| 1 |
/* |
| 2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
* |
| 4 |
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
* non-exclusive, royalty free, license to use, modify and |
| 6 |
* redistribute this software in source and binary code form, provided |
| 7 |
* that the following conditions are met: |
| 8 |
* |
| 9 |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
* notice, this list of conditions and the following disclaimer. |
| 11 |
* |
| 12 |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
* notice, this list of conditions and the following disclaimer in the |
| 14 |
* documentation and/or other materials provided with the |
| 15 |
* distribution. |
| 16 |
* |
| 17 |
* This software is provided "AS IS," without a warranty of any |
| 18 |
* kind. All express or implied conditions, representations and |
| 19 |
* warranties, including any implied warranty of merchantability, |
| 20 |
* fitness for a particular purpose or non-infringement, are hereby |
| 21 |
* excluded. The University of Notre Dame and its licensors shall not |
| 22 |
* be liable for any damages suffered by licensee as a result of |
| 23 |
* using, modifying or distributing the software or its |
| 24 |
* derivatives. In no event will the University of Notre Dame or its |
| 25 |
* licensors be liable for any lost revenue, profit or data, or for |
| 26 |
* direct, indirect, special, consequential, incidental or punitive |
| 27 |
* damages, however caused and regardless of the theory of liability, |
| 28 |
* arising out of the use of or inability to use software, even if the |
| 29 |
* University of Notre Dame has been advised of the possibility of |
| 30 |
* such damages. |
| 31 |
* |
| 32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
* research, please cite the appropriate papers when you publish your |
| 34 |
* work. Good starting points are: |
| 35 |
* |
| 36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
| 39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
| 40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
| 41 |
*/ |
| 42 |
|
| 43 |
#include <stdio.h> |
| 44 |
#include <string.h> |
| 45 |
|
| 46 |
#include <cmath> |
| 47 |
#include "nonbonded/GB.hpp" |
| 48 |
#include "utils/simError.h" |
| 49 |
#include "types/LennardJonesAdapter.hpp" |
| 50 |
#include "types/GayBerneAdapter.hpp" |
| 51 |
|
| 52 |
using namespace std; |
| 53 |
namespace OpenMD { |
| 54 |
|
| 55 |
/* GB is the Gay-Berne interaction for ellipsoidal particles. The original |
| 56 |
* paper (for identical uniaxial particles) is: |
| 57 |
* J. G. Gay and B. J. Berne, J. Chem. Phys., 74, 3316-3319 (1981). |
| 58 |
* A more-general GB potential for dissimilar uniaxial particles: |
| 59 |
* D. J. Cleaver, C. M. Care, M. P. Allen and M. P. Neal, Phys. Rev. E, |
| 60 |
* 54, 559-567 (1996). |
| 61 |
