ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Electrostatic.cpp
(Generate patch)

Comparing branches/development/src/nonbonded/Electrostatic.cpp (file contents):
Revision 1723 by gezelter, Thu May 24 20:59:54 2012 UTC vs.
Revision 1822 by gezelter, Tue Jan 8 15:29:03 2013 UTC

# Line 53 | Line 53
53   #include "io/Globals.hpp"
54   #include "nonbonded/SlaterIntegrals.hpp"
55   #include "utils/PhysicalConstants.hpp"
56 + #include "math/erfc.hpp"
57 + #include "math/SquareMatrix.hpp"
58  
57
59   namespace OpenMD {
60    
61    Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
# Line 62 | Line 63 | namespace OpenMD {
63                                    haveCutoffRadius_(false),
64                                    haveDampingAlpha_(false),
65                                    haveDielectric_(false),
66 <                                  haveElectroSpline_(false)
66 >                                  haveElectroSplines_(false)
67    {}
68    
69    void Electrostatic::initialize() {
# Line 88 | Line 89 | namespace OpenMD {
89      // Charge-Dipole, assuming charges are measured in electrons, and
90      // dipoles are measured in debyes
91      pre12_ = 69.13373;
92 <    // Dipole-Dipole, assuming dipoles are measured in debyes
92 >    // Dipole-Dipole, assuming dipoles are measured in Debye
93      pre22_ = 14.39325;
94      // Charge-Quadrupole, assuming charges are measured in electrons, and
95      // quadrupoles are measured in 10^-26 esu cm^2
96 <    // This unit is also known affectionately as an esu centi-barn.
96 >    // This unit is also known affectionately as an esu centibarn.
97      pre14_ = 69.13373;
98 <    
98 >    // Dipole-Quadrupole, assuming dipoles are measured in debyes and
99 >    // quadrupoles in esu centibarns:
100 >    pre24_ = 14.39325;
101 >    // Quadrupole-Quadrupole, assuming esu centibarns:
102 >    pre44_ = 14.39325;
103 >
104      // conversions for the simulation box dipole moment
105      chargeToC_ = 1.60217733e-19;
106      angstromToM_ = 1.0e-10;
107      debyeToCm_ = 3.33564095198e-30;
108      
109      // number of points for electrostatic splines
110 <    np_ = 100;
110 >    np_ = 1000;
111      
112      // variables to handle different summation methods for long-range
113      // electrostatics:
114      summationMethod_ = esm_HARD;    
115      screeningMethod_ = UNDAMPED;
116      dielectric_ = 1.0;
111    one_third_ = 1.0 / 3.0;
117    
118      // check the summation method:
119      if (simParams_->haveElectrostaticSummationMethod()) {
# Line 193 | Line 198 | namespace OpenMD {
198          
199          // throw warning
200          sprintf( painCave.errMsg,
201 <                 "Electrostatic::initialize: dampingAlpha was not specified in the input file.\n"
202 <                 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n",
201 >                 "Electrostatic::initialize: dampingAlpha was not specified in the\n"
202 >                 "\tinput file.  A default value of %f (1/ang) will be used for the\n"
203 >                 "\tcutoff of %f (ang).\n",
204                   dampingAlpha_, cutoffRadius_);
205          painCave.severity = OPENMD_INFO;
206          painCave.isFatal = 0;
# Line 215 | Line 221 | namespace OpenMD {
221        
222        if (at->isElectrostatic())
223          addType(at);
224 +    }  
225 +    
226 +    if (summationMethod_ == esm_REACTION_FIELD) {
227 +      preRF_ = (dielectric_ - 1.0) /
228 +        ((2.0 * dielectric_ + 1.0) * pow(cutoffRadius_,3) );
229      }
230      
231 <    cutoffRadius2_ = cutoffRadius_ * cutoffRadius_;
232 <    rcuti_ = 1.0 / cutoffRadius_;
233 <    rcuti2_ = rcuti_ * rcuti_;
234 <    rcuti3_ = rcuti2_ * rcuti_;
235 <    rcuti4_ = rcuti2_ * rcuti2_;
236 <
226 <    if (screeningMethod_ == DAMPED) {
227 <      
228 <      alpha2_ = dampingAlpha_ * dampingAlpha_;
229 <      alpha4_ = alpha2_ * alpha2_;
230 <      alpha6_ = alpha4_ * alpha2_;
231 <      alpha8_ = alpha4_ * alpha4_;
232 <      
233 <      constEXP_ = exp(-alpha2_ * cutoffRadius2_);
234 <      invRootPi_ = 0.56418958354775628695;
235 <      alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_;
231 >    RealType b0c, b1c, b2c, b3c, b4c, b5c;
232 >    RealType db0c_1, db0c_2, db0c_3, db0c_4, db0c_5;
233 >    RealType a2, expTerm, invArootPi;
234 >    
235 >    RealType r = cutoffRadius_;
236 >    RealType r2 = r * r;
237  
238 <      c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_;
239 <      c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_;
240 <      c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_;
241 <      c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_;
242 <      c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_;
243 <      c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_;
238 >    if (screeningMethod_ == DAMPED) {      
239 >      a2 = dampingAlpha_ * dampingAlpha_;
240 >      invArootPi = 1.0 / (dampingAlpha_ * sqrt(M_PI));    
241 >      expTerm = exp(-a2 * r2);
242 >      // values of Smith's B_l functions at the cutoff radius:
