| 36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
| 39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
| 40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
| 41 |
|
*/ |
| 42 |
|
|
| 43 |
|
#include <stdio.h> |
| 223 |
|
dw2 = 1.0; |
| 224 |
|
} |
| 225 |
|
|
| 226 |
< |
GBInteractionData mixer; |
| 226 |
> |
GBInteractionData mixer1, mixer2; |
| 227 |
|
|
| 228 |
|
// Cleaver paper uses sqrt of squares to get sigma0 for |
| 229 |
|
// mixed interactions. |
| 230 |
|
|
| 231 |
< |
mixer.sigma0 = sqrt(d1*d1 + d2*d2); |
| 232 |
< |
mixer.xa2 = (l1*l1 - d1*d1)/(l1*l1 + d2*d2); |
| 233 |
< |
mixer.xai2 = (l2*l2 - d2*d2)/(l2*l2 + d1*d1); |
| 234 |
< |
mixer.x2 = (l1*l1 - d1*d1) * (l2*l2 - d2*d2) / |
| 231 |
> |
mixer1.sigma0 = sqrt(d1*d1 + d2*d2); |
| 232 |
> |
mixer1.xa2 = (l1*l1 - d1*d1)/(l1*l1 + d2*d2); |
| 233 |
> |
mixer1.xai2 = (l2*l2 - d2*d2)/(l2*l2 + d1*d1); |
| 234 |
> |
mixer1.x2 = (l1*l1 - d1*d1) * (l2*l2 - d2*d2) / |
| 235 |
|
((l2*l2 + d1*d1) * (l1*l1 + d2*d2)); |
| 236 |
+ |
|
| 237 |
+ |
mixer2.sigma0 = mixer1.sigma0; |
| 238 |
+ |
// xa2 and xai2 for j-i pairs are reversed from the same i-j pairing. |
| 239 |
+ |
// Swapping the particles reverses the anisotropy parameters: |
| 240 |
+ |
mixer2.xa2 = mixer1.xai2; |
| 241 |
+ |
mixer2.xai2 = mixer1.xa2; |
| 242 |
+ |
mixer2.x2 = mixer1.x2; |
| 243 |
|
|
| 244 |
|
// assumed LB mixing rules for now: |
| 245 |
|
|
| 246 |
< |
mixer.dw = 0.5 * (dw1 + dw2); |
| 247 |
< |
mixer.eps0 = sqrt(e1 * e2); |
| 246 |
> |
mixer1.dw = 0.5 * (dw1 + dw2); |
| 247 |
> |
mixer1.eps0 = sqrt(e1 * e2); |
| 248 |
> |
|
| 249 |
> |
mixer2.dw = mixer1.dw; |
| 250 |
> |
mixer2.eps0 = mixer1.eps0; |
| 251 |
|
|
| 252 |
|
RealType er = sqrt(er1 * er2); |
| 253 |
< |
RealType ermu = pow(er,(1.0 / mu_)); |
| 253 |
> |
RealType ermu = pow(er, (RealType(1.0) / mu_)); |
| 254 |
|
RealType xp = (1.0 - ermu) / (1.0 + ermu); |
| 255 |
|
RealType ap2 = 1.0 / (1.0 + ermu); |
| 256 |
|
|
| 257 |
< |
mixer.xp2 = xp * xp; |
| 258 |
< |
mixer.xpap2 = xp * ap2; |
| 259 |
< |
mixer.xpapi2 = xp / ap2; |
| 257 |
> |
mixer1.xp2 = xp * xp; |
| 258 |
> |
mixer1.xpap2 = xp * ap2; |
| 259 |
> |
mixer1.xpapi2 = xp / ap2; |
| 260 |
|
|
| 261 |
+ |
mixer2.xp2 = mixer1.xp2; |
| 262 |
+ |
mixer2.xpap2 = mixer1.xpap2; |
| 263 |
+ |
mixer2.xpapi2 = mixer1.xpapi2; |
| 264 |
+ |
|
| 265 |
|
// only add this pairing if at least one of the atoms is a Gay-Berne atom |