* Further parameterizations can be found in: |
| 62 |
* A. P. J. Emerson, G. R. Luckhurst and S. G. Whatling, Mol. Phys., |
| 63 |
* 82, 113-124 (1994). |
| 64 |
* And a nice force expression: |
| 65 |
* G. R. Luckhurst and R. A. Stephens, Liq. Cryst. 8, 451-464 (1990). |
| 66 |
* Even clearer force and torque expressions: |
| 67 |
* P. A. Golubkov and P. Y. Ren, J. Chem. Phys., 125, 64103 (2006). |
| 68 |
* New expressions for cross interactions of strength parameters: |
| 69 |
* J. Wu, X. Zhen, H. Shen, G. Li, and P. Ren, J. Chem. Phys., |
| 70 |
* 135, 155104 (2011). |
| 71 |
* |
| 72 |
* In this version of the GB interaction, each uniaxial ellipsoidal type |
| 73 |
* is described using a set of 6 parameters: |
| 74 |
* d: range parameter for side-by-side (S) and cross (X) configurations |
| 75 |
* l: range parameter for end-to-end (E) configuration |
| 76 |
* epsilon_X: well-depth parameter for cross (X) configuration |
| 77 |
* epsilon_S: well-depth parameter for side-by-side (S) configuration |
| 78 |
* epsilon_E: well depth parameter for end-to-end (E) configuration |
| 79 |
* dw: "softness" of the potential |
| 80 |
* |
| 81 |
* Additionally, there are two "universal" paramters to govern the overall |
| 82 |
* importance of the purely orientational (nu) and the mixed |
| 83 |
* orientational / translational (mu) parts of strength of the interactions. |
| 84 |
* These parameters have default or "canonical" values, but may be changed |
| 85 |
* as a force field option: |
| 86 |
* nu_: purely orientational part : defaults to 1 |
| 87 |
* mu_: mixed orientational / translational part : defaults to 2 |
| 88 |
*/ |
| 89 |
|
| 90 |
|
| 91 |
GB::GB() : name_("GB"), initialized_(false), mu_(2.0), nu_(1.0), forceField_(NULL) {} |
| 92 |
|
| 93 |
void GB::initialize() { |
| 94 |
|
| 95 |
ForceFieldOptions& fopts = forceField_->getForceFieldOptions(); |
| 96 |
mu_ = fopts.getGayBerneMu(); |
| 97 |
nu_ = fopts.getGayBerneNu(); |
| 98 |
ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes(); |
| 99 |
ForceField::AtomTypeContainer::MapTypeIterator i; |
| 100 |
AtomType* at; |
| 101 |
|
| 102 |
// GB handles all of the GB-GB interactions as well as GB-LJ cross |
| 103 |
// interactions: |
| 104 |
|
| 105 |
for (at = atomTypes->beginType(i); at != NULL; |
| 106 |
at = atomTypes->nextType(i)) { |
| 107 |
|
| 108 |
LennardJonesAdapter lja = LennardJonesAdapter(at); |
| 109 |
GayBerneAdapter gba = GayBerneAdapter(at); |
| 110 |
|
| 111 |
if (gba.isGayBerne() || lja.isLennardJones()) |
| 112 |
addType(at); |
| 113 |
} |
| 114 |
|
| 115 |
initialized_ = true; |
| 116 |
} |
| 117 |
|
| 118 |
void GB::addType(AtomType* atomType){ |
| 119 |
// add it to the map: |
| 120 |
|
| 121 |
pair<map<int,AtomType*>::iterator,bool> ret; |
| 122 |
ret = GBMap.insert( pair<int, AtomType*>(atomType->getIdent(), atomType) ); |
