1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <stdio.h> |
44 |
#include <string.h> |
45 |
|
46 |
#include <cmath> |
47 |
#include "nonbonded/LJ.hpp" |
48 |
#include "utils/simError.h" |
49 |
#include "types/LennardJonesAdapter.hpp" |
50 |
#include "types/LennardJonesInteractionType.hpp" |
51 |
|
52 |
namespace OpenMD { |
53 |
|
54 |
LJ::LJ() : name_("LJ"), initialized_(false), forceField_(NULL) {} |
55 |
|
56 |
RealType LJ::getSigma(AtomType* atomType1, AtomType* atomType2) { |
57 |
|
58 |
LennardJonesAdapter lja1 = LennardJonesAdapter(atomType1); |
59 |
LennardJonesAdapter lja2 = LennardJonesAdapter(atomType2); |
60 |
RealType sigma1 = lja1.getSigma(); |
61 |
RealType sigma2 = lja2.getSigma(); |
62 |
|
63 |
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
64 |
string DistanceMix = fopts.getDistanceMixingRule(); |
65 |
toUpper(DistanceMix); |
66 |
|
67 |
if (DistanceMix == "GEOMETRIC") |
68 |
return sqrt(sigma1 * sigma2); |
69 |
else |
70 |
return 0.5 * (sigma1 + sigma2); |
71 |
} |
72 |
|
73 |
RealType LJ::getEpsilon(AtomType* atomType1, AtomType* atomType2) { |
74 |
LennardJonesAdapter lja1 = LennardJonesAdapter(atomType1); |
75 |
LennardJonesAdapter lja2 = LennardJonesAdapter(atomType2); |
76 |
|
77 |
RealType epsilon1 = lja1.getEpsilon(); |
78 |
RealType epsilon2 = lja2.getEpsilon(); |
79 |
return sqrt(epsilon1 * epsilon2); |
80 |
} |
81 |
|
82 |
void LJ::initialize() { |
83 |
ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes(); |
84 |
ForceField::AtomTypeContainer::MapTypeIterator i; |
85 |
AtomType* at; |
86 |
|
87 |
for (at = atomTypes->beginType(i); at != NULL; |
88 |
at = atomTypes->nextType(i)) { |
89 |
LennardJonesAdapter lja = LennardJonesAdapter(at); |
90 |
if (lja.isLennardJones()){ |
91 |
addType(at); |
92 |
} |
93 |
} |
94 |
ForceField::NonBondedInteractionTypeContainer* nbiTypes = forceField_->getNonBondedInteractionTypes(); |
95 |
ForceField::NonBondedInteractionTypeContainer::MapTypeIterator j; |
96 |
NonBondedInteractionType* nbt; |
97 |
ForceField::NonBondedInteractionTypeContainer::KeyType keys; |
98 |
|
99 |
|
100 |
for (nbt = nbiTypes->beginType(j); nbt != NULL; |
101 |
nbt = nbiTypes->nextType(j)) { |
102 |
|
103 |
if (nbt->isLennardJones()) { |
104 |
keys = nbiTypes->getKeys(j); |
105 |
AtomType* at1 = forceField_->getAtomType(keys[0]); |
106 |
AtomType* at2 = forceField_->getAtomType(keys[1]); |
107 |
|
108 |
LennardJonesInteractionType* ljit = dynamic_cast<LennardJonesInteractionType*>(nbt); |
109 |
|
110 |
if (ljit == NULL) { |
111 |
sprintf( painCave.errMsg, |
112 |
"LJ::initialize could not convert NonBondedInteractionType\n" |
113 |
"\tto LennardJonesInteractionType for %s - %s interaction.\n", |
114 |
at1->getName().c_str(), |
115 |
at2->getName().c_str()); |
116 |
painCave.severity = OPENMD_ERROR; |
117 |
painCave.isFatal = 1; |
118 |
simError(); |
119 |
} |
120 |
|
121 |
RealType sigma = ljit->getSigma(); |
122 |
RealType epsilon = ljit->getEpsilon(); |
123 |
addExplicitInteraction(at1, at2, sigma, epsilon); |
124 |
} |
125 |
} |
126 |
initialized_ = true; |
127 |
} |
128 |
|
129 |
|
130 |
|
131 |
void LJ::addType(AtomType* atomType){ |
132 |
LennardJonesAdapter lja1 = LennardJonesAdapter(atomType); |
133 |
|
134 |
RealType sigma1 = lja1.getSigma(); |
135 |
RealType epsilon1 = lja1.getEpsilon(); |
136 |
|
137 |
// add it to the map: |
138 |
|
139 |
pair<map<int,AtomType*>::iterator,bool> ret; |
140 |
ret = LJMap.insert( pair<int, AtomType*>(atomType->getIdent(), atomType) ); |
141 |
if (ret.second == false) { |
142 |
sprintf( painCave.errMsg, |
143 |
"LJ already had a previous entry with ident %d\n", |
144 |
atomType->getIdent()); |
145 |
painCave.severity = OPENMD_INFO; |
146 |
