ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/GB.cpp
Revision: 1688
Committed: Wed Mar 14 17:56:01 2012 UTC (13 years, 4 months ago) by gezelter
File size: 17722 byte(s)
Log Message:
Bug fixes for GB.  Now using strength parameter mixing ideas from Wu
et al. [J. Chem. Phys. 135, 155104 (2011)].  This helps get the
dissimilar particle mixing behavior to be the same whichever order the
two particles come in.  This does require that the force field file to
specify explicitly the values for epsilon in the cross (X), side-by-side (S), 
and end-to-end (E) configurations.


File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include <stdio.h>
44 #include <string.h>
45
46 #include <cmath>
47 #include "nonbonded/GB.hpp"
48 #include "utils/simError.h"
49
50 using namespace std;
51 namespace OpenMD {
52
53 /* GB is the Gay-Berne interaction for ellipsoidal particles. The original
54 * paper (for identical uniaxial particles) is:
55 * J. G. Gay and B. J. Berne, J. Chem. Phys., 74, 3316-3319 (1981).
56 * A more-general GB potential for dissimilar uniaxial particles:
57 * D. J. Cleaver, C. M. Care, M. P. Allen and M. P. Neal, Phys. Rev. E,
58 * 54, 559-567 (1996).
59 * Further parameterizations can be found in:
60 * A. P. J. Emerson, G. R. Luckhurst and S. G. Whatling, Mol. Phys.,
61 * 82, 113-124 (1994).
62 * And a nice force expression:
63 * G. R. Luckhurst and R. A. Stephens, Liq. Cryst. 8, 451-464 (1990).
64 * Even clearer force and torque expressions:
65 * P. A. Golubkov and P. Y. Ren, J. Chem. Phys., 125, 64103 (2006).
66 * New expressions for cross interactions of strength parameters:
67 * J. Wu, X. Zhen, H. Shen, G. Li, and P. Ren, J. Chem. Phys.,
68 * 135, 155104 (2011).
69 *
70 * In this version of the GB interaction, each uniaxial ellipsoidal type
71 * is described using a set of 6 parameters:
72 * d: range parameter for side-by-side (S) and cross (X) configurations
73 * l: range parameter for end-to-end (E) configuration
74 * epsilon_X: well-depth parameter for cross (X) configuration
75 * epsilon_S: well-depth parameter for side-by-side (S) configuration
76 * epsilon_E: well depth parameter for end-to-end (E) configuration
77 * dw: "softness" of the potential
78 *
79 * Additionally, there are two "universal" paramters to govern the overall
80 * importance of the purely orientational (nu) and the mixed
81 * orientational / translational (mu) parts of strength of the interactions.
82 * These parameters have default or "canonical" values, but may be changed
83 * as a force field option:
84 * nu_: purely orientational part : defaults to 1
85 * mu_: mixed orientational / translational part : defaults to 2
86 */
87
88
89 GB::GB() : name_("GB"), initialized_(false), mu_(2.0), nu_(1.0), forceField_(NULL) {}
90
91 GayBerneParam GB::getGayBerneParam(AtomType* atomType) {
92
93 // Do sanity checking on the AtomType we were passed before
94 // building any data structures:
95 if (!atomType->isGayBerne()) {
96 sprintf( painCave.errMsg,
97 "GB::getGayBerneParam was passed an atomType (%s) that does\n"
98 "\tnot appear to be a Gay-Berne atom.\n",
99 atomType->getName().c_str());
100 painCave.severity = OPENMD_ERROR;
101 painCave.isFatal = 1;
102 simError();
103 }
104
105 DirectionalAtomType* daType = dynamic_cast<DirectionalAtomType*>(atomType);
106 GenericData* data = daType->getPropertyByName("GayBerne");
107 if (data == NULL) {
108 sprintf( painCave.errMsg, "GB::getGayBerneParam could not find\n"
109 "\tGay-Berne parameters for atomType %s.\n",
110 daType->getName().c_str());
111 painCave.severity = OPENMD_ERROR;
112 painCave.isFatal = 1;
113 simError();
114 }
115
116 GayBerneParamGenericData* gbData = dynamic_cast<GayBerneParamGenericData*>(data);
117 if (gbData == NULL) {
118 sprintf( painCave.errMsg,
119 "GB::getGayBerneParam could not convert GenericData to\n"
120 "\tGayBerneParamGenericData for atom type %s\n",
121 daType->getName().c_str());
122 painCave.severity = OPENMD_ERROR;
123 painCave.isFatal = 1;
124 simError();
125 }
126
