ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/MAW.cpp
Revision: 1582
Committed: Tue Jun 14 20:41:44 2011 UTC (14 years, 1 month ago) by gezelter
File size: 10398 byte(s)
Log Message:
Well, the potential energy values are still garbage, but the LJ sample
runs.

File Contents

# User Rev Content
1 gezelter 1532 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40     */
41    
42     #include <stdio.h>
43     #include <string.h>
44     #include <cmath>
45    
46     #include "nonbonded/MAW.hpp"
47     #include "utils/simError.h"
48    
49     using namespace std;
50    
51     namespace OpenMD {
52    
53     MAW::MAW() : name_("MAW"), initialized_(false), forceField_(NULL),
54     shiftedPot_(false), shiftedFrc_(false) {}
55    
56     void MAW::initialize() {
57    
58     ForceField::NonBondedInteractionTypeContainer* nbiTypes = forceField_->getNonBondedInteractionTypes();
59     ForceField::NonBondedInteractionTypeContainer::MapTypeIterator j;
60     NonBondedInteractionType* nbt;
61    
62     for (nbt = nbiTypes->beginType(j); nbt != NULL;
63     nbt = nbiTypes->nextType(j)) {
64    
65     if (nbt->isMAW()) {
66     pair<AtomType*, AtomType*> atypes = nbt->getAtomTypes();
67    
68     GenericData* data = nbt->getPropertyByName("MAW");
69     if (data == NULL) {
70     sprintf( painCave.errMsg, "MAW::initialize could not find\n"
71     "\tMAW parameters for %s - %s interaction.\n",
72     atypes.first->getName().c_str(),
73     atypes.second->getName().c_str());
74     painCave.severity = OPENMD_ERROR;
75     painCave.isFatal = 1;
76     simError();
77     }
78    
79     MAWData* mawData = dynamic_cast<MAWData*>(data);
80     if (mawData == NULL) {
81     sprintf( painCave.errMsg,
82     "MAW::initialize could not convert GenericData to\n"
83     "\tMAWData for %s - %s interaction.\n",
84     atypes.first->getName().c_str(),
85     atypes.second->getName().c_str());
86     painCave.severity = OPENMD_ERROR;
87     painCave.isFatal = 1;
88     simError();
89     }
90    
91     MAWParam mawParam = mawData->getData();
92    
93     RealType De = mawParam.De;
94     RealType beta = mawParam.beta;
95     RealType Re = mawParam.Re;
96     RealType ca1 = mawParam.ca1;
97     RealType cb1 = mawParam.cb1;
98    
99     addExplicitInteraction(atypes.first, atypes.second,
100     De, beta, Re, ca1, cb1);
101     }
102     }
103     initialized_ = true;
104     }
105    
106     void MAW::addExplicitInteraction(AtomType* atype1, AtomType* atype2,
107     RealType De, RealType beta, RealType Re,
108     RealType ca1, RealType cb1) {
109    
110     MAWInteractionData mixer;
111     mixer.De = De;
112     mixer.beta = beta;
113     mixer.Re = Re;
114     mixer.ca1 = ca1;
115     mixer.cb1 = cb1;
116    
117     pair<AtomType*, AtomType*> key1, key2;
118     key1 = make_pair(atype1, atype2);
119     key2 = make_pair(atype2, atype1);
120    
121     MixingMap[key1] = mixer;
122     if (key2 != key1) {
123     MixingMap[key2] = mixer;
124     }
125     }
126    
127 gezelter 1536 void MAW::calcForce(InteractionData &idat) {
128 gezelter 1532
129     if (!initialized_) initialize();
130    
131     map<pair<AtomType*, AtomType*>, MAWInteractionData>::iterator it;
132 gezelter 1571 it = MixingMap.find( idat.atypes );
133 gezelter 1532 if (it != MixingMap.end()) {
134     MAWInteractionData mixer = (*it).second;
135    
136     RealType myPot = 0.0;
137     RealType myPotC = 0.0;
138     RealType myDeriv = 0.0;
139     RealType myDerivC = 0.0;
140    
141     RealType D_e = mixer.De;
142     RealType R_e = mixer.Re;
143     RealType beta = mixer.beta;
144     RealType ca1 = mixer.ca1;
145     RealType cb1 = mixer.cb1;
146    
147 gezelter 1571 bool j_is_Metal = idat.atypes.second->isMetal();
148 gezelter 1532
149     Vector3d r;
150     RotMat3x3d Atrans;
151     if (j_is_Metal) {
152     // rotate the inter-particle separation into the two different
153     // body-fixed coordinate systems:
154 gezelter 1554 r = *(idat.A1) * *(idat.d);
155     Atrans = idat.A1->transpose();
156 gezelter 1532 } else {
157     // negative sign because this is the vector from j to i:
158 gezelter 1554 r = -*(idat.A2) * *(idat.d);
159     Atrans = idat.A2->transpose();
160 gezelter 1532 }
161    
162     // V(r) = D_e exp(-a(r-re)(exp(-a(r-re))-2)
163    
164 gezelter 1554 RealType expt = -beta*( *(idat.rij) - R_e);
165 gezelter 1532 RealType expfnc = exp(expt);
166     RealType expfnc2 = expfnc*expfnc;
167    
168     RealType exptC = 0.0;
169     RealType expfncC = 0.0;
170     RealType expfnc2C = 0.0;
171    
172     myPot = D_e * (expfnc2 - 2.0 * expfnc);
173     myDeriv = 2.0 * D_e * beta * (expfnc - expfnc2);