| 123 |
if (ret.second == false) { |
| 124 |
sprintf( painCave.errMsg, |
| 125 |
"GB already had a previous entry with ident %d\n", |
| 126 |
atomType->getIdent() ); |
| 127 |
painCave.severity = OPENMD_INFO; |
| 128 |
painCave.isFatal = 0; |
| 129 |
simError(); |
| 130 |
} |
| 131 |
|
| 132 |
RealType d1, l1, eX1, eS1, eE1, dw1; |
| 133 |
|
| 134 |
LennardJonesAdapter lja1 = LennardJonesAdapter(atomType); |
| 135 |
GayBerneAdapter gba1 = GayBerneAdapter(atomType); |
| 136 |
if (gba1.isGayBerne()) { |
| 137 |
d1 = gba1.getD(); |
| 138 |
l1 = gba1.getL(); |
| 139 |
eX1 = gba1.getEpsX(); |
| 140 |
eS1 = gba1.getEpsS(); |
| 141 |
eE1 = gba1.getEpsE(); |
| 142 |
dw1 = gba1.getDw(); |
| 143 |
} else if (lja1.isLennardJones()) { |
| 144 |
d1 = lja1.getSigma() / sqrt(2.0); |
| 145 |
l1 = d1; |
| 146 |
eX1 = lja1.getEpsilon(); |
| 147 |
eS1 = eX1; |
| 148 |
eE1 = eX1; |
| 149 |
dw1 = 1.0; |
| 150 |
} else { |
| 151 |
sprintf( painCave.errMsg, |
| 152 |
"GB::addType was passed an atomType (%s) that does not\n" |
| 153 |
"\tappear to be a Gay-Berne or Lennard-Jones atom.\n", |
| 154 |
atomType->getName().c_str()); |
| 155 |
painCave.severity = OPENMD_ERROR; |
| 156 |
painCave.isFatal = 1; |
| 157 |
simError(); |
| 158 |
} |
| 159 |
|
| 160 |
|
| 161 |
// Now, iterate over all known types and add to the mixing map: |
| 162 |
|
| 163 |
map<int, AtomType*>::iterator it; |
| 164 |
for( it = GBMap.begin(); it != GBMap.end(); ++it) { |
| 165 |
|
| 166 |
AtomType* atype2 = (*it).second; |
| 167 |
LennardJonesAdapter lja2 = LennardJonesAdapter(atype2); |
| 168 |
GayBerneAdapter gba2 = GayBerneAdapter(atype2); |
| 169 |
RealType d2, l2, eX2, eS2, eE2, dw2; |
| 170 |
|
| 171 |
if (gba2.isGayBerne()) { |
| 172 |
d2 = gba2.getD(); |
| 173 |
l2 = gba2.getL(); |
| 174 |
eX2 = gba2.getEpsX(); |
| 175 |
eS2 = gba2.getEpsS(); |
| 176 |
eE2 = gba2.getEpsE(); |
| 177 |
dw2 = gba2.getDw(); |
| 178 |
} else if (lja2.isLennardJones()) { |
| 179 |
d2 = lja2.getSigma() / sqrt(2.0); |
| 180 |
l2 = d2; |
| 181 |
eX2 = lja2.getEpsilon(); |
| 182 |
eS2 = eX2; |
| 183 |
eE2 = eX2; |
| 184 |
dw2 = 1.0; |
| 185 |
} |
| 186 |
|
| 187 |
GBInteractionData mixer1, mixer2; |
| 188 |
|
| 189 |
// Cleaver paper uses sqrt of squares to get sigma0 for |
| 190 |
// mixed interactions. |
| 191 |
|
| 192 |
mixer1.sigma0 = sqrt(d1*d1 + d2*d2); |
| 193 |
mixer1.xa2 = (l1*l1 - d1*d1)/(l1*l1 + d2*d2); |
| 194 |
mixer1.xai2 = (l2*l2 - d2*d2)/(l2*l2 + d1*d1); |
| 195 |
mixer1.x2 = (l1*l1 - d1*d1) * (l2*l2 - d2*d2) / |
| 196 |
((l2*l2 + d1*d1) * (l1*l1 + d2*d2)); |
| 197 |
|
| 198 |
mixer2.sigma0 = mixer1.sigma0; |
| 199 |
// xa2 and xai2 for j-i pairs are reversed from the same i-j pairing. |
| 200 |
// Swapping the particles reverses the anisotropy parameters: |
| 201 |
mixer2.xa2 = mixer1.xai2; |
| 202 |