127 return gbData->getData();
128 }
129
130 LJParam GB::getLJParam(AtomType* atomType) {
131
132 // Do sanity checking on the AtomType we were passed before
133 // building any data structures:
134 if (!atomType->isLennardJones()) {
135 sprintf( painCave.errMsg,
136 "GB::getLJParam was passed an atomType (%s) that does not\n"
137 "\tappear to be a Lennard-Jones atom.\n",
138 atomType->getName().c_str());
139 painCave.severity = OPENMD_ERROR;
140 painCave.isFatal = 1;
141 simError();
142 }
143
144 GenericData* data = atomType->getPropertyByName("LennardJones");
145 if (data == NULL) {
146 sprintf( painCave.errMsg, "GB::getLJParam could not find Lennard-Jones\n"
147 "\tparameters for atomType %s.\n", atomType->getName().c_str());
148 painCave.severity = OPENMD_ERROR;
149 painCave.isFatal = 1;
150 simError();
151 }
152
153 LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data);
154 if (ljData == NULL) {
155 sprintf( painCave.errMsg,
156 "GB::getLJParam could not convert GenericData to LJParam for\n"
157 "\tatom type %s\n", atomType->getName().c_str());
158 painCave.severity = OPENMD_ERROR;
159 painCave.isFatal = 1;
160 simError();
161 }
162
163 return ljData->getData();
164 }
165
166 RealType GB::getLJEpsilon(AtomType* atomType) {
167 LJParam ljParam = getLJParam(atomType);
168 return ljParam.epsilon;
169 }
170 RealType GB::getLJSigma(AtomType* atomType) {
171 LJParam ljParam = getLJParam(atomType);
172 return ljParam.sigma;
173 }
174
175 void GB::initialize() {
176
177 ForceFieldOptions& fopts = forceField_->getForceFieldOptions();
178 mu_ = fopts.getGayBerneMu();
179 nu_ = fopts.getGayBerneNu();
180 ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
181 ForceField::AtomTypeContainer::MapTypeIterator i;
182 AtomType* at;
183
184 // GB handles all of the GB-GB interactions as well as GB-LJ cross
185 // interactions:
186
187 for (at = atomTypes->beginType(i); at != NULL;
188 at = atomTypes->nextType(i)) {
189
190 if (at->isGayBerne() || at->isLennardJones())
191 addType(at);
192 }
193
194 initialized_ = true;
195 }
196
197 void GB::addType(AtomType* atomType){
198 // add it to the map:
199 AtomTypeProperties atp = atomType->getATP();
200
201 pair<map<int,AtomType*>::iterator,bool> ret;
202 ret = GBMap.insert( pair<int, AtomType*>(atp.ident, atomType) );
203 if (ret.second == false) {
204 sprintf( painCave.errMsg,
205 "GB already had a previous entry with ident %d\n",
206 atp.ident);
207 painCave.severity = OPENMD_INFO;
208 painCave.isFatal = 0;
209 simError();
210 }
211
212 RealType d1, l1, eX1, eS1, eE1, dw1;
213
214 if (atomType->isGayBerne()) {
215 GayBerneParam gb1 = getGayBerneParam(atomType);
216 d1 = gb1.GB_d;
217 l1 = gb1.GB_l;
218 eX1 = gb1.GB_eps_X;
219 eS1 = gb1.GB_eps_S;
220 eE1 = gb1.GB_eps_E;
221 dw1 = gb1.GB_dw;
222 } else if (atomType->isLennardJones()) {
223 d1 = getLJSigma(atomType) / sqrt(2.0);
224 l1 = d1;
225 eX1 = getLJEpsilon(atomType);
226 eS1 = eX1;
227 eE1 = eX1;
228 dw1 = 1.0;
229 } else {
230 sprintf( painCave.errMsg,
231 "GB::addType was passed an atomType (%s) that does not\n"
232 "\tappear to be a Gay-Berne or Lennard-Jones atom.\n",
233 atomType->getName().c_str());
234 painCave.severity = OPENMD_ERROR;
235 painCave.isFatal = 1;
236 simError();
237 }
238
239
240 // Now, iterate over all known types and add to the mixing map:
241
242 map<int, AtomType*>::iterator it;
243 for( it = GBMap.begin(); it != GBMap.end(); ++it) {
244
245 AtomType* atype2 = (*it).second;
246
247 RealType d2, l2, eX2, eS2, eE2, dw2;
248
249 if (atype2->isGayBerne()) {
250 GayBerneParam gb2 = getGayBerneParam(atype2);
251 d2 = gb2.GB_d;
252 l2 = gb2.GB_l;
253 eX2 = gb2.GB_eps_X;
254 eS2 = gb2.GB_eps_S;
255 eE2 = gb2.GB_eps_E;
256 dw2 = gb2.GB_dw;
257 } else if (atype2->isLennardJones()) {
258 d2 = getLJSigma(atype2) / sqrt(2.0);
259 l2 = d2;
260 eX2 = getLJEpsilon(atype2);
261 eS2 = eX2;
262 eE2 = eX2;
263 dw2 = 1.0;
264 }
265
266 GBInteractionData mixer1, mixer2;
267
268 // Cleaver paper uses sqrt of squares to get sigma0 for
269 // mixed interactions.