| 266 |
|
|
| 267 |
|
if (atomType->isGayBerne() || atype2->isGayBerne()) { |
| 270 |
|
key1 = make_pair(atomType, atype2); |
| 271 |
|
key2 = make_pair(atype2, atomType); |
| 272 |
|
|
| 273 |
< |
MixingMap[key1] = mixer; |
| 273 |
> |
MixingMap[key1] = mixer1; |
| 274 |
|
if (key2 != key1) { |
| 275 |
< |
MixingMap[key2] = mixer; |
| 275 |
> |
MixingMap[key2] = mixer2; |
| 276 |
|
} |
| 277 |
|
} |
| 278 |
|
} |
| 367 |
|
+ 8.0 * eps * mu_ * (R12 - R6) * (xp2*au*bu - Hp*xp2*g) / |
| 368 |
|
(1.0 - xp2 * g2) / e2 + 8.0 * eps * s3 * (3.0 * R7 - 6.0 * R13) * |
| 369 |
|
(x2 * au * bu - H * x2 * g) / (1.0 - x2 * g2) / (dw * s03); |
| 355 |
– |
|
| 370 |
|
|
| 371 |
|
Vector3d rhat = *(idat.d) / *(idat.rij); |
| 372 |
|
Vector3d rxu1 = cross(*(idat.d), ul1); |
| 373 |
|
Vector3d rxu2 = cross(*(idat.d), ul2); |
| 374 |
|
Vector3d uxu = cross(ul1, ul2); |
| 375 |
< |
|
| 376 |
< |
idat.pot[VANDERWAALS_FAMILY] += U * *(idat.sw); |
| 375 |
> |
|
| 376 |
> |
(*(idat.pot))[VANDERWAALS_FAMILY] += U * *(idat.sw); |
| 377 |
|
*(idat.f1) += dUdr * rhat + dUda * ul1 + dUdb * ul2; |
| 378 |
|
*(idat.t1) += dUda * rxu1 - dUdg * uxu; |
| 379 |
< |
*(idat.t2) += dUdb * rxu2 - dUdg * uxu; |
| 379 |
> |
*(idat.t2) += dUdb * rxu2 + dUdg * uxu; |
| 380 |
|
*(idat.vpair) += U * *(idat.sw); |
| 381 |
|
|
| 382 |
|
return; |
| 393 |
|
RealType d1 = gb1.GB_d; |
| 394 |
|
RealType l1 = gb1.GB_l; |
| 395 |
|
// sigma is actually sqrt(2)*l for prolate ellipsoids |
| 396 |
< |
cut = max(cut, 2.5 * sqrt(2.0) * max(d1, l1)); |
| 396 |
> |
cut = max(cut, RealType(2.5) * sqrt(RealType(2.0)) * max(d1, l1)); |
| 397 |
|
} else if (atypes.first->isLennardJones()) { |
| 398 |
< |
cut = max(cut, 2.5 * getLJSigma(atypes.first)); |
| 398 |
> |
cut = max(cut, RealType(2.5) * getLJSigma(atypes.first)); |
| 399 |
|
} |
| 400 |
|
|
| 401 |
|
if (atypes.second->isGayBerne()) { |
| 402 |
|
GayBerneParam gb2 = getGayBerneParam(atypes.second); |
| 403 |
|
RealType d2 = gb2.GB_d; |
| 404 |
|
RealType l2 = gb2.GB_l; |
| 405 |
< |
cut = max(cut, 2.5 * sqrt(2.0) * max(d2, l2)); |
| 405 |
> |
cut = max(cut, RealType(2.5) * sqrt(RealType(2.0)) * max(d2, l2)); |
| 406 |
|
} else if (atypes.second->isLennardJones()) { |
| 407 |
< |
cut = max(cut, 2.5 * getLJSigma(atypes.second)); |
| 407 |
> |
cut = max(cut, RealType(2.5) * getLJSigma(atypes.second)); |
| 408 |
|
} |
| 409 |
|
|
| 410 |
|
return cut; |