ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/MAW.cpp
Revision: 1874
Committed: Wed May 15 15:09:35 2013 UTC (12 years, 2 months ago) by gezelter
File size: 10029 byte(s)
Log Message:
Fixed a bunch of cppcheck warnings.

File Contents

# User Rev Content
1 gezelter 1532 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 gezelter 1850 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 gezelter 1665 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 gezelter 1532 */
42    
43     #include <stdio.h>
44     #include <string.h>
45     #include <cmath>
46    
47     #include "nonbonded/MAW.hpp"
48     #include "utils/simError.h"
49    
50     using namespace std;
51    
52     namespace OpenMD {
53    
54 gezelter 1583 MAW::MAW() : name_("MAW"), initialized_(false), forceField_(NULL) {}
55 gezelter 1532
56     void MAW::initialize() {
57    
58     ForceField::NonBondedInteractionTypeContainer* nbiTypes = forceField_->getNonBondedInteractionTypes();
59     ForceField::NonBondedInteractionTypeContainer::MapTypeIterator j;
60     NonBondedInteractionType* nbt;
61 gezelter 1664 ForceField::NonBondedInteractionTypeContainer::KeyType keys;
62 gezelter 1532
63     for (nbt = nbiTypes->beginType(j); nbt != NULL;
64     nbt = nbiTypes->nextType(j)) {
65    
66     if (nbt->isMAW()) {
67 gezelter 1664 keys = nbiTypes->getKeys(j);
68     AtomType* at1 = forceField_->getAtomType(keys[0]);
69     AtomType* at2 = forceField_->getAtomType(keys[1]);
70    
71     MAWInteractionType* mit = dynamic_cast<MAWInteractionType*>(nbt);
72    
73     if (mit == NULL) {
74 gezelter 1532 sprintf( painCave.errMsg,
75 gezelter 1664 "MAW::initialize could not convert NonBondedInteractionType\n"
76     "\tto MAWInteractionType for %s - %s interaction.\n",
77     at1->getName().c_str(),
78     at2->getName().c_str());
79 gezelter 1532 painCave.severity = OPENMD_ERROR;
80     painCave.isFatal = 1;
81     simError();
82     }
83    
84 gezelter 1664 RealType De = mit->getD();
85     RealType beta = mit->getBeta();
86     RealType Re = mit->getR();
87     RealType ca1 = mit->getCA1();
88     RealType cb1 = mit->getCB1();
89 gezelter 1532
90 gezelter 1664 addExplicitInteraction(at1, at2,
91 gezelter 1532 De, beta, Re, ca1, cb1);
92     }
93     }
94     initialized_ = true;
95     }
96    
97     void MAW::addExplicitInteraction(AtomType* atype1, AtomType* atype2,
98     RealType De, RealType beta, RealType Re,
99     RealType ca1, RealType cb1) {
100    
101     MAWInteractionData mixer;
102     mixer.De = De;
103     mixer.beta = beta;
104     mixer.Re = Re;
105     mixer.ca1 = ca1;
106     mixer.cb1 = cb1;
107    
108     pair<AtomType*, AtomType*> key1, key2;
109     key1 = make_pair(atype1, atype2);
110     key2 = make_pair(atype2, atype1);
111    
112     MixingMap[key1] = mixer;
113     if (key2 != key1) {
114     MixingMap[key2] = mixer;
115     }
116     }
117    
118 gezelter 1536 void MAW::calcForce(InteractionData &idat) {
119 gezelter 1532
120     if (!initialized_) initialize();
121    
122     map<pair<AtomType*, AtomType*>, MAWInteractionData>::iterator it;
123 gezelter 1571 it = MixingMap.find( idat.atypes );
124 gezelter 1532 if (it != MixingMap.end()) {
125     MAWInteractionData mixer = (*it).second;
126    
127     RealType myPot = 0.0;
128     RealType myPotC = 0.0;
129     RealType myDeriv = 0.0;
130     RealType myDerivC = 0.0;
131    
132     RealType D_e = mixer.De;
133     RealType R_e = mixer.Re;
134     RealType beta = mixer.beta;
135     RealType ca1 = mixer.ca1;
136     RealType cb1 = mixer.cb1;
137    
138 gezelter 1571 bool j_is_Metal = idat.atypes.second->isMetal();
139 gezelter 1532
140     Vector3d r;
141     RotMat3x3d Atrans;
142     if (j_is_Metal) {
143     // rotate the inter-particle separation into the two different
144     // body-fixed coordinate systems:
145 gezelter 1554 r = *(idat.A1) * *(idat.d);
146     Atrans = idat.A1->transpose();
147 gezelter 1532 } else {
148     // negative sign because this is the vector from j to i:
149 gezelter 1554 r = -*(idat.A2) * *(idat.d);
150     Atrans = idat.A2->transpose();
151 gezelter 1532 }
152    
153     // V(r) = D_e exp(-a(r-re)(exp(-a(r-re))-2)
154    
155 gezelter 1554 RealType expt = -beta*( *(idat.rij) - R_e);
156 gezelter 1532 RealType expfnc = exp(expt);
157     RealType expfnc2 = expfnc*expfnc;
158    
159     RealType exptC = 0.0;
160     RealType expfncC = 0.0;
161     RealType expfnc2C = 0.0;
162    
163     myPot = D_e * (expfnc2 - 2.0 * expfnc);
164     myDeriv = 2.0 * D_e * beta * (expfnc - expfnc2);
165    
166 gezelter 1583 if (idat.shiftedPot || idat.shiftedForce) {