270
271 mixer1.sigma0 = sqrt(d1*d1 + d2*d2);
272 mixer1.xa2 = (l1*l1 - d1*d1)/(l1*l1 + d2*d2);
273 mixer1.xai2 = (l2*l2 - d2*d2)/(l2*l2 + d1*d1);
274 mixer1.x2 = (l1*l1 - d1*d1) * (l2*l2 - d2*d2) /
275 ((l2*l2 + d1*d1) * (l1*l1 + d2*d2));
276
277 mixer2.sigma0 = mixer1.sigma0;
278 // xa2 and xai2 for j-i pairs are reversed from the same i-j pairing.
279 // Swapping the particles reverses the anisotropy parameters:
280 mixer2.xa2 = mixer1.xai2;
281 mixer2.xai2 = mixer1.xa2;
282 mixer2.x2 = mixer1.x2;
283
284 // assumed LB mixing rules for now:
285
286 mixer1.dw = 0.5 * (dw1 + dw2);
287 mixer1.eps0 = sqrt(eX1 * eX2);
288
289 mixer2.dw = mixer1.dw;
290 mixer2.eps0 = mixer1.eps0;
291
292 RealType mi = RealType(1.0)/mu_;
293
294 mixer1.xpap2 = (pow(eS1, mi) - pow(eE1, mi)) / (pow(eS1, mi) + pow(eE2, mi));
295 mixer1.xpapi2 = (pow(eS2, mi) - pow(eE2, mi)) / (pow(eS2, mi) + pow(eE1, mi));
296 mixer1.xp2 = (pow(eS1, mi) - pow(eE1, mi)) * (pow(eS2, mi) - pow(eE2, mi)) /
297 (pow(eS2, mi) + pow(eE1, mi)) / (pow(eS1, mi) + pow(eE2, mi)) ;
298
299 // xpap2 and xpapi2 for j-i pairs are reversed from the same i-j pairing.
