ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/MAW.cpp
Revision: 1549
Committed: Wed Apr 27 18:38:15 2011 UTC (14 years, 3 months ago) by gezelter
File size: 10278 byte(s)
Log Message:
a few more tweaks   We're getting somewhat closer to deleting fortran.

File Contents

# User Rev Content
1 gezelter 1532 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Redistributions of source code must retain the above copyright
10     * notice, this list of conditions and the following disclaimer.
11     *
12     * 2. Redistributions in binary form must reproduce the above copyright
13     * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31     *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35     *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Vardeman & Gezelter, in progress (2009).
40     */
41    
42     #include <stdio.h>
43     #include <string.h>
44     #include <cmath>
45    
46     #include "nonbonded/MAW.hpp"
47     #include "utils/simError.h"
48    
49     using namespace std;
50    
51     namespace OpenMD {
52    
53     MAW::MAW() : name_("MAW"), initialized_(false), forceField_(NULL),
54     shiftedPot_(false), shiftedFrc_(false) {}
55    
56     void MAW::initialize() {
57    
58     ForceField::NonBondedInteractionTypeContainer* nbiTypes = forceField_->getNonBondedInteractionTypes();
59     ForceField::NonBondedInteractionTypeContainer::MapTypeIterator j;
60     NonBondedInteractionType* nbt;
61    
62     for (nbt = nbiTypes->beginType(j); nbt != NULL;
63     nbt = nbiTypes->nextType(j)) {
64    
65     if (nbt->isMAW()) {
66     pair<AtomType*, AtomType*> atypes = nbt->getAtomTypes();
67    
68     GenericData* data = nbt->getPropertyByName("MAW");
69     if (data == NULL) {
70     sprintf( painCave.errMsg, "MAW::initialize could not find\n"
71     "\tMAW parameters for %s - %s interaction.\n",
72     atypes.first->getName().c_str(),
73     atypes.second->getName().c_str());
74     painCave.severity = OPENMD_ERROR;
75     painCave.isFatal = 1;
76     simError();
77     }
78    
79     MAWData* mawData = dynamic_cast<MAWData*>(data);
80     if (mawData == NULL) {
81     sprintf( painCave.errMsg,
82     "MAW::initialize could not convert GenericData to\n"
83     "\tMAWData for %s - %s interaction.\n",
84     atypes.first->getName().c_str(),
85     atypes.second->getName().c_str());
86     painCave.severity = OPENMD_ERROR;
87     painCave.isFatal = 1;
88     simError();
89     }
90    
91     MAWParam mawParam = mawData->getData();
92    
93     RealType De = mawParam.De;
94     RealType beta = mawParam.beta;
95     RealType Re = mawParam.Re;
96     RealType ca1 = mawParam.ca1;
97     RealType cb1 = mawParam.cb1;
98    
99     addExplicitInteraction(atypes.first, atypes.second,
100     De, beta, Re, ca1, cb1);
101     }
102     }
103     initialized_ = true;
104     }
105    
106     void MAW::addExplicitInteraction(AtomType* atype1, AtomType* atype2,
107     RealType De, RealType beta, RealType Re,
108     RealType ca1, RealType cb1) {
109    
110     MAWInteractionData mixer;
111     mixer.De = De;
112     mixer.beta = beta;
113     mixer.Re = Re;
114     mixer.ca1 = ca1;
115     mixer.cb1 = cb1;
116    
117     pair<AtomType*, AtomType*> key1, key2;
118     key1 = make_pair(atype1, atype2);
119     key2 = make_pair(atype2, atype1);
120    
121     MixingMap[key1] = mixer;
122     if (key2 != key1) {
123     MixingMap[key2] = mixer;
124     }
125     }
126    
127 gezelter 1536 void MAW::calcForce(InteractionData &idat) {
128 gezelter 1532
129     if (!initialized_) initialize();
130    
131     map<pair<AtomType*, AtomType*>, MAWInteractionData>::iterator it;
132 gezelter 1545 it = MixingMap.find(idat.atypes);
133 gezelter 1532 if (it != MixingMap.end()) {
134     MAWInteractionData mixer = (*it).second;
135    
136     RealType myPot = 0.0;
137     RealType myPotC = 0.0;
138     RealType myDeriv = 0.0;
139     RealType myDerivC = 0.0;
140    
141     RealType D_e = mixer.De;
142     RealType R_e = mixer.Re;
143     RealType beta = mixer.beta;
144     RealType ca1 = mixer.ca1;
145     RealType cb1 = mixer.cb1;
146    
147 gezelter 1545 bool j_is_Metal = idat.atypes.second->isMetal();
148 gezelter 1532
149     Vector3d r;
150     RotMat3x3d Atrans;
151     if (j_is_Metal) {
152     // rotate the inter-particle separation into the two different
153     // body-fixed coordinate systems:
154     r = idat.A1 * idat.d;
155     Atrans = idat.A1.transpose();
156     } else {
157     // negative sign because this is the vector from j to i:
158     r = -idat.A2 * idat.d;
159     Atrans = idat.A2.transpose();
160     }
161    
162     // V(r) = D_e exp(-a(r-re)(exp(-a(r-re))-2)