167 gezelter 1554 exptC = -beta*( *(idat.rcut) - R_e);
168 gezelter 1532 expfncC = exp(exptC);
169     expfnc2C = expfncC*expfncC;
170     }
171    
172 gezelter 1583 if (idat.shiftedPot) {
173 gezelter 1532 myPotC = D_e * (expfnc2C - 2.0 * expfncC);
174     myDerivC = 0.0;
175 gezelter 1583 } else if (idat.shiftedForce) {
176 gezelter 1532 myPotC = D_e * (expfnc2C - 2.0 * expfncC);
177 gezelter 1874 myDerivC = 2.0 * D_e * beta * (expfncC - expfnc2C);
178 gezelter 1554 myPotC += myDerivC * ( *(idat.rij) - *(idat.rcut) );
179 gezelter 1532 } else {
180     myPotC = 0.0;
181     myDerivC = 0.0;
182     }
183    
184     RealType x = r.x();
185     RealType y = r.y();
186     RealType z = r.z();
187     RealType x2 = x * x;
188     RealType z2 = z * z;
189    
190 gezelter 1554 RealType r3 = *(idat.r2) * *(idat.rij) ;
191     RealType r4 = *(idat.r2) * *(idat.r2);
192 gezelter 1532
193     // angular modulation of morse part of potential to approximate
194     // the squares of the two HOMO lone pair orbitals in water:
195     //********************** old form*************************
196     // s = 1 / (4 pi)
197     // ta1 = (s - pz)^2 = (1 - sqrt(3)*cos(theta))^2 / (4 pi)
198     // b1 = px^2 = 3 * (sin(theta)*cos(phi))^2 / (4 pi)
199     //********************** old form*************************
200     // we'll leave out the 4 pi for now
201    
202     // new functional form just using the p orbitals.
203     // Vmorse(r)*[a*p_x + b p_z + (1-a-b)]
204     // which is
205     // Vmorse(r)*[a sin^2(theta) cos^2(phi) + b cos(theta) + (1-a-b)]
206     // Vmorse(r)*[a*x2/r2 + b*z/r + (1-a-b)]
207    
208     RealType Vmorse = (myPot - myPotC);
209 gezelter 1554 RealType Vang = ca1 * x2 / *(idat.r2) +
210     cb1 * z / *(idat.rij) + (0.8 - ca1 / 3.0);
211    
212     RealType pot_temp = *(idat.vdwMult) * Vmorse * Vang;
213     *(idat.vpair) += pot_temp;
214 gezelter 1582 (*(idat.pot))[VANDERWAALS_FAMILY] += *(idat.sw) * pot_temp;
215 gezelter 1532
216 gezelter 1554 Vector3d dVmorsedr = (myDeriv - myDerivC) * Vector3d(x, y, z) / *(idat.rij) ;
217 gezelter 1532
218 gezelter 1554 Vector3d dVangdr = Vector3d(-2.0 * ca1 * x2 * x / r4 + 2.0 * ca1 * x / *(idat.r2) - cb1 * x * z / r3,
219     -2.0 * ca1 * x2 * y / r4 - cb1 * z * y / r3,
220     -2.0 * ca1 * x2 * z / r4 + cb1 / *(idat.rij) - cb1 * z2 / r3);
221    
222 gezelter 1532 // chain rule to put these back on x, y, z
223    
224     Vector3d dvdr = Vang * dVmorsedr + Vmorse * dVangdr;
225    
226     // Torques for Vang using method of Price:
227     // S. L. Price, A. J. Stone, and M. Alderton, Mol. Phys. 52, 987 (1984).
228    
229 gezelter 1554 Vector3d dVangdu = Vector3d(cb1 * y / *(idat.rij) ,
230     2.0 * ca1 * x * z / *(idat.r2) - cb1 * x / *(idat.rij),
231     -2.0 * ca1 * y * x / *(idat.r2));
232 gezelter 1532
233     // do the torques first since they are easy:
234     // remember that these are still in the body fixed axes
235    
236 gezelter 1554 Vector3d trq = *(idat.vdwMult) * Vmorse * dVangdu * *(idat.sw);
237 gezelter 1532
238     // go back to lab frame using transpose of rotation matrix:
239    
240     if (j_is_Metal) {
241 gezelter 1554 *(idat.t1) += Atrans * trq;
242 gezelter 1532 } else {
243 gezelter 1554 *(idat.t2) += Atrans * trq;
244 gezelter 1532 }
245    
246     // Now, on to the forces (still in body frame of water)
247    
248 gezelter 1554 Vector3d ftmp = *(idat.vdwMult) * *(idat.sw) * dvdr;
249 gezelter 1532
250     // rotate the terms back into the lab frame:
251     Vector3d flab;
252     if (j_is_Metal) {
253     flab = Atrans * ftmp;
254     } else {
255     flab = - Atrans * ftmp;
256     }
257    
258 gezelter 1554 *(idat.f1) += flab;
259 gezelter 1532 }
260     return;
261    
262     }
263    
264 gezelter 1545 RealType MAW::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
265 gezelter 1532 if (!initialized_) initialize();
266     map<pair<AtomType*, AtomType*>, MAWInteractionData>::iterator it;
267 gezelter 1545 it = MixingMap.find(atypes);
268 gezelter 1532 if (it == MixingMap.end())
269     return 0.0;
270     else {
271     MAWInteractionData mixer = (*it).second;
272    
273     RealType R_e = mixer.Re;
274     RealType beta = mixer.beta;
275     // This value of the r corresponds to an energy about 1.48% of
276     // the energy at the bottom of the Morse well. For comparison, the
277     // Lennard-Jones function is about 1.63% of it's minimum value at
278     // a distance of 2.5 sigma.
279     return (4.9 + beta * R_e) / beta;
280     }
281     }
282     }
283    

Properties

Name Value
svn:eol-style native