300 // Swapping the particles reverses the anisotropy parameters:
301 mixer2.xpap2 = mixer1.xpapi2;
302 mixer2.xpapi2 = mixer1.xpap2;
303 mixer2.xp2 = mixer1.xp2;
304
305 // only add this pairing if at least one of the atoms is a Gay-Berne atom
306
307 if (atomType->isGayBerne() || atype2->isGayBerne()) {
308
309 pair<AtomType*, AtomType*> key1, key2;
310 key1 = make_pair(atomType, atype2);
311 key2 = make_pair(atype2, atomType);
312
313 MixingMap[key1] = mixer1;
314 if (key2 != key1) {
315 MixingMap[key2] = mixer2;
316 }
317 }
318 }
319 }
320
321 void GB::calcForce(InteractionData &idat) {
322
323 if (!initialized_) initialize();
324
325 GBInteractionData mixer = MixingMap[idat.atypes];
326
327 RealType sigma0 = mixer.sigma0;
328 RealType dw = mixer.dw;
329 RealType eps0 = mixer.eps0;
330 RealType x2 = mixer.x2;
331 RealType xa2 = mixer.xa2;
332 RealType xai2 = mixer.xai2;
333 RealType xp2 = mixer.xp2;
334 RealType xpap2 = mixer.xpap2;
335 RealType xpapi2 = mixer.xpapi2;
336
337 // cerr << "atypes = " << idat.atypes.first->getName() << " " << idat.atypes.second->getName() << "\n";
338 // cerr << "sigma0 = " <<mixer.sigma0 <<"\n";
339 // cerr << "dw = " <<mixer.dw <<"\n";
340 // cerr << "eps0 = " <<mixer.eps0 <<"\n";
341 // cerr << "x2 = " <<mixer.x2 <<"\n";
342 // cerr << "xa2 = " <<mixer.xa2 <<"\n";
343 // cerr << "xai2 = " <<mixer.xai2 <<"\n";
344 // cerr << "xp2 = " <<mixer.xp2 <<"\n";
345 // cerr << "xpap2 = " <<mixer.xpap2 <<"\n";
346 // cerr << "xpapi2 = " <<mixer.xpapi2 <<"\n";
347
348 Vector3d ul1 = idat.A1->getRow(2);
349 Vector3d ul2 = idat.A2->getRow(2);
350
351 // cerr << "ul1 = " <<ul1<<"\n";
352 // cerr << "ul2 = " <<ul2<<"\n";
353
354 RealType a, b, g;
355
356 bool i_is_LJ = idat.atypes.first->isLennardJones();
357 bool j_is_LJ = idat.atypes.second->isLennardJones();
358
359 if (i_is_LJ) {
360 a = 0.0;
361 ul1 = V3Zero;
362 } else {
363 a = dot(*(idat.d), ul1);
364 }
365
366 if (j_is_LJ) {
367 b = 0.0;
368 ul2 = V3Zero;
369 } else {
370 b = dot(*(idat.d), ul2);
371 }
372
373 if (i_is_LJ || j_is_LJ)
374 g = 0.0;
375 else
376 g = dot(ul1, ul2);
377
378 RealType au = a / *(idat.rij);
379 RealType bu = b / *(idat.rij);
380
381 RealType au2 = au * au;
382 RealType bu2 = bu * bu;
383 RealType g2 = g * g;
384
385 RealType H = (xa2 * au2 + xai2 * bu2 - 2.0*x2*au*bu*g) / (1.0 - x2*g2);
386 RealType Hp = (xpap2*au2 + xpapi2*bu2 - 2.0*xp2*au*bu*g) / (1.0 - xp2*g2);
387
388 // cerr << "au2 = " << au2 << "\n";
389 // cerr << "bu2 = " << bu2 << "\n";
390 // cerr << "g2 = " << g2 << "\n";
391 // cerr << "H = " << H << "\n";
392 // cerr << "Hp = " << Hp << "\n";
393
394 RealType sigma = sigma0 / sqrt(1.0 - H);
395 RealType e1 = 1.0 / sqrt(1.0 - x2*g2);
396 RealType e2 = 1.0 - Hp;
397 RealType eps = eps0 * pow(e1,nu_) * pow(e2,mu_);
398 RealType BigR = dw*sigma0 / (*(idat.rij) - sigma + dw*sigma0);
399
400 RealType R3 = BigR*BigR*BigR;
401 RealType R6 = R3*R3;
402 RealType R7 = R6 * BigR;
403 RealType R12 = R6*R6;
404 RealType R13 = R6*R7;
405
406 RealType U = *(idat.vdwMult) * 4.0 * eps * (R12 - R6);
407
408 RealType s3 = sigma*sigma*sigma;
409 RealType s03 = sigma0*sigma0*sigma0;
410
411 // cerr << "vdwMult = " << *(idat.vdwMult) << "\n";