174    
175     if (MAW::shiftedPot_ || MAW::shiftedFrc_) {
176 gezelter 1554 exptC = -beta*( *(idat.rcut) - R_e);
177 gezelter 1532 expfncC = exp(exptC);
178     expfnc2C = expfncC*expfncC;
179     }
180    
181     if (MAW::shiftedPot_) {
182     myPotC = D_e * (expfnc2C - 2.0 * expfncC);
183     myDerivC = 0.0;
184     } else if (MAW::shiftedFrc_) {
185     myPotC = D_e * (expfnc2C - 2.0 * expfncC);
186     myDerivC = 2.0 * D_e * beta * (expfnc2C - expfnc2C);
187 gezelter 1554 myPotC += myDerivC * ( *(idat.rij) - *(idat.rcut) );
188 gezelter 1532 } else {
189     myPotC = 0.0;
190     myDerivC = 0.0;
191     }
192    
193     RealType x = r.x();
194     RealType y = r.y();
195     RealType z = r.z();
196     RealType x2 = x * x;
197     RealType y2 = y * y;
198     RealType z2 = z * z;
199    
200 gezelter 1554 RealType r3 = *(idat.r2) * *(idat.rij) ;
201     RealType r4 = *(idat.r2) * *(idat.r2);
202 gezelter 1532
203     // angular modulation of morse part of potential to approximate
204     // the squares of the two HOMO lone pair orbitals in water:
205     //********************** old form*************************
206     // s = 1 / (4 pi)
207     // ta1 = (s - pz)^2 = (1 - sqrt(3)*cos(theta))^2 / (4 pi)
208     // b1 = px^2 = 3 * (sin(theta)*cos(phi))^2 / (4 pi)
209     //********************** old form*************************
210     // we'll leave out the 4 pi for now
211    
212     // new functional form just using the p orbitals.
213     // Vmorse(r)*[a*p_x + b p_z + (1-a-b)]
214     // which is
215     // Vmorse(r)*[a sin^2(theta) cos^2(phi) + b cos(theta) + (1-a-b)]
216     // Vmorse(r)*[a*x2/r2 + b*z/r + (1-a-b)]
217    
218     RealType Vmorse = (myPot - myPotC);
219 gezelter 1554 RealType Vang = ca1 * x2 / *(idat.r2) +
220     cb1 * z / *(idat.rij) + (0.8 - ca1 / 3.0);
221    
222     RealType pot_temp = *(idat.vdwMult) * Vmorse * Vang;
223     *(idat.vpair) += pot_temp;
224 gezelter 1582 (*(idat.pot))[VANDERWAALS_FAMILY] += *(idat.sw) * pot_temp;
225 gezelter 1532
226 gezelter 1554 Vector3d dVmorsedr = (myDeriv - myDerivC) * Vector3d(x, y, z) / *(idat.rij) ;
227 gezelter 1532
228 gezelter 1554 Vector3d dVangdr = Vector3d(-2.0 * ca1 * x2 * x / r4 + 2.0 * ca1 * x / *(idat.r2) - cb1 * x * z / r3,
229     -2.0 * ca1 * x2 * y / r4 - cb1 * z * y / r3,
230     -2.0 * ca1 * x2 * z / r4 + cb1 / *(idat.rij) - cb1 * z2 / r3);
231    
232 gezelter 1532 // chain rule to put these back on x, y, z
233    
234     Vector3d dvdr = Vang * dVmorsedr + Vmorse * dVangdr;
235    
236     // Torques for Vang using method of Price:
237     // S. L. Price, A. J. Stone, and M. Alderton, Mol. Phys. 52, 987 (1984).
238    
239 gezelter 1554 Vector3d dVangdu = Vector3d(cb1 * y / *(idat.rij) ,
240     2.0 * ca1 * x * z / *(idat.r2) - cb1 * x / *(idat.rij),
241     -2.0 * ca1 * y * x / *(idat.r2));
242 gezelter 1532
243     // do the torques first since they are easy:
244     // remember that these are still in the body fixed axes
245    
246 gezelter 1554 Vector3d trq = *(idat.vdwMult) * Vmorse * dVangdu * *(idat.sw);
247 gezelter 1532
248     // go back to lab frame using transpose of rotation matrix:
249    
250     if (j_is_Metal) {
251 gezelter 1554 *(idat.t1) += Atrans * trq;
252 gezelter 1532 } else {
253 gezelter 1554 *(idat.t2) += Atrans * trq;
254 gezelter 1532 }
255    
256     // Now, on to the forces (still in body frame of water)
257    
258 gezelter 1554 Vector3d ftmp = *(idat.vdwMult) * *(idat.sw) * dvdr;
259 gezelter 1532
260     // rotate the terms back into the lab frame:
261     Vector3d flab;
262     if (j_is_Metal) {
263     flab = Atrans * ftmp;
264     } else {
265     flab = - Atrans * ftmp;
266     }
267    
268 gezelter 1554 *(idat.f1) += flab;
269 gezelter 1532 }
270     return;
271    
272     }
273    
274 gezelter 1545 RealType MAW::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
275 gezelter 1532 if (!initialized_) initialize();
276     map<pair<AtomType*, AtomType*>, MAWInteractionData>::iterator it;
277 gezelter 1545 it = MixingMap.find(atypes);
278 gezelter 1532 if (it == MixingMap.end())
279     return 0.0;
280     else {
281     MAWInteractionData mixer = (*it).second;
282    
283     RealType R_e = mixer.Re;
284     RealType beta = mixer.beta;
285     // This value of the r corresponds to an energy about 1.48% of
286     // the energy at the bottom of the Morse well. For comparison, the
287     // Lennard-Jones function is about 1.63% of it's minimum value at
288     // a distance of 2.5 sigma.
289     return (4.9 + beta * R_e) / beta;
290     }
291     }
292     }
293    

Properties

Name Value
svn:eol-style native