163    
164     RealType expt = -beta*(idat.rij - R_e);
165     RealType expfnc = exp(expt);
166     RealType expfnc2 = expfnc*expfnc;
167    
168     RealType exptC = 0.0;
169     RealType expfncC = 0.0;
170     RealType expfnc2C = 0.0;
171    
172     myPot = D_e * (expfnc2 - 2.0 * expfnc);
173     myDeriv = 2.0 * D_e * beta * (expfnc - expfnc2);
174    
175     if (MAW::shiftedPot_ || MAW::shiftedFrc_) {
176     exptC = -beta*(idat.rcut - R_e);
177     expfncC = exp(exptC);
178     expfnc2C = expfncC*expfncC;
179     }
180    
181     if (MAW::shiftedPot_) {
182     myPotC = D_e * (expfnc2C - 2.0 * expfncC);
183     myDerivC = 0.0;
184     } else if (MAW::shiftedFrc_) {
185     myPotC = D_e * (expfnc2C - 2.0 * expfncC);
186     myDerivC = 2.0 * D_e * beta * (expfnc2C - expfnc2C);
187     myPotC += myDerivC * (idat.rij - idat.rcut);
188     } else {
189     myPotC = 0.0;
190     myDerivC = 0.0;
191     }
192    
193     RealType x = r.x();
194     RealType y = r.y();
195     RealType z = r.z();
196     RealType x2 = x * x;
197     RealType y2 = y * y;
198     RealType z2 = z * z;
199    
200     RealType r3 = idat.r2 * idat.rij;
201     RealType r4 = idat.r2 * idat.r2;
202    
203     // angular modulation of morse part of potential to approximate
204     // the squares of the two HOMO lone pair orbitals in water:
205     //********************** old form*************************
206     // s = 1 / (4 pi)
207     // ta1 = (s - pz)^2 = (1 - sqrt(3)*cos(theta))^2 / (4 pi)
208     // b1 = px^2 = 3 * (sin(theta)*cos(phi))^2 / (4 pi)
209     //********************** old form*************************
210     // we'll leave out the 4 pi for now
211    
212     // new functional form just using the p orbitals.
213     // Vmorse(r)*[a*p_x + b p_z + (1-a-b)]
214     // which is
215     // Vmorse(r)*[a sin^2(theta) cos^2(phi) + b cos(theta) + (1-a-b)]
216     // Vmorse(r)*[a*x2/r2 + b*z/r + (1-a-b)]
217    
218     RealType Vmorse = (myPot - myPotC);
219     RealType Vang = ca1 * x2 / idat.r2 + cb1 * z / idat.rij + (0.8 - ca1 / 3.0);
220    
221     RealType pot_temp = idat.vdwMult * Vmorse * Vang;
222 gezelter 1549 idat.vpair += pot_temp;
223 gezelter 1536 idat.pot[0] += idat.sw * pot_temp;
224 gezelter 1532
225     Vector3d dVmorsedr = (myDeriv - myDerivC) * Vector3d(x, y, z) / idat.rij;
226    
227     Vector3d dVangdr = Vector3d(-2.0 * ca1 * x2 * x / r4 + 2.0 * ca1 * x / idat.r2 - cb1 * x * z / r3,
228     -2.0 * ca1 * x2 * y / r4 - cb1 * z * y / r3,
229     -2.0 * ca1 * x2 * z / r4 + cb1 / idat.rij - cb1 * z2 / r3);
230    
231     // chain rule to put these back on x, y, z
232    
233     Vector3d dvdr = Vang * dVmorsedr + Vmorse * dVangdr;
234    
235     // Torques for Vang using method of Price:
236     // S. L. Price, A. J. Stone, and M. Alderton, Mol. Phys. 52, 987 (1984).
237    
238     Vector3d dVangdu = Vector3d(cb1 * y / idat.rij,
239     2.0 * ca1 * x * z / idat.r2 - cb1 * x / idat.rij,
240     -2.0 * ca1 * y * x / idat.r2);
241    
242     // do the torques first since they are easy:
243     // remember that these are still in the body fixed axes
244    
245     Vector3d trq = idat.vdwMult * Vmorse * dVangdu * idat.sw;
246    
247     // go back to lab frame using transpose of rotation matrix:
248    
249     if (j_is_Metal) {
250     idat.t1 += Atrans * trq;
251     } else {
252     idat.t2 += Atrans * trq;
253     }
254    
255     // Now, on to the forces (still in body frame of water)
256    
257     Vector3d ftmp = idat.vdwMult * idat.sw * dvdr;
258    
259     // rotate the terms back into the lab frame:
260     Vector3d flab;
261     if (j_is_Metal) {
262     flab = Atrans * ftmp;
263     } else {
264     flab = - Atrans * ftmp;
265     }
266    
267     idat.f1 += flab;
268     }
269     return;
270    
271     }
272    
273 gezelter 1545 RealType MAW::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
274 gezelter 1532 if (!initialized_) initialize();
275     map<pair<AtomType*, AtomType*>, MAWInteractionData>::iterator it;
276 gezelter 1545 it = MixingMap.find(atypes);
277 gezelter 1532 if (it == MixingMap.end())
278     return 0.0;
279     else {
280     MAWInteractionData mixer = (*it).second;
281    
282     RealType R_e = mixer.Re;
283     RealType beta = mixer.beta;
284     // This value of the r corresponds to an energy about 1.48% of
285     // the energy at the bottom of the Morse well. For comparison, the
286     // Lennard-Jones function is about 1.63% of it's minimum value at
287     // a distance of 2.5 sigma.
288     return (4.9 + beta * R_e) / beta;
289     }
290     }
291     }
292    

Properties

Name Value
svn:eol-style native