412 // cerr << "eps = " << eps <<"\n";
413 // cerr << "mu = " << mu_ << "\n";
414 // cerr << "R12 = " << R12 << "\n";
415 // cerr << "R6 = " << R6 << "\n";
416 // cerr << "R13 = " << R13 << "\n";
417 // cerr << "R7 = " << R7 << "\n";
418 // cerr << "e2 = " << e2 << "\n";
419 // cerr << "rij = " << *(idat.rij) << "\n";
420 // cerr << "s3 = " << s3 << "\n";
421 // cerr << "s03 = " << s03 << "\n";
422 // cerr << "dw = " << dw << "\n";
423
424 RealType pref1 = - *(idat.vdwMult) * 8.0 * eps * mu_ * (R12 - R6) /
425 (e2 * *(idat.rij));
426
427 RealType pref2 = *(idat.vdwMult) * 8.0 * eps * s3 * (6.0*R13 - 3.0*R7) /
428 (dw* *(idat.rij) * s03);
429
430 RealType dUdr = - (pref1 * Hp + pref2 * (sigma0 * sigma0 *
431 *(idat.rij) / s3 + H));
432
433 RealType dUda = pref1 * (xpap2*au - xp2*bu*g) / (1.0 - xp2 * g2)
434 + pref2 * (xa2 * au - x2 *bu*g) / (1.0 - x2 * g2);
435
436 RealType dUdb = pref1 * (xpapi2*bu - xp2*au*g) / (1.0 - xp2 * g2)
437 + pref2 * (xai2 * bu - x2 *au*g) / (1.0 - x2 * g2);
438
439 RealType dUdg = 4.0 * eps * nu_ * (R12 - R6) * x2 * g / (1.0 - x2*g2)
440 + 8.0 * eps * mu_ * (R12 - R6) * (xp2*au*bu - Hp*xp2*g) /
441 (1.0 - xp2 * g2) / e2 + 8.0 * eps * s3 * (3.0 * R7 - 6.0 * R13) *
442 (x2 * au * bu - H * x2 * g) / (1.0 - x2 * g2) / (dw * s03);
443
444 // cerr << "pref = " << pref1 << " " << pref2 << "\n";
445 // cerr << "dU = " << dUdr << " " << dUda <<" " << dUdb << " " << dUdg << "\n";
446
447 Vector3d rhat = *(idat.d) / *(idat.rij);
448 Vector3d rxu1 = cross(*(idat.d), ul1);
449 Vector3d rxu2 = cross(*(idat.d), ul2);
450 Vector3d uxu = cross(ul1, ul2);
451
452 (*(idat.pot))[VANDERWAALS_FAMILY] += U * *(idat.sw);
453 *(idat.f1) += (dUdr * rhat + dUda * ul1 + dUdb * ul2) * *(idat.sw);
454 *(idat.t1) += (dUda * rxu1 - dUdg * uxu) * *(idat.sw);
455 *(idat.t2) += (dUdb * rxu2 + dUdg * uxu) * *(idat.sw);
456 *(idat.vpair) += U;
457
458 // cerr << "f1 term = " << (dUdr * rhat + dUda * ul1 + dUdb * ul2) * *(idat.sw) << "\n";
459 // cerr << "t1 term = " << (dUda * rxu1 - dUdg * uxu) * *(idat.sw) << "\n";
460 // cerr << "t2 term = " << (dUdb * rxu2 + dUdg * uxu) * *(idat.sw) << "\n";
461 // cerr << "vp term = " << U << "\n";
462
463 return;
464
465 }
466
467 RealType GB::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
468 if (!initialized_) initialize();
469
470 RealType cut = 0.0;
471
472 if (atypes.first->isGayBerne()) {
473 GayBerneParam gb1 = getGayBerneParam(atypes.first);
474 RealType d1 = gb1.GB_d;
475 RealType l1 = gb1.GB_l;
476 // sigma is actually sqrt(2)*l for prolate ellipsoids
477 cut = max(cut, RealType(2.5) * sqrt(RealType(2.0)) * max(d1, l1));
478 } else if (atypes.first->isLennardJones()) {
479 cut = max(cut, RealType(2.5) * getLJSigma(atypes.first));
480 }
481
482 if (atypes.second->isGayBerne()) {
483 GayBerneParam gb2 = getGayBerneParam(atypes.second);
484 RealType d2 = gb2.GB_d;
485 RealType l2 = gb2.GB_l;
486 cut = max(cut, RealType(2.5) * sqrt(RealType(2.0)) * max(d2, l2));
487 } else if (atypes.second->isLennardJones()) {
488 cut = max(cut, RealType(2.5) * getLJSigma(atypes.second));
489 }
490
491 return cut;
492 }
493 }
494

Properties

Name Value
svn:eol-style native