mixer2.xai2 = mixer1.xa2; |
| 203 |
mixer2.x2 = mixer1.x2; |
| 204 |
|
| 205 |
// assumed LB mixing rules for now: |
| 206 |
|
| 207 |
mixer1.dw = 0.5 * (dw1 + dw2); |
| 208 |
mixer1.eps0 = sqrt(eX1 * eX2); |
| 209 |
|
| 210 |
mixer2.dw = mixer1.dw; |
| 211 |
mixer2.eps0 = mixer1.eps0; |
| 212 |
|
| 213 |
RealType mi = RealType(1.0)/mu_; |
| 214 |
|
| 215 |
mixer1.xpap2 = (pow(eS1, mi) - pow(eE1, mi)) / (pow(eS1, mi) + pow(eE2, mi)); |
| 216 |
mixer1.xpapi2 = (pow(eS2, mi) - pow(eE2, mi)) / (pow(eS2, mi) + pow(eE1, mi)); |
| 217 |
mixer1.xp2 = (pow(eS1, mi) - pow(eE1, mi)) * (pow(eS2, mi) - pow(eE2, mi)) / |
| 218 |
(pow(eS2, mi) + pow(eE1, mi)) / (pow(eS1, mi) + pow(eE2, mi)) ; |
| 219 |
|
| 220 |
// xpap2 and xpapi2 for j-i pairs are reversed from the same i-j pairing. |
| 221 |
// Swapping the particles reverses the anisotropy parameters: |
| 222 |
mixer2.xpap2 = mixer1.xpapi2; |
| 223 |
mixer2.xpapi2 = mixer1.xpap2; |
| 224 |
mixer2.xp2 = mixer1.xp2; |
| 225 |
|
| 226 |
// only add this pairing if at least one of the atoms is a Gay-Berne atom |
| 227 |
|
| 228 |
if (gba1.isGayBerne() || gba2.isGayBerne()) { |
| 229 |
|
| 230 |
pair<AtomType*, AtomType*> key1, key2; |
| 231 |
key1 = make_pair(atomType, atype2); |
| 232 |
key2 = make_pair(atype2, atomType); |
| 233 |
|
| 234 |
MixingMap[key1] = mixer1; |
| 235 |
if (key2 != key1) { |
| 236 |
MixingMap[key2] = mixer2; |
| 237 |
} |
| 238 |
} |
| 239 |
} |
| 240 |
} |
| 241 |
|
| 242 |
void GB::calcForce(InteractionData &idat) { |
| 243 |
|
| 244 |
if (!initialized_) initialize(); |
| 245 |
|
| 246 |
GBInteractionData mixer = MixingMap[idat.atypes]; |
| 247 |
|
| 248 |
RealType sigma0 = mixer.sigma0; |
| 249 |
RealType dw = mixer.dw; |
| 250 |
RealType eps0 = mixer.eps0; |
| 251 |
RealType x2 = mixer.x2; |
| 252 |
RealType xa2 = mixer.xa2; |
| 253 |
RealType xai2 = mixer.xai2; |
| 254 |
RealType xp2 = mixer.xp2; |
| 255 |
RealType xpap2 = mixer.xpap2; |
| 256 |
RealType xpapi2 = mixer.xpapi2; |
| 257 |
|
| 258 |
// cerr << "atypes = " << idat.atypes.first->getName() << " " << idat.atypes.second->getName() << "\n"; |
| 259 |
// cerr << "sigma0 = " <<mixer.sigma0 <<"\n"; |
| 260 |
// cerr << "dw = " <<mixer.dw <<"\n"; |
| 261 |
// cerr << "eps0 = " <<mixer.eps0 <<"\n"; |
| 262 |
// cerr << "x2 = " <<mixer.x2 <<"\n"; |
| 263 |
// cerr << "xa2 = " <<mixer.xa2 <<"\n"; |
| 264 |
// cerr << "xai2 = " <<mixer.xai2 <<"\n"; |
| 265 |
// cerr << "xp2 = " <<mixer.xp2 <<"\n"; |
| 266 |
// cerr << "xpap2 = " <<mixer.xpap2 <<"\n"; |
| 267 |
// cerr << "xpapi2 = " <<mixer.xpapi2 <<"\n"; |
| 268 |
|
| 269 |
Vector3d ul1 = idat.A1->getRow(2); |
| 270 |
Vector3d ul2 = idat.A2->getRow(2); |
| 271 |
|
| 272 |
// cerr << "ul1 = " <<ul1<<"\n"; |
| 273 |
// cerr << "ul2 = " <<ul2<<"\n"; |
| 274 |
|
| 275 |
RealType a, b, g; |
| 276 |
|
| 277 |