243 >      b0c = erfc(dampingAlpha_ * r) / r;
244 >      b1c = (      b0c     + 2.0*a2     * expTerm * invArootPi) / r2;
245 >      b2c = (3.0 * b1c + pow(2.0*a2, 2) * expTerm * invArootPi) / r2;
246 >      b3c = (5.0 * b2c + pow(2.0*a2, 3) * expTerm * invArootPi) / r2;
247 >      b4c = (7.0 * b3c + pow(2.0*a2, 4) * expTerm * invArootPi) / r2;
248 >      b5c = (9.0 * b4c + pow(2.0*a2, 5) * expTerm * invArootPi) / r2;
249 >      selfMult_ = b0c  +  2.0 * a2 * invArootPi;
250      } else {
251 <      c1c_ = rcuti_;
252 <      c2c_ = c1c_ * rcuti_;
253 <      c3c_ = 3.0 * c2c_ * rcuti_;
254 <      c4c_ = 5.0 * c3c_ * rcuti2_;
255 <      c5c_ = 7.0 * c4c_ * rcuti2_;
256 <      c6c_ = 9.0 * c5c_ * rcuti2_;
251 >      a2 = 0.0;
252 >      b0c = 1.0 / r;
253 >      b1c = (      b0c) / r2;
254 >      b2c = (3.0 * b1c) / r2;
255 >      b3c = (5.0 * b2c) / r2;
256 >      b4c = (7.0 * b3c) / r2;
257 >      b5c = (9.0 * b4c) / r2;
258 >      selfMult_ = b0c;
259      }
260 <  
261 <    if (summationMethod_ == esm_REACTION_FIELD) {
262 <      preRF_ = (dielectric_ - 1.0) /
263 <        ((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_);
264 <      preRF2_ = 2.0 * preRF_;
265 <    }
260 >
261 >    // higher derivatives of B_0 at the cutoff radius:
262 >    db0c_1 = -r * b1c;
263 >    db0c_2 =     -b1c + r2 * b2c;
264 >    db0c_3 =          3.0*r*b2c  - r2*r*b3c;
265 >    db0c_4 =          3.0*b2c  - 6.0*r2*b3c     + r2*r2*b4c;
266 >    db0c_5 =                    -15.0*r*b3c + 10.0*r2*r*b4c - r2*r2*r*b5c;
267      
268 +    // working variables for the splines:
269 +    RealType ri, ri2;
270 +    RealType b0, b1, b2, b3, b4, b5;
271 +    RealType db0_1, db0_2, db0_3, db0_4, db0_5;
272 +    RealType f0;
273 +    RealType g0, g1, g2, g3, g4;
274 +    RealType h1, h2, h3, h4;
275 +    RealType s2, s3, s4;
276 +    RealType t3, t4;
277 +    RealType u4;
278 +
279 +    // working variables for Taylor expansion:
280 +    RealType rmRc, rmRc2, rmRc3, rmRc4;
281 +
282      // Add a 2 angstrom safety window to deal with cutoffGroups that
283      // have charged atoms longer than the cutoffRadius away from each
284 <    // other.  Splining may not be the best choice here.  Direct calls
285 <    // to erfc might be preferrable.
284 >    // other.  Splining is almost certainly the best choice here.
285 >    // Direct calls to erfc would be preferrable if it is a very fast
286 >    // implementation.
287  
288 <    RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
289 <    RealType rval;
290 <    vector<RealType> rvals;
291 <    vector<RealType> yvals;
292 <    for (int i = 0; i < np_; i++) {
293 <      rval = RealType(i) * dx;
294 <      rvals.push_back(rval);
295 <      yvals.push_back(erfc(dampingAlpha_ * rval));
296 <    }
297 <    erfcSpline_ = new CubicSpline();
298 <    erfcSpline_->addPoints(rvals, yvals);
299 <    haveElectroSpline_ = true;
288 >    RealType dx = (cutoffRadius_ + 2.0) / RealType(np_);
289 >
290 >    // Storage vectors for the computed functions    
291 >    vector<RealType> rv;
292 >    vector<RealType> v01v, v02v;
293 >    vector<RealType> v11v, v12v, v13v;
294 >    vector<RealType> v21v, v22v, v23v, v24v;
295 >    vector<RealType> v31v, v32v, v33v, v34v, v35v;
296 >    vector<RealType> v41v, v42v, v43v, v44v, v45v, v46v;
297 >
298 >    for (int i = 1; i < np_ + 1; i++) {
299 >      r = RealType(i) * dx;
300 >      rv.push_back(r);
301 >
302 >      ri = 1.0 / r;
303 >      ri2 = ri * ri;
304 >
305 >      r2 = r * r;
306 >      expTerm = exp(-a2 * r2);
307 >
308 >      // Taylor expansion factors (no need for factorials this way):
309 >      rmRc = r - cutoffRadius_;
310 >      rmRc2 = rmRc  * rmRc / 2.0;
311 >      rmRc3 = rmRc2 * rmRc / 3.0;
312 >      rmRc4 = rmRc3 * rmRc / 4.0;
313 >
314 >      // values of Smith's B_l functions at r:
315 >      if (screeningMethod_ == DAMPED) {            
316 >        b0 = erfc(dampingAlpha_ * r) * ri;
317 >        b1 = (      b0 +     2.0*a2     * expTerm * invArootPi) * ri2;
318 >        b2 = (3.0 * b1 + pow(2.0*a2, 2) * expTerm * invArootPi) * ri2;
319 >        b3 = (5.0 * b2 + pow(2.0*a2, 3) * expTerm * invArootPi) * ri2;
320 >        b4 = (7.0 * b3 + pow(2.0*a2, 4) * expTerm * invArootPi) * ri2;
321 >        b5 = (9.0 * b4 + pow(2.0*a2, 5) * expTerm * invArootPi) * ri2;
322 >      } else {
323 >        b0 = ri;
324 >        b1 = (      b0) * ri2;
325 >        b2 = (3.0 * b1) * ri2;
326 >        b3 = (5.0 * b2) * ri2;
327 >        b4 = (7.0 * b3) * ri2;
328 >        b5 = (9.0 * b4) * ri2;
329 >      }
330 >                
331 >      // higher derivatives of B_0 at r:
332 >      db0_1 = -r * b1;
333 >      db0_2 =     -b1 + r2 * b2;
334 >      db0_3 =          3.0*r*b2   - r2*r*b3;
335 >      db0_4 =          3.0*b2   - 6.0*r2*b3     + r2*r2*b4;
336 >      db0_5 =                    -15.0*r*b3 + 10.0*r2*r*b4 - r2*r2*r*b5;
337 >
338 >
339 >      switch (summationMethod_) {
340 >      case esm_SHIFTED_FORCE:
341 >        f0 = b0 - b0c - rmRc*db0c_1;
342 >        
343 >        g0 = db0_1 - db0c_1;
344 >        g1 = g0 - rmRc *db0c_2;