painCave.isFatal = 0; |
147 |
simError(); |
148 |
} |
149 |
|
150 |
// Now, iterate over all known types and add to the mixing map: |
151 |
|
152 |
std::map<int, AtomType*>::iterator it; |
153 |
for( it = LJMap.begin(); it != LJMap.end(); ++it) { |
154 |
|
155 |
AtomType* atype2 = (*it).second; |
156 |
|
157 |
LJInteractionData mixer; |
158 |
mixer.sigma = getSigma(atomType, atype2); |
159 |
mixer.epsilon = getEpsilon(atomType, atype2); |
160 |
mixer.sigmai = 1.0 / mixer.sigma; |
161 |
mixer.explicitlySet = false; |
162 |
|
163 |
std::pair<AtomType*, AtomType*> key1, key2; |
164 |
key1 = std::make_pair(atomType, atype2); |
165 |
key2 = std::make_pair(atype2, atomType); |
166 |
|
167 |
MixingMap[key1] = mixer; |
168 |
if (key2 != key1) { |
169 |
MixingMap[key2] = mixer; |
170 |
} |
171 |
} |
172 |
} |
173 |
|
174 |
void LJ::addExplicitInteraction(AtomType* atype1, AtomType* atype2, RealType sigma, RealType epsilon){ |
175 |
|
176 |
LJInteractionData mixer; |
177 |
mixer.sigma = sigma; |
178 |
mixer.epsilon = epsilon; |
179 |
mixer.sigmai = 1.0 / mixer.sigma; |
180 |
mixer.explicitlySet = true; |
181 |
|
182 |
std::pair<AtomType*, AtomType*> key1, key2; |
183 |
key1 = std::make_pair(atype1, atype2); |
184 |
key2 = std::make_pair(atype2, atype1); |
185 |
|
186 |
MixingMap[key1] = mixer; |
187 |
if (key2 != key1) { |
188 |
MixingMap[key2] = mixer; |
189 |
} |
190 |
} |
191 |
|
192 |
void LJ::calcForce(InteractionData &idat) { |
193 |
if (!initialized_) initialize(); |
194 |
map<pair<AtomType*, AtomType*>, LJInteractionData>::iterator it; |
195 |
it = MixingMap.find( idat.atypes ); |
196 |
|
197 |
if (it != MixingMap.end()) { |
198 |
|
199 |
LJInteractionData mixer = (*it).second; |
200 |
|
201 |
RealType sigmai = mixer.sigmai; |
202 |
RealType epsilon = mixer.epsilon; |
203 |
|
204 |
RealType ros; |
205 |
RealType rcos; |
206 |
RealType myPot = 0.0; |
207 |
RealType myPotC = 0.0; |
208 |
RealType myDeriv = 0.0; |
209 |
RealType myDerivC = 0.0; |
210 |
|
211 |
ros = *(idat.rij) * sigmai; |
212 |
|
213 |
getLJfunc(ros, myPot, myDeriv); |
214 |
|
215 |
if (idat.shiftedPot) { |
216 |
rcos = *(idat.rcut) * sigmai; |
217 |
getLJfunc(rcos, myPotC, myDerivC); |
218 |
myDerivC = 0.0; |
219 |
} else if (idat.shiftedForce) { |
220 |
rcos = *(idat.rcut) * sigmai; |
221 |
getLJfunc(rcos, myPotC, myDerivC); |
222 |
myPotC = myPotC + myDerivC * (*(idat.rij) - *(idat.rcut)) * sigmai; |
223 |
} else { |
224 |
myPotC = 0.0; |
225 |
myDerivC = 0.0; |
226 |
} |
227 |
|
228 |
RealType pot_temp = *(idat.vdwMult) * epsilon * (myPot - myPotC); |
229 |
*(idat.vpair) += pot_temp; |
230 |
|
231 |
RealType dudr = *(idat.sw) * *(idat.vdwMult) * epsilon * (myDeriv - |
232 |
myDerivC)*sigmai; |
233 |
|
234 |
(*(idat.pot))[VANDERWAALS_FAMILY] += *(idat.sw) * pot_temp; |
235 |
*(idat.f1) += *(idat.d) * dudr / *(idat.rij); |
236 |
} |
237 |
return; |
238 |
} |
239 |
|
240 |
void LJ::getLJfunc(RealType r, RealType &pot, RealType &deriv) { |
241 |
|
242 |
RealType ri = 1.0 / r; |
243 |
RealType ri2 = ri * ri; |
244 |
RealType ri6 = ri2 * ri2 * ri2; |
245 |
RealType ri7 = ri6 * ri; |
246 |
RealType ri12 = ri6 * ri6; |
247 |
RealType ri13 = ri12 * ri; |
248 |
|
249 |
pot = 4.0 * (ri12 - ri6); |
250 |
deriv = 24.0 * (ri7 - 2.0 * ri13); |
251 |
|
252 |
return; |
253 |
} |
254 |
|
255 |
RealType LJ::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
256 |
if (!initialized_) initialize(); |
257 |
map<pair<AtomType*, AtomType*>, LJInteractionData>::iterator it; |
258 |
it = MixingMap.find(atypes); |
259 |
if (it == MixingMap.end()) |
260 |
return 0.0; |
261 |
else { |
262 |
LJInteractionData mixer = (*it).second; |
263 |
return 2.5 * mixer.sigma; |
264 |
} |
265 |
} |
266 |
|
267 |
} |