// This is not good. We should store this in the mixing map, and not |
| 278 |
// query atom types in calc force. |
| 279 |
bool i_is_LJ = idat.atypes.first->isLennardJones(); |
| 280 |
bool j_is_LJ = idat.atypes.second->isLennardJones(); |
| 281 |
|
| 282 |
if (i_is_LJ) { |
| 283 |
a = 0.0; |
| 284 |
ul1 = V3Zero; |
| 285 |
} else { |
| 286 |
a = dot(*(idat.d), ul1); |
| 287 |
} |
| 288 |
|
| 289 |
if (j_is_LJ) { |
| 290 |
b = 0.0; |
| 291 |
ul2 = V3Zero; |
| 292 |
} else { |
| 293 |
b = dot(*(idat.d), ul2); |
| 294 |
} |
| 295 |
|
| 296 |
if (i_is_LJ || j_is_LJ) |
| 297 |
g = 0.0; |
| 298 |
else |
| 299 |
g = dot(ul1, ul2); |
| 300 |
|
| 301 |
RealType au = a / *(idat.rij); |
| 302 |
RealType bu = b / *(idat.rij); |
| 303 |
|
| 304 |
RealType au2 = au * au; |
| 305 |
RealType bu2 = bu * bu; |
| 306 |
RealType g2 = g * g; |
| 307 |
|
| 308 |
RealType H = (xa2 * au2 + xai2 * bu2 - 2.0*x2*au*bu*g) / (1.0 - x2*g2); |
| 309 |
RealType Hp = (xpap2*au2 + xpapi2*bu2 - 2.0*xp2*au*bu*g) / (1.0 - xp2*g2); |
| 310 |
|
| 311 |
// cerr << "au2 = " << au2 << "\n"; |
| 312 |
// cerr << "bu2 = " << bu2 << "\n"; |
| 313 |
// cerr << "g2 = " << g2 << "\n"; |
| 314 |
// cerr << "H = " << H << "\n"; |
| 315 |
// cerr << "Hp = " << Hp << "\n"; |
| 316 |
|
| 317 |
RealType sigma = sigma0 / sqrt(1.0 - H); |
| 318 |
RealType e1 = 1.0 / sqrt(1.0 - x2*g2); |
| 319 |
RealType e2 = 1.0 - Hp; |
| 320 |
RealType eps = eps0 * pow(e1,nu_) * pow(e2,mu_); |
| 321 |
RealType BigR = dw*sigma0 / (*(idat.rij) - sigma + dw*sigma0); |
| 322 |
|
| 323 |
RealType R3 = BigR*BigR*BigR; |
| 324 |
RealType R6 = R3*R3; |
| 325 |
RealType R7 = R6 * BigR; |
| 326 |
RealType R12 = R6*R6; |
| 327 |
RealType R13 = R6*R7; |
| 328 |
|
| 329 |
RealType U = *(idat.vdwMult) * 4.0 * eps * (R12 - R6); |
| 330 |
|
| 331 |
RealType s3 = sigma*sigma*sigma; |
| 332 |
RealType s03 = sigma0*sigma0*sigma0; |
| 333 |
|
| 334 |
// cerr << "vdwMult = " << *(idat.vdwMult) << "\n"; |
| 335 |
// cerr << "eps = " << eps <<"\n"; |
| 336 |
// cerr << "mu = " << mu_ << "\n"; |
| 337 |
// cerr << "R12 = " << R12 << "\n"; |
| 338 |
// cerr << "R6 = " << R6 << "\n"; |
| 339 |
// cerr << "R13 = " << R13 << "\n"; |
| 340 |
// cerr << "R7 = " << R7 << "\n"; |
| 341 |
// cerr << "e2 = " << e2 << "\n"; |
| 342 |
// cerr << "rij = " << *(idat.rij) << "\n"; |
| 343 |
// cerr << "s3 = " << s3 << "\n"; |
| 344 |
// cerr << "s03 = " << s03 << "\n"; |
| 345 |
// cerr << "dw = " << dw << "\n"; |
| 346 |
|
| 347 |
RealType pref1 = - *(idat.vdwMult) * 8.0 * eps * mu_ * (R12 - R6) / |
| 348 |
(e2 * *(idat.rij)); |
| 349 |
|
| 350 |
RealType pref2 = *(idat.vdwMult) * 8.0 * eps * s3 * (6.0*R13 - 3.0*R7) / |
| 351 |
(dw* *(idat.rij) * s03); |
| 352 |
|
| 353 |
RealType dUdr = - (pref1 * Hp + pref2 * (sigma0 * sigma0 * |
| 354 |
*(idat.rij) / s3 + H)); |
| 355 |
|
| 356 |
RealType dUda = pref1 * (xpap2*au - xp2*bu*g) / (1.0 - xp2 * g2) |
| 357 |
+ pref2 * (xa2 * au - x2 *bu*g) / (1.0 - x2 * g2); |
| 358 |
|
| 359 |
RealType dUdb = pref1 * (xpapi2*bu - xp2*au*g) / (1.0 - xp2 * g2) |
| 360 |
+ pref2 * (xai2 * bu - x2 *au*g) / (1.0 - x2 * g2); |
| 361 |
|
| 362 |
RealType dUdg = 4.0 * eps * nu_ * (R12 - R6) * x2 * g / (1.0 - x2*g2) |
| 363 |
+ 8.0 * eps * mu_ * (R12 - R6) * (xp2*au*bu - Hp*xp2*g) / |
| 364 |
(1.0 - xp2 * g2) / e2 + 8.0 * eps * s3 * (3.0 * R7 - 6.0 * R13) * |
| 365 |
(x2 * au * bu - H * x2 * g) / (1.0 - x2 * g2) / (dw * s03); |
| 366 |
|
| 367 |
// cerr << "pref = " << pref1 << " " << pref2 << "\n"; |
| 368 |
// cerr << "dU = " << dUdr << " " << dUda <<" " << dUdb << " " << dUdg << "\n"; |
| 369 |
|
| 370 |
Vector3d rhat = *(idat.d) / *(idat.rij); |
| 371 |
Vector3d rxu1 = cross(*(idat.d), ul1); |
| 372 |
Vector3d rxu2 = cross(*(idat.d), ul2); |
| 373 |
Vector3d uxu = cross(ul1, ul2); |
| 374 |
|
| 375 |
(*(idat.pot))[VANDERWAALS_FAMILY] += U * *(idat.sw); |
| 376 |
*(idat.f1) += (dUdr * rhat + dUda * ul1 + dUdb * ul2) * *(idat.sw); |
| 377 |
*(idat.t1) += (dUda * rxu1 - dUdg * uxu) * *(idat.sw); |
| 378 |
*(idat.t2) += (dUdb * rxu2 + dUdg * uxu) * *(idat.sw); |
| 379 |
*(idat.vpair) += U; |
| 380 |
|
| 381 |
// cerr << "f1 term = " << (dUdr * rhat + dUda * ul1 + dUdb * ul2) * *(idat.sw) << "\n"; |
| 382 |
// cerr << "t1 term = " << (dUda * rxu1 - dUdg * uxu) * *(idat.sw) << "\n"; |
| 383 |
// cerr << "t2 term = " << (dUdb * rxu2 + dUdg * uxu) * *(idat.sw) << "\n"; |
| 384 |
// cerr << "vp term = " << U << "\n"; |
| 385 |
|
| 386 |
return; |
| 387 |
|
| 388 |
} |
| 389 |
|
| 390 |
RealType GB::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
| 391 |
if (!initialized_) initialize(); |
| 392 |
|
| 393 |
RealType cut = 0.0; |
| 394 |
|
| 395 |
LennardJonesAdapter lja1 = LennardJonesAdapter(atypes.first); |
| 396 |
GayBerneAdapter gba1 = GayBerneAdapter(atypes.first); |
| 397 |
LennardJonesAdapter lja2 = LennardJonesAdapter(atypes.second); |
| 398 |
GayBerneAdapter gba2 = GayBerneAdapter(atypes.second); |
| 399 |
|
| 400 |
if (gba1.isGayBerne()) { |
| 401 |
RealType d1 = gba1.getD(); |
| 402 |
RealType l1 = gba1.getL(); |
| 403 |
// sigma is actually sqrt(2)*l for prolate ellipsoids |
| 404 |
cut = max(cut, RealType(2.5) * sqrt(RealType(2.0)) * max(d1, l1)); |
| 405 |
} else if (lja1.isLennardJones()) { |
| 406 |
cut = max(cut, RealType(2.5) * lja1.getSigma()); |
| 407 |
} |
| 408 |
|
| 409 |
if (gba2.isGayBerne()) { |
| 410 |
RealType d2 = gba2.getD(); |
| 411 |
RealType l2 = gba2.getL(); |
| 412 |
cut = max(cut, RealType(2.5) * sqrt(RealType(2.0)) * max(d2, l2)); |
| 413 |
} else if (lja2.isLennardJones()) { |
| 414 |
cut = max(cut, RealType(2.5) * lja2.getSigma()); |
| 415 |
} |
| 416 |
|
| 417 |
return cut; |
| 418 |
} |
| 419 |
} |
| 420 |
|