345 >        g2 = g1 - rmRc2*db0c_3;
346 >        g3 = g2 - rmRc3*db0c_4;
347 >        g4 = g3 - rmRc4*db0c_5;
348 >        
349 >        h1 = db0_2 - db0c_2;
350 >        h2 = h1 - rmRc *db0c_3;
351 >        h3 = h2 - rmRc2*db0c_4;
352 >        h4 = h3 - rmRc3*db0c_5;
353 >        
354 >        s2 = db0_3 - db0c_3;
355 >        s3 = s2 - rmRc *db0c_4;
356 >        s4 = s3 - rmRc2*db0c_5;
357 >        
358 >        t3 = db0_4 - db0c_4;
359 >        t4 = t3 - rmRc *db0c_5;
360 >        
361 >        u4 = db0_5 - db0c_5;
362 >        break;
363  
364 +      case esm_SHIFTED_POTENTIAL:
365 +        f0 = b0 - b0c;
366 +        
367 +        g0 = db0_1;
368 +        g1 = db0_1 - db0c_1;
369 +        g2 = g1 - rmRc *db0c_2;
370 +        g3 = g2 - rmRc2*db0c_3;
371 +        g4 = g3 - rmRc3*db0c_4;
372 +
373 +        h1 = db0_2;
374 +        h2 = db0_2 - db0c_2;
375 +        h3 = h2 - rmRc *db0c_3;
376 +        h4 = h3 - rmRc2*db0c_4;
377 +        
378 +        s2 = db0_3;
379 +        s3 = db0_3 - db0c_3;
380 +        s4 = s3 - rmRc *db0c_4;
381 +
382 +        t3 = db0_4;
383 +        t4 = db0_4 - db0c_4;
384 +        
385 +        u4 = db0_5;
386 +        break;
387 +
388 +      case esm_SWITCHING_FUNCTION:
389 +      case esm_HARD:
390 +        f0 = b0;
391 +        
392 +        g0 = db0_1;
393 +        g1 = g0;
394 +        g2 = g1;
395 +        g3 = g2;
396 +        g4 = g3;
397 +        
398 +        h1 = db0_2;
399 +        h2 = h1;
400 +        h3 = h2;
401 +        h4 = h3;
402 +        
403 +        s2 = db0_3;
404 +        s3 = s2;
405 +        s4 = s3;
406 +        
407 +        t3 = db0_4;
408 +        t4 = t3;
409 +        
410 +        u4 = db0_5;
411 +        break;
412 +
413 +      case esm_REACTION_FIELD:
414 +
415 +        // following DL_POLY's lead for shifting the image charge potential:
416 +        f0 = b0  + preRF_ * r2
417 +          - (b0c + preRF_ * cutoffRadius_ * cutoffRadius_);
418 +
419 +        g0 = db0_1 + preRF_ * 2.0 * r;
420 +        g1 = g0;
421 +        g2 = g1;
422 +        g3 = g2;
423 +        g4 = g3;
424 +
425 +        h1 = db0_2 + preRF_ * 2.0;
426 +        h2 = h1;
427 +        h3 = h2;
428 +        h4 = h3;
429 +
430 +        s2 = db0_3;
431 +        s3 = s2;
432 +        s4 = s3;
433 +        
434 +        t3 = db0_4;
435 +        t4 = t3;
436 +        
437 +        u4 = db0_5;        
438 +        break;
439 +                
440 +      case esm_EWALD_FULL:
441 +      case esm_EWALD_PME:
442 +      case esm_EWALD_SPME:
443 +      default :
444 +        map<string, ElectrostaticSummationMethod>::iterator i;
445 +        std::string meth;
446 +        for (i = summationMap_.begin(); i != summationMap_.end(); ++i) {
447 +          if ((*i).second == summationMethod_) meth = (*i).first;
448 +        }
449 +        sprintf( painCave.errMsg,
450 +                 "Electrostatic::initialize: electrostaticSummationMethod %s \n"
451 +                 "\thas not been implemented yet. Please select one of:\n"
452 +                 "\t\"hard\", \"shifted_potential\", or \"shifted_force\"\n",
453 +                 meth.c_str() );
454 +        painCave.isFatal = 1;
455 +        simError();
456 +        break;      
457 +      }
458 +
459 +      v01 = f0;
460 +      v02 = g0;
461 +
462 +      v11 = g1;
463 +      v12 = g1 * ri;
464 +      v13 = h1 - v12;
465 +
466 +      v21 = g2 * ri;
467 +      v22 = h2 - v21;
468 +      v23 = v22 * ri;
469 +      v24 = s2 - 3.0*v23;        
470 +
471 +      v31 = (h3 - g3 * ri) * ri;
472 +      v32 = s3 - 3.0*v31;
473 +      v33 = v31 * ri;
474 +      v34 = v32 * ri;
475 +      v35 = t3 - 6.0*v34 - 3.0*v33;
476 +
477 +      v41 = (h4 - g4 * ri) * ri2;
478 +      v42 = s4 * ri - 3.0*v41;
479 +      v43 = t4 - 6.0*v42 - 3.0*v41;
480 +      v44 = v42 * ri;
481 +      v45 = v43 * ri;
482 +      v46 = u4 - 10.0*v45 - 15.0*v44;
483 +
484 +      // Add these computed values to the storage vectors for spline creation:
485 +      v01v.push_back(v01);
486 +      v02v.push_back(v02);
487 +
488 +      v11v.push_back(v11);
489 +      v12v.push_back(v12);
490 +      v13v.push_back(v13);
491 +
492 +      v21v.push_back(v21);
493 +      v22v.push_back(v22);
494 +      v23v.push_back(v23);
495 +      v24v.push_back(v24);
496 +
497 +      v31v.push_back(v31);
498 +      v32v.push_back(v32);
499 +      v33v.push_back(v33);
500 +      v34v.push_back(v34);
501 +      v35v.push_back(v35);
502 +      
503 +      v41v.push_back(v41);
504 +      v42v.push_back(v42);
505 +      v43v.push_back(v43);
506 +      v44v.push_back(v44);
507 +      v45v.push_back(v45);
508 +      v46v.push_back(v46);
509 +    }
510 +
511 +    // construct the spline structures and fill them with the values we've
512 +    // computed:
513 +
514 +    v01s = new CubicSpline();
515 +    v01s->addPoints(rv, v01v);
516 +    v02s = new CubicSpline();
517 +    v02s->addPoints(rv, v02v);
518 +
519 +    v11s = new CubicSpline();
520 +    v11s->addPoints(rv, v11v);
521 +    v12s = new CubicSpline();
522 +    v12s->addPoints(rv, v12v);
523 +    v13s = new CubicSpline();
524 +    v13s->addPoints(rv, v13v);
525 +
526 +    v21s = new CubicSpline();
527 +    v21s->addPoints(rv, v21v);
528 +    v22s = new CubicSpline();
529 +    v22s->addPoints(rv, v22v);
530 +    v23s = new CubicSpline();
531 +    v23s->addPoints(rv, v23v);
532 +    v24s = new CubicSpline();
533 +    v24s->addPoints(rv, v24v);
534 +
535 +    v31s = new CubicSpline();
536 +    v31s->addPoints(rv, v31v);
537 +    v32s = new CubicSpline();
538 +    v32s->addPoints(rv, v32v);
539 +    v33s = new CubicSpline();
540 +    v33s->addPoints(rv, v33v);
541 +    v34s = new CubicSpline();
542 +    v34s->addPoints(rv, v34v);
543 +    v35s = new CubicSpline();
544 +    v35s->addPoints(rv, v35v);
545 +
546 +    v41s = new CubicSpline();
547 +    v41s->addPoints(rv, v41v);
548 +    v42s = new CubicSpline();
549 +    v42s->addPoints(rv, v42v);
550 +    v43s = new CubicSpline();
551 +    v43s->addPoints(rv, v43v);
552 +    v44s = new CubicSpline();
553 +    v44s->addPoints(rv, v44v);
554 +    v45s = new CubicSpline();
555 +    v45s->addPoints(rv, v45v);
556 +    v46s = new CubicSpline();
557 +    v46s->addPoints(rv, v46v);
558 +
559 +    haveElectroSplines_ = true;
560 +
561      initialized_ = true;
562    }
563        
# Line 281 | Line 566 | namespace OpenMD {
566      ElectrostaticAtomData electrostaticAtomData;
567      electrostaticAtomData.is_Charge = false;
568      electrostaticAtomData.is_Dipole = false;
284    electrostaticAtomData.is_SplitDipole = false;
569      electrostaticAtomData.is_Quadrupole = false;
570      electrostaticAtomData.is_Fluctuating = false;
571  
# Line 296 | Line 580 | namespace OpenMD {
580      if (ma.isMultipole()) {
581        if (ma.isDipole()) {
582          electrostaticAtomData.is_Dipole = true;
583 <        electrostaticAtomData.dipole_moment = ma.getDipoleMoment();
583 >        electrostaticAtomData.dipole = ma.getDipole();
584        }
301      if (ma.isSplitDipole()) {
302        electrostaticAtomData.is_SplitDipole = true;
303        electrostaticAtomData.split_dipole_distance = ma.getSplitDipoleDistance();
304      }
585        if (ma.isQuadrupole()) {
306        // Quadrupoles in OpenMD are set as the diagonal elements
307        // of the diagonalized traceless quadrupole moment tensor.
308        // The column vectors of the unitary matrix that diagonalizes
309        // the quadrupole moment tensor become the eFrame (or the
310        // electrostatic version of the body-fixed frame.
586          electrostaticAtomData.is_Quadrupole = true;
587 <        electrostaticAtomData.quadrupole_moments = ma.getQuadrupoleMoments();
587 >        electrostaticAtomData.quadrupole = ma.getQuadrupole();
588        }
589      }
590      
# Line 358 | Line 633 | namespace OpenMD {
633          RealType rval;
634          RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
635          vector<RealType> rvals;
636 <        vector<RealType> J1vals;
637 <        vector<RealType> J2vals;
638 <        for (int i = 0; i < np_; i++) {
636 >        vector<RealType> Jvals;
637 >        // don't start at i = 0, as rval = 0 is undefined for the
638 >        // slater overlap integrals.
639 >        for (int i = 1; i < np_+1; i++) {
640            rval = RealType(i) * dr;
641            rvals.push_back(rval);
642 <          J1vals.push_back( sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromsToBohr ) );
643 <          // may not be necessary if Slater coulomb integral is symmetric
644 <          J2vals.push_back( sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromsToBohr ) );
642 >          Jvals.push_back(sSTOCoulInt( a, b, m, n, rval *
643 >                                       PhysicalConstants::angstromToBohr ) *
644 >                          PhysicalConstants::hartreeToKcal );
645          }
370
371        CubicSpline* J1 = new CubicSpline();
372        J1->addPoints(rvals, J1vals);
373        CubicSpline* J2 = new CubicSpline();
374        J2->addPoints(rvals, J2vals);
646          
647 +        CubicSpline* J = new CubicSpline();
648 +        J->addPoints(rvals, Jvals);
649 +        
650          pair<AtomType*, AtomType*> key1, key2;
651          key1 = make_pair(atomType, atype2);
652          key2 = make_pair(atype2, atomType);
653          
654 <        Jij[key1] = J1;
655 <        Jij[key2] = J2;
654 >        Jij[key1] = J;
655 >        Jij[key2] = J;
656        }
657      }
658  
# Line 387 | Line 661 | namespace OpenMD {
661    
662    void Electrostatic::setCutoffRadius( RealType rCut ) {
663      cutoffRadius_ = rCut;
390    rrf_ = cutoffRadius_;
664      haveCutoffRadius_ = true;
665    }
666  
394  void Electrostatic::setSwitchingRadius( RealType rSwitch ) {
395    rt_ = rSwitch;
396  }
667    void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
668      summationMethod_ = esm;
669    }
# Line 411 | Line 681 | namespace OpenMD {
681  
682    void Electrostatic::calcForce(InteractionData &idat) {
683  
684 <    // utility variables.  Should clean these up and use the Vector3d and
685 <    // Mat3x3d to replace as many as we can in future versions:
684 >    RealType C_a, C_b;  // Charges
685 >    Vector3d D_a, D_b;  // Dipoles (space-fixed)
686 >    Mat3x3d  Q_a, Q_b;  // Quadrupoles (space-fixed)
687  
688 <    RealType q_i, q_j, mu_i, mu_j, d_i, d_j;
689 <    RealType qxx_i, qyy_i, qzz_i;
690 <    RealType qxx_j, qyy_j, qzz_j;
691 <    RealType cx_i, cy_i, cz_i;
692 <    RealType cx_j, cy_j, cz_j;
693 <    RealType cx2, cy2, cz2;
423 <    RealType ct_i, ct_j, ct_ij, a1;
424 <    RealType riji, ri, ri2, ri3, ri4;
425 <    RealType pref, vterm, epot, dudr;
426 <    RealType vpair(0.0);
427 <    RealType scale, sc2;
428 <    RealType pot_term, preVal, rfVal;
429 <    RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
430 <    RealType preSw, preSwSc;
431 <    RealType c1, c2, c3, c4;
432 <    RealType erfcVal(1.0), derfcVal(0.0);
433 <    RealType BigR;
434 <    RealType two(2.0), three(3.0);
688 >    RealType ri, ri2, ri3, ri4;                  // Distance utility scalars
689 >    RealType rdDa, rdDb;                         // Dipole utility scalars
690 >    Vector3d rxDa, rxDb;                         // Dipole utility vectors
691 >    RealType rdQar, rdQbr, trQa, trQb;           // Quadrupole utility scalars
692 >    Vector3d Qar, Qbr, rQa, rQb, rxQar, rxQbr;   // Quadrupole utility vectors
693 >    RealType pref;
694  
695 <    Vector3d Q_i, Q_j;
696 <    Vector3d ux_i, uy_i, uz_i;
697 <    Vector3d ux_j, uy_j, uz_j;
698 <    Vector3d dudux_i, duduy_i, duduz_i;
699 <    Vector3d dudux_j, duduy_j, duduz_j;
441 <    Vector3d rhatdot2, rhatc4;
442 <    Vector3d dVdr;
695 >    RealType DadDb, trQaQb, DadQbr, DbdQar;       // Cross-interaction scalars
696 >    RealType rQaQbr;
697 >    Vector3d DaxDb, DadQb, DbdQa, DaxQbr, DbxQar; // Cross-interaction vectors
698 >    Vector3d rQaQb, QaQbr, QaxQb, rQaxQbr;
699 >    Mat3x3d  QaQb;                                // Cross-interaction matrices
700  
701 <    // variables for indirect (reaction field) interactions for excluded pairs:
702 <    RealType indirect_Pot(0.0);
703 <    RealType indirect_vpair(0.0);
704 <    Vector3d indirect_dVdr(V3Zero);
705 <    Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero);
701 >    RealType U(0.0);  // Potential
702 >    Vector3d F(0.0);  // Force
703 >    Vector3d Ta(0.0); // Torque on site a
704 >    Vector3d Tb(0.0); // Torque on site b
705 >    Vector3d Ea(0.0); // Electric field at site a
706 >    Vector3d Eb(0.0); // Electric field at site b
707 >    RealType dUdCa(0.0); // fluctuating charge force at site a
708 >    RealType dUdCb(0.0); // fluctuating charge force at site a
709 >    
710 >    // Indirect interactions mediated by the reaction field.
711 >    RealType indirect_Pot(0.0);  // Potential
712 >    Vector3d indirect_F(0.0);    // Force
713 >    Vector3d indirect_Ta(0.0);   // Torque on site a
714 >    Vector3d indirect_Tb(0.0);   // Torque on site b
715  
716 <    RealType coulInt, vFluc1(0.0), vFluc2(0.0);
717 <    pair<RealType, RealType> res;
716 >    // Excluded potential that is still computed for fluctuating charges
717 >    RealType excluded_Pot(0.0);
718 >
719 >    RealType rfContrib, coulInt;
720      
721 <    // splines for coulomb integrals
722 <    CubicSpline* J1;
723 <    CubicSpline* J2;
456 <    
721 >    // spline for coulomb integral
722 >    CubicSpline* J;
723 >
724      if (!initialized_) initialize();
725      
726      ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
# Line 461 | Line 728 | namespace OpenMD {
728      
729      // some variables we'll need independent of electrostatic type:
730  
731 <    riji = 1.0 /  *(idat.rij) ;
732 <    Vector3d rhat =  *(idat.d)   * riji;
733 <
731 >    ri = 1.0 /  *(idat.rij);
732 >    Vector3d rhat =  *(idat.d)  * ri;
733 >    ri2 = ri * ri;
734 >      
735      // logicals
736  
737 <    bool i_is_Charge = data1.is_Charge;
738 <    bool i_is_Dipole = data1.is_Dipole;
739 <    bool i_is_SplitDipole = data1.is_SplitDipole;
740 <    bool i_is_Quadrupole = data1.is_Quadrupole;
473 <    bool i_is_Fluctuating = data1.is_Fluctuating;
737 >    bool a_is_Charge = data1.is_Charge;
738 >    bool a_is_Dipole = data1.is_Dipole;
739 >    bool a_is_Quadrupole = data1.is_Quadrupole;
740 >    bool a_is_Fluctuating = data1.is_Fluctuating;
741  
742 <    bool j_is_Charge = data2.is_Charge;
743 <    bool j_is_Dipole = data2.is_Dipole;
744 <    bool j_is_SplitDipole = data2.is_SplitDipole;
745 <    bool j_is_Quadrupole = data2.is_Quadrupole;
746 <    bool j_is_Fluctuating = data2.is_Fluctuating;
742 >    bool b_is_Charge = data2.is_Charge;
743 >    bool b_is_Dipole = data2.is_Dipole;
744 >    bool b_is_Quadrupole = data2.is_Quadrupole;
745 >    bool b_is_Fluctuating = data2.is_Fluctuating;
746 >
747 >    // Obtain all of the required radial function values from the
748 >    // spline structures:
749      
750 <    if (i_is_Charge) {
751 <      q_i = data1.fixedCharge;
750 >    // needed for fields (and forces):
751 >    if (a_is_Charge || b_is_Charge) {
752 >      v02 = v02s->getValueAt( *(idat.rij) );
753 >    }
754 >    if (a_is_Dipole || b_is_Dipole) {
755 >      v12 = v12s->getValueAt( *(idat.rij) );
756 >      v13 = v13s->getValueAt( *(idat.rij) );
757 >    }
758 >    if (a_is_Quadrupole || b_is_Quadrupole) {
759 >      v23 = v23s->getValueAt( *(idat.rij) );
760 >      v24 = v24s->getValueAt( *(idat.rij) );
761 >    }
762  
763 <      if (i_is_Fluctuating) {
764 <        q_i += *(idat.flucQ1);
765 <      }
487 <      
488 <      if (idat.excluded) {
489 <        *(idat.skippedCharge2) += q_i;
490 <      }
763 >    // needed for potentials (and torques):
764 >    if (a_is_Charge && b_is_Charge) {
765 >      v01 = v01s->getValueAt( *(idat.rij) );
766      }
767 <
768 <    if (i_is_Dipole) {
494 <      mu_i = data1.dipole_moment;
495 <      uz_i = idat.eFrame1->getColumn(2);
496 <      
497 <      ct_i = dot(uz_i, rhat);
498 <
499 <      if (i_is_SplitDipole)
500 <        d_i = data1.split_dipole_distance;
501 <      
502 <      duduz_i = V3Zero;
767 >    if ((a_is_Charge && b_is_Dipole) || (b_is_Charge && a_is_Dipole)) {
768 >      v11 = v11s->getValueAt( *(idat.rij) );
769      }
770 <    
771 <    if (i_is_Quadrupole) {
772 <      Q_i = data1.quadrupole_moments;
773 <      qxx_i = Q_i.x();
774 <      qyy_i = Q_i.y();
775 <      qzz_i = Q_i.z();
776 <      
777 <      ux_i = idat.eFrame1->getColumn(0);
512 <      uy_i = idat.eFrame1->getColumn(1);
513 <      uz_i = idat.eFrame1->getColumn(2);
514 <
515 <      cx_i = dot(ux_i, rhat);
516 <      cy_i = dot(uy_i, rhat);
517 <      cz_i = dot(uz_i, rhat);
518 <
519 <      dudux_i = V3Zero;
520 <      duduy_i = V3Zero;
521 <      duduz_i = V3Zero;
770 >    if ((a_is_Charge && b_is_Quadrupole) || (b_is_Charge && a_is_Quadrupole)) {
771 >      v21 = v21s->getValueAt( *(idat.rij) );
772 >      v22 = v22s->getValueAt( *(idat.rij) );
773 >    } else if (a_is_Dipole && b_is_Dipole) {
774 >      v21 = v21s->getValueAt( *(idat.rij) );
775 >      v22 = v22s->getValueAt( *(idat.rij) );
776 >      v23 = v23s->getValueAt( *(idat.rij) );
777 >      v24 = v24s->getValueAt( *(idat.rij) );
778      }
779 <
780 <    if (j_is_Charge) {
781 <      q_j = data2.fixedCharge;
782 <
783 <      if (i_is_Fluctuating)
784 <        q_j += *(idat.flucQ2);
785 <
530 <      if (idat.excluded) {
531 <        *(idat.skippedCharge1) += q_j;
532 <      }
779 >    if ((a_is_Dipole && b_is_Quadrupole) ||
780 >        (b_is_Dipole && a_is_Quadrupole)) {
781 >      v31 = v31s->getValueAt( *(idat.rij) );
782 >      v32 = v32s->getValueAt( *(idat.rij) );
783 >      v33 = v33s->getValueAt( *(idat.rij) );
784 >      v34 = v34s->getValueAt( *(idat.rij) );
785 >      v35 = v35s->getValueAt( *(idat.rij) );
786      }
787 +    if (a_is_Quadrupole && b_is_Quadrupole) {
788 +      v41 = v41s->getValueAt( *(idat.rij) );
789 +      v42 = v42s->getValueAt( *(idat.rij) );
790 +      v43 = v43s->getValueAt( *(idat.rij) );
791 +      v44 = v44s->getValueAt( *(idat.rij) );
792 +      v45 = v45s->getValueAt( *(idat.rij) );
793 +      v46 = v46s->getValueAt( *(idat.rij) );
794 +    }
795  
796 <
797 <    if (j_is_Dipole) {
798 <      mu_j = data2.dipole_moment;
799 <      uz_j = idat.eFrame2->getColumn(2);
796 >    // calculate the single-site contributions (fields, etc).
797 >    
798 >    if (a_is_Charge) {
799 >      C_a = data1.fixedCharge;
800        
801 <      ct_j = dot(uz_j, rhat);
802 <
803 <      if (j_is_SplitDipole)
543 <        d_j = data2.split_dipole_distance;
801 >      if (a_is_Fluctuating) {
802 >        C_a += *(idat.flucQ1);
803 >      }
804        
805 <      duduz_j = V3Zero;
805 >      if (idat.excluded) {
806 >        *(idat.skippedCharge2) += C_a;
807 >      }
808 >      Eb -= C_a *  pre11_ * v02 * rhat;
809      }
810      
811 <    if (j_is_Quadrupole) {
812 <      Q_j = data2.quadrupole_moments;
813 <      qxx_j = Q_j.x();
814 <      qyy_j = Q_j.y();
815 <      qzz_j = Q_j.z();
553 <      
554 <      ux_j = idat.eFrame2->getColumn(0);
555 <      uy_j = idat.eFrame2->getColumn(1);
556 <      uz_j = idat.eFrame2->getColumn(2);
557 <
558 <      cx_j = dot(ux_j, rhat);
559 <      cy_j = dot(uy_j, rhat);
560 <      cz_j = dot(uz_j, rhat);
561 <
562 <      dudux_j = V3Zero;
563 <      duduy_j = V3Zero;
564 <      duduz_j = V3Zero;
811 >    if (a_is_Dipole) {
812 >      D_a = *(idat.dipole1);
813 >      rdDa = dot(rhat, D_a);
814 >      rxDa = cross(rhat, D_a);
815 >      Eb -=  pre12_ * (v13 * rdDa * rhat + v12 * D_a);
816      }
817      
818 <    if (i_is_Fluctuating && j_is_Fluctuating) {
819 <      J1 = Jij[idat.atypes];
820 <      J2 = Jij[make_pair(idat.atypes.second, idat.atypes.first)];
818 >    if (a_is_Quadrupole) {
819 >      Q_a = *(idat.quadrupole1);
820 >      trQa =  Q_a.trace();
821 >      Qar =   Q_a * rhat;
822 >      rQa = rhat * Q_a;
823 >      rdQar = dot(rhat, Qar);
824 >      rxQar = cross(rhat, Qar);
825 >      Eb -= pre14_ * ((trQa * rhat + 2.0 * Qar) * v23 + rdQar * rhat * v24);
826      }
571
572    epot = 0.0;
573    dVdr = V3Zero;
827      
828 <    if (i_is_Charge) {
828 >    if (b_is_Charge) {
829 >      C_b = data2.fixedCharge;
830        
831 <      if (j_is_Charge) {
832 <        if (screeningMethod_ == DAMPED) {
833 <          // assemble the damping variables
834 <          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
835 <          //erfcVal = res.first;
836 <          //derfcVal = res.second;
837 <
838 <          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
839 <          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
840 <
841 <          c1 = erfcVal * riji;
842 <          c2 = (-derfcVal + c1) * riji;
843 <        } else {
844 <          c1 = riji;
845 <          c2 = c1 * riji;
846 <        }
847 <
848 <        preVal =  *(idat.electroMult) * pre11_ * q_i * q_j;
831 >      if (b_is_Fluctuating)
832 >        C_b += *(idat.flucQ2);
833 >      
834 >      if (idat.excluded) {
835 >        *(idat.skippedCharge1) += C_b;
836 >      }
837 >      Ea += C_b *  pre11_ * v02 * rhat;
838 >    }
839 >    
840 >    if (b_is_Dipole) {
841 >      D_b = *(idat.dipole2);
842 >      rdDb = dot(rhat, D_b);
843 >      rxDb = cross(rhat, D_b);
844 >      Ea += pre12_ * (v13 * rdDb * rhat + v12 * D_b);
845 >    }
846 >    
847 >    if (b_is_Quadrupole) {
848 >      Q_b = *(idat.quadrupole2);
849 >      trQb =  Q_b.trace();
850 >      Qbr =   Q_b * rhat;
851 >      rQb = rhat * Q_b;
852 >      rdQbr = dot(rhat, Qbr);
853 >      rxQbr = cross(rhat, Qbr);
854 >      Ea += pre14_ * ((trQb * rhat + 2.0 * Qbr) * v23 + rdQbr * rhat * v24);
855 >    }
856 >    
857 >    if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) {
858 >      J = Jij[idat.atypes];
859 >    }    
860 >    
861 >    if (a_is_Charge) {    
862 >      
863 >      if (b_is_Charge) {
864 >        pref =  pre11_ * *(idat.electroMult);          
865 >        U  += C_a * C_b * pref * v01;
866 >        F  += C_a * C_b * pref * v02 * rhat;
867          
868 <        if (summationMethod_ == esm_SHIFTED_POTENTIAL) {
869 <          vterm = preVal * (c1 - c1c_);
598 <          dudr  = - *(idat.sw)  * preVal * c2;
868 >        // If this is an excluded pair, there are still indirect
869 >        // interactions via the reaction field we must worry about:
870  
871 <        } else if (summationMethod_ == esm_SHIFTED_FORCE)  {
872 <          vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij)  - cutoffRadius_) );
873 <          dudr  =  *(idat.sw)  * preVal * (c2c_ - c2);
874 <
604 <        } else if (summationMethod_ == esm_REACTION_FIELD) {
605 <          rfVal = preRF_ *  *(idat.rij)  *  *(idat.rij);
606 <
607 <          vterm = preVal * ( riji + rfVal );            
608 <          dudr  =  *(idat.sw)  * preVal * ( 2.0 * rfVal - riji ) * riji;
609 <          
610 <          // if this is an excluded pair, there are still indirect
611 <          // interactions via the reaction field we must worry about:
612 <
613 <          if (idat.excluded) {
614 <            indirect_vpair += preVal * rfVal;
615 <            indirect_Pot += *(idat.sw) * preVal * rfVal;
616 <            indirect_dVdr += *(idat.sw)  * preVal * two * rfVal  * riji * rhat;
617 <          }
618 <          
619 <        } else {
620 <
621 <          vterm = preVal * riji * erfcVal;          
622 <          dudr  = -  *(idat.sw)  * preVal * c2;
623 <          
871 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
872 >          rfContrib = preRF_ * pref * C_a * C_b * *(idat.r2);
873 >          indirect_Pot += rfContrib;
874 >          indirect_F   += rfContrib * 2.0 * ri * rhat;
875          }
876          
877 <        vpair += vterm;
878 <        epot +=  *(idat.sw)  * vterm;
879 <        dVdr += dudr * rhat;
877 >        // Fluctuating charge forces are handled via Coulomb integrals
878 >        // for excluded pairs (i.e. those connected via bonds) and
879 >        // with the standard charge-charge interaction otherwise.
880  
881 <        if (i_is_Fluctuating) {
882 <          if (idat.excluded) {
883 <            // vFluc1 is the difference between the direct coulomb integral
884 <            // and the normal 1/r-like  interaction between point charges.
885 <            coulInt = J1->getValueAt( *(idat.rij) );
886 <            vFluc1 = pre11_ * coulInt * q_i * q_j  - (*(idat.sw) * vterm);
887 <          } else {
888 <            vFluc1 = 0.0;
889 <          }
890 <          *(idat.dVdFQ1) += ( *(idat.sw) * vterm + vFluc1 ) / q_i;
881 >        if (idat.excluded) {          
882 >          if (a_is_Fluctuating || b_is_Fluctuating) {
883 >            coulInt = J->getValueAt( *(idat.rij) );
884 >            if (a_is_Fluctuating)  dUdCa += coulInt * C_b;
885 >            if (b_is_Fluctuating)  dUdCb += coulInt * C_a;
886 >            excluded_Pot += C_a * C_b * coulInt;
887 >          }          
888 >        } else {
889 >          if (a_is_Fluctuating) dUdCa += C_b * pref * v01;
890 >          if (a_is_Fluctuating) dUdCb += C_a * pref * v01;
891          }
641
642        if (j_is_Fluctuating) {
643          if (idat.excluded) {
644            // vFluc2 is the difference between the direct coulomb integral
645            // and the normal 1/r-like  interaction between point charges.
646            coulInt = J2->getValueAt( *(idat.rij) );
647            vFluc2 = pre11_ * coulInt * q_i * q_j  - (*(idat.sw) * vterm);
648          } else {
649            vFluc2 = 0.0;
650          }
651          *(idat.dVdFQ2) += ( *(idat.sw) * vterm + vFluc2 ) / q_j;
652        }
653          
654
892        }
893  
894 <      if (j_is_Dipole) {
895 <        // pref is used by all the possible methods
896 <        pref =  *(idat.electroMult) * pre12_ * q_i * mu_j;
897 <        preSw =  *(idat.sw)  * pref;
894 >      if (b_is_Dipole) {
895 >        pref =  pre12_ * *(idat.electroMult);        
896 >        U  += C_a * pref * v11 * rdDb;
897 >        F  += C_a * pref * (v13 * rdDb * rhat + v12 * D_b);
898 >        Tb += C_a * pref * v11 * rxDb;
899  
900 <        if (summationMethod_ == esm_REACTION_FIELD) {
663 <          ri2 = riji * riji;
664 <          ri3 = ri2 * riji;
665 <    
666 <          vterm = - pref * ct_j * ( ri2 - preRF2_ *  *(idat.rij)  );
667 <          vpair += vterm;
668 <          epot +=  *(idat.sw)  * vterm;
900 >        if (a_is_Fluctuating) dUdCa += pref * v11 * rdDb;
901  
902 <          dVdr +=  -preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
903 <          duduz_j += -preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );  
902 >        // Even if we excluded this pair from direct interactions, we
903 >        // still have the reaction-field-mediated charge-dipole
904 >        // interaction:
905  
906 <          // Even if we excluded this pair from direct interactions,
907 <          // we still have the reaction-field-mediated charge-dipole
908 <          // interaction:
906 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
907 >          rfContrib = C_a * pref * preRF_ * 2.0 * *(idat.rij);
908 >          indirect_Pot += rfContrib * rdDb;
909 >          indirect_F   += rfContrib * D_b / (*idat.rij);
910 >          indirect_Tb  += C_a * pref * preRF_ * rxDb;
911 >        }
912 >      }
913  
914 <          if (idat.excluded) {
915 <            indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij);
916 <            indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij);
917 <            indirect_dVdr += preSw * preRF2_ * uz_j;
918 <            indirect_duduz_j += preSw * rhat * preRF2_ *  *(idat.rij);
919 <          }
683 <                      
684 <        } else {
685 <          // determine the inverse r used if we have split dipoles
686 <          if (j_is_SplitDipole) {
687 <            BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
688 <            ri = 1.0 / BigR;
689 <            scale =  *(idat.rij)  * ri;
690 <          } else {
691 <            ri = riji;
692 <            scale = 1.0;
693 <          }
694 <          
695 <          sc2 = scale * scale;
914 >      if (b_is_Quadrupole) {
915 >        pref = pre14_ * *(idat.electroMult);
916 >        U  +=  C_a * pref * (v21 * trQb + v22 * rdQbr);
917 >        F  +=  C_a * pref * (trQb * rhat + 2.0 * Qbr) * v23;
918 >        F  +=  C_a * pref * rdQbr * rhat * v24;
919 >        Tb +=  C_a * pref * 2.0 * rxQbr * v22;
920  
921 <          if (screeningMethod_ == DAMPED) {
922 <            // assemble the damping variables
923 <            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
700 <            //erfcVal = res.first;
701 <            //derfcVal = res.second;
702 <            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
703 <            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
704 <            c1 = erfcVal * ri;
705 <            c2 = (-derfcVal + c1) * ri;
706 <            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
707 <          } else {
708 <            c1 = ri;
709 <            c2 = c1 * ri;
710 <            c3 = 3.0 * c2 * ri;
711 <          }
712 <            
713 <          c2ri = c2 * ri;
921 >        if (a_is_Fluctuating) dUdCa += pref * (v21 * trQb + v22 * rdQbr);
922 >      }
923 >    }
924  
925 <          // calculate the potential
716 <          pot_term =  scale * c2;
717 <          vterm = -pref * ct_j * pot_term;
718 <          vpair += vterm;
719 <          epot +=  *(idat.sw)  * vterm;
720 <            
721 <          // calculate derivatives for forces and torques
925 >    if (a_is_Dipole) {
926  
927 <          dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3);
928 <          duduz_j += -preSw * pot_term * rhat;
927 >      if (b_is_Charge) {
928 >        pref = pre12_ * *(idat.electroMult);
929  
930 +        U  -= C_b * pref * v11 * rdDa;
931 +        F  -= C_b * pref * (v13 * rdDa * rhat + v12 * D_a);
932 +        Ta -= C_b * pref * v11 * rxDa;
933 +
934 +        if (b_is_Fluctuating) dUdCb -= pref * v11 * rdDa;
935 +
936 +        // Even if we excluded this pair from direct interactions,
937 +        // we still have the reaction-field-mediated charge-dipole
938 +        // interaction:
939 +        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
940 +          rfContrib = C_b * pref * preRF_ * 2.0 * *(idat.rij);
941 +          indirect_Pot -= rfContrib * rdDa;
942 +          indirect_F   -= rfContrib * D_a / (*idat.rij);
943 +          indirect_Ta  -= C_b * pref * preRF_ * rxDa;
944          }
727        if (i_is_Fluctuating) {
728          *(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i;
729        }
945        }
946  
947 <      if (j_is_Quadrupole) {
948 <        // first precalculate some necessary variables
949 <        cx2 = cx_j * cx_j;
950 <        cy2 = cy_j * cy_j;
736 <        cz2 = cz_j * cz_j;
737 <        pref =   *(idat.electroMult) * pre14_ * q_i * one_third_;
738 <          
739 <        if (screeningMethod_ == DAMPED) {
740 <          // assemble the damping variables
741 <          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
742 <          //erfcVal = res.first;
743 <          //derfcVal = res.second;
744 <          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
745 <          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
746 <          c1 = erfcVal * riji;
747 <          c2 = (-derfcVal + c1) * riji;
748 <          c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
749 <          c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
750 <        } else {
751 <          c1 = riji;
752 <          c2 = c1 * riji;
753 <          c3 = 3.0 * c2 * riji;
754 <          c4 = 5.0 * c3 * riji * riji;
755 <        }
947 >      if (b_is_Dipole) {
948 >        pref = pre22_ * *(idat.electroMult);
949 >        DadDb = dot(D_a, D_b);
950 >        DaxDb = cross(D_a, D_b);
951  
952 <        // precompute variables for convenience
953 <        preSw =  *(idat.sw)  * pref;
954 <        c2ri = c2 * riji;
955 <        c3ri = c3 * riji;
956 <        c4rij = c4 *  *(idat.rij) ;
762 <        rhatdot2 = two * rhat * c3;
763 <        rhatc4 = rhat * c4rij;
952 >        U  -= pref * (DadDb * v21 + rdDa * rdDb * v22);
953 >        F  -= pref * (DadDb * rhat + rdDb * D_a + rdDa * D_b)*v23;
954 >        F  -= pref * (rdDa * rdDb) * v24 * rhat;
955 >        Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa);
956 >        Tb += pref * (-v21 * DaxDb - v22 * rdDa * rxDb);
957  
958 <        // calculate the potential
959 <        pot_term = ( qxx_j * (cx2*c3 - c2ri) +
960 <                     qyy_j * (cy2*c3 - c2ri) +
961 <                     qzz_j * (cz2*c3 - c2ri) );
962 <        vterm = pref * pot_term;
963 <        vpair += vterm;
964 <        epot +=  *(idat.sw)  * vterm;
965 <                
773 <        // calculate derivatives for the forces and torques
774 <
775 <        dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (two*cx_j*ux_j + rhat)*c3ri) +
776 <                           qyy_j* (cy2*rhatc4 - (two*cy_j*uy_j + rhat)*c3ri) +
777 <                           qzz_j* (cz2*rhatc4 - (two*cz_j*uz_j + rhat)*c3ri));
778 <                          
779 <        dudux_j += preSw * qxx_j * cx_j * rhatdot2;
780 <        duduy_j += preSw * qyy_j * cy_j * rhatdