cb1 * x * z / r3,
229 -2.0 * ca1 * x2 * y / r4 - cb1 * z * y / r3,
230 -2.0 * ca1 * x2 * z / r4 + cb1 / idat.rij - cb1 * z2 / r3);
231
232 // chain rule to put these back on x, y, z
233
234 Vector3d dvdr = Vang * dVmorsedr + Vmorse * dVangdr;
235
236 // Torques for Vang using method of Price:
237 // S. L. Price, A. J. Stone, and M. Alderton, Mol. Phys. 52, 987 (1984).
238
239 Vector3d dVangdu = Vector3d(cb1 * y / idat.rij,
240 2.0 * ca1 * x * z / idat.r2 - cb1 * x / idat.rij,
241 -2.0 * ca1 * y * x / idat.r2);
242
243 // do the torques first since they are easy:
244 // remember that these are still in the body fixed axes
245
246 Vector3d trq = idat.vdwMult * Vmorse * dVangdu * idat.sw;
247
248 // go back to lab frame using transpose of rotation matrix:
249
250 if (j_is_Metal) {
251 idat.t1 += Atrans * trq;
252 } else {
253 idat.t2 += Atrans * trq;
254 }
255
256 // Now, on to the forces (still in body frame of water)
257
258 Vector3d ftmp = idat.vdwMult * idat.sw * dvdr;
259
260 // rotate the terms back into the lab frame:
261 Vector3d flab;
262 if (j_is_Metal) {
263 flab = Atrans * ftmp;
264 } else {
265 flab = - Atrans * ftmp;
266 }
267
268 idat.f1 += flab;
269 }
270 return;
271
272 }
273
274 RealType MAW::getSuggestedCutoffRadius(AtomType* at1, AtomType* at2) {
275 if (!initialized_) initialize();
276 pair<AtomType*, AtomType*> key = make_pair(at1, at2);
277 map<pair<AtomType*, AtomType*>, MAWInteractionData>::iterator it;
278 it = MixingMap.find(key);
279 if (it == MixingMap.end())
280 return 0.0;
281 else {
282 MAWInteractionData mixer = (*it).second;
283
284 RealType R_e = mixer.Re;
285 RealType beta = mixer.beta;
286 // This value of the r corresponds to an energy about 1.48% of
287 // the energy at the bottom of the Morse well. For comparison, the
288 // Lennard-Jones function is about 1.63% of it's minimum value at
289 // a distance of 2.5 sigma.
290 return (4.9 + beta * R_e) / beta;
291 }
292 }
293 }
294

Properties

Name Value
svn:eol-style native