ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/MAW.cpp
Revision: 1583
Committed: Thu Jun 16 22:00:08 2011 UTC (14 years, 1 month ago) by gezelter
File size: 10338 byte(s)
Log Message:
Bug squashing

File Contents

# User Rev Content
1 gezelter 1532 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40     */
41    
42     #include <stdio.h>
43     #include <string.h>
44     #include <cmath>
45    
46     #include "nonbonded/MAW.hpp"
47     #include "utils/simError.h"
48    
49     using namespace std;
50    
51     namespace OpenMD {
52    
53 gezelter 1583 MAW::MAW() : name_("MAW"), initialized_(false), forceField_(NULL) {}
54 gezelter 1532
55     void MAW::initialize() {
56    
57     ForceField::NonBondedInteractionTypeContainer* nbiTypes = forceField_->getNonBondedInteractionTypes();
58     ForceField::NonBondedInteractionTypeContainer::MapTypeIterator j;
59     NonBondedInteractionType* nbt;
60    
61     for (nbt = nbiTypes->beginType(j); nbt != NULL;
62     nbt = nbiTypes->nextType(j)) {
63    
64     if (nbt->isMAW()) {
65     pair<AtomType*, AtomType*> atypes = nbt->getAtomTypes();
66    
67     GenericData* data = nbt->getPropertyByName("MAW");
68     if (data == NULL) {
69     sprintf( painCave.errMsg, "MAW::initialize could not find\n"
70     "\tMAW parameters for %s - %s interaction.\n",
71     atypes.first->getName().c_str(),
72     atypes.second->getName().c_str());
73     painCave.severity = OPENMD_ERROR;
74     painCave.isFatal = 1;
75     simError();
76     }
77    
78     MAWData* mawData = dynamic_cast<MAWData*>(data);
79     if (mawData == NULL) {
80     sprintf( painCave.errMsg,
81     "MAW::initialize could not convert GenericData to\n"
82     "\tMAWData for %s - %s interaction.\n",
83     atypes.first->getName().c_str(),
84     atypes.second->getName().c_str());
85     painCave.severity = OPENMD_ERROR;
86     painCave.isFatal = 1;
87     simError();
88     }
89    
90     MAWParam mawParam = mawData->getData();
91    
92     RealType De = mawParam.De;
93     RealType beta = mawParam.beta;
94     RealType Re = mawParam.Re;
95     RealType ca1 = mawParam.ca1;
96     RealType cb1 = mawParam.cb1;
97    
98     addExplicitInteraction(atypes.first, atypes.second,
99     De, beta, Re, ca1, cb1);
100     }
101     }
102     initialized_ = true;
103     }
104    
105     void MAW::addExplicitInteraction(AtomType* atype1, AtomType* atype2,
106     RealType De, RealType beta, RealType Re,
107     RealType ca1, RealType cb1) {
108    
109     MAWInteractionData mixer;
110     mixer.De = De;
111     mixer.beta = beta;
112     mixer.Re = Re;
113     mixer.ca1 = ca1;
114     mixer.cb1 = cb1;
115    
116     pair<AtomType*, AtomType*> key1, key2;
117     key1 = make_pair(atype1, atype2);
118     key2 = make_pair(atype2, atype1);
119    
120     MixingMap[key1] = mixer;
121     if (key2 != key1) {
122     MixingMap[key2] = mixer;
123     }
124     }
125    
126 gezelter 1536 void MAW::calcForce(InteractionData &idat) {
127 gezelter 1532
128     if (!initialized_) initialize();
129    
130     map<pair<AtomType*, AtomType*>, MAWInteractionData>::iterator it;
131 gezelter 1571 it = MixingMap.find( idat.atypes );
132 gezelter 1532 if (it != MixingMap.end()) {
133     MAWInteractionData mixer = (*it).second;
134    
135     RealType myPot = 0.0;
136     RealType myPotC = 0.0;
137     RealType myDeriv = 0.0;
138     RealType myDerivC = 0.0;
139    
140     RealType D_e = mixer.De;
141     RealType R_e = mixer.Re;
142     RealType beta = mixer.beta;
143     RealType ca1 = mixer.ca1;
144     RealType cb1 = mixer.cb1;
145    
146 gezelter 1571 bool j_is_Metal = idat.atypes.second->isMetal();
147 gezelter 1532
148     Vector3d r;
149     RotMat3x3d Atrans;
150     if (j_is_Metal) {
151     // rotate the inter-particle separation into the two different
152     // body-fixed coordinate systems:
153 gezelter 1554 r = *(idat.A1) * *(idat.d);
154     Atrans = idat.A1->transpose();
155 gezelter 1532 } else {
156     // negative sign because this is the vector from j to i:
157 gezelter 1554 r = -*(idat.A2) * *(idat.d);
158     Atrans = idat.A2->transpose();
159 gezelter 1532 }
160    
161     // V(r) = D_e exp(-a(r-re)(exp(-a(r-re))-2)
162    
163 gezelter 1554 RealType expt = -beta*( *(idat.rij) - R_e);
164 gezelter 1532 RealType expfnc = exp(expt);
165     RealType expfnc2 = expfnc*expfnc;
166    
167     RealType exptC = 0.0;
168     RealType expfncC = 0.0;
169     RealType expfnc2C = 0.0;
170    
171     myPot = D_e * (expfnc2 - 2.0 * expfnc);
172     myDeriv = 2.0 * D_e * beta * (expfnc - expfnc2);
173    
174 gezelter 1583 if (idat.shiftedPot || idat.shiftedForce) {
175 gezelter 1554 exptC = -beta*( *(idat.rcut) - R_e);
176 gezelter 1532 expfncC = exp(exptC);
177     expfnc2C = expfncC*expfncC;
178     }
179    
180 gezelter 1583 if (idat.shiftedPot) {
181 gezelter 1532 myPotC = D_e * (expfnc2C - 2.0 * expfncC);
182     myDerivC = 0.0;
183 gezelter 1583 } else if (idat.shiftedForce) {
184 gezelter 1532 myPotC = D_e * (expfnc2C - 2.0 * expfncC);
185     myDerivC = 2.0 * D_e * beta * (expfnc2C - expfnc2C);
186 gezelter 1554 myPotC += myDerivC * ( *(idat.rij) - *(idat.rcut) );
187 gezelter 1532 } else {
188     myPotC = 0.0;
189     myDerivC = 0.0;
190     }
191    
192     RealType x = r.x();
193     RealType y = r.y();
194     RealType z = r.z();
195     RealType x2 = x * x;
196     RealType y2 = y * y;
197     RealType z2 = z * z;
198    
199 gezelter 1554 RealType r3 = *(idat.r2) * *(idat.rij) ;
200     RealType r4 = *(idat.r2) * *(idat.r2);
201 gezelter 1532
202     // angular modulation of morse part of potential to approximate
203     // the squares of the two HOMO lone pair orbitals in water:
204     //********************** old form*************************
205     // s = 1 / (4 pi)
206     // ta1 = (s - pz)^2 = (1 - sqrt(3)*cos(theta))^2 / (4 pi)
207     // b1 = px^2 = 3 * (sin(theta)*cos(phi))^2 / (4 pi)
208     //********************** old form*************************
209     // we'll leave out the 4 pi for now
210    
211     // new functional form just using the p orbitals.
212     // Vmorse(r)*[a*p_x + b p_z + (1-a-b)]
213     // which is
214     // Vmorse(r)*[a sin^2(theta) cos^2(phi) + b cos(theta) + (1-a-b)]
215     // Vmorse(r)*[a*x2/r2 + b*z/r + (1-a-b)]
216    
217     RealType Vmorse = (myPot - myPotC);
218 gezelter 1554 RealType Vang = ca1 * x2 / *(idat.r2) +
219     cb1 * z / *(idat.rij) + (0.8 - ca1 / 3.0);
220    
221     RealType pot_temp = *(idat.vdwMult) * Vmorse * Vang;
222     *(idat.vpair) += pot_temp;
223 gezelter 1582 (*(idat.pot))[VANDERWAALS_FAMILY] += *(idat.sw) * pot_temp;
224 gezelter 1532
225 gezelter 1554 Vector3d dVmorsedr = (myDeriv - myDerivC) * Vector3d(x, y, z) / *(idat.rij) ;
226 gezelter 1532
227 gezelter 1554 Vector3d dVangdr = Vector3d(-2.0 * ca1 * x2 * x / r4 + 2.0 * ca1 * x / *(idat.r2) - cb1 * x * z / r3,
228     -2.0 * ca1 * x2 * y / r4 - cb1 * z * y / r3,
229     -2.0 * ca1 * x2 * z / r4 + cb1 / *(idat.rij) - cb1 * z2 / r3);
230    
231 gezelter 1532 // chain rule to put these back on x, y, z
232    
233     Vector3d dvdr = Vang * dVmorsedr + Vmorse * dVangdr;
234    
235     // Torques for Vang using method of Price:
236     // S. L. Price, A. J. Stone, and M. Alderton, Mol. Phys. 52, 987 (1984).
237    
238 gezelter 1554 Vector3d dVangdu = Vector3d(cb1 * y / *(idat.rij) ,
239     2.0 * ca1 * x * z / *(idat.r2) - cb1 * x / *(idat.rij),
240     -2.0 * ca1 * y * x / *(idat.r2));
241 gezelter 1532
242     // do the torques first since they are easy:
243     // remember that these are still in the body fixed axes
244    
245 gezelter 1554 Vector3d trq = *(idat.vdwMult) * Vmorse * dVangdu * *(idat.sw);
246 gezelter 1532
247     // go back to lab frame using transpose of rotation matrix:
248    
249     if (j_is_Metal) {
250 gezelter 1554 *(idat.t1) += Atrans * trq;
251 gezelter 1532 } else {
252 gezelter 1554 *(idat.t2) += Atrans * trq;
253 gezelter 1532 }
254    
255     // Now, on to the forces (still in body frame of water)
256    
257 gezelter 1554 Vector3d ftmp = *(idat.vdwMult) * *(idat.sw) * dvdr;
258 gezelter 1532
259     // rotate the terms back into the lab frame:
260     Vector3d flab;
261     if (j_is_Metal) {
262     flab = Atrans * ftmp;
263     } else {
264     flab = - Atrans * ftmp;
265     }
266    
267 gezelter 1554 *(idat.f1) += flab;
268 gezelter 1532 }
269     return;
270    
271     }
272    
273 gezelter 1545 RealType MAW::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
274 gezelter 1532 if (!initialized_) initialize();
275     map<pair<AtomType*, AtomType*>, MAWInteractionData>::iterator it;
276 gezelter 1545 it = MixingMap.find(atypes);
277 gezelter 1532 if (it == MixingMap.end())
278     return 0.0;
279     else {
280     MAWInteractionData mixer = (*it).second;
281    
282     RealType R_e = mixer.Re;
283     RealType beta = mixer.beta;
284     // This value of the r corresponds to an energy about 1.48% of
285     // the energy at the bottom of the Morse well. For comparison, the
286     // Lennard-Jones function is about 1.63% of it's minimum value at
287     // a distance of 2.5 sigma.
288     return (4.9 + beta * R_e) / beta;
289     }
290     }
291     }
292    

Properties

Name Value
svn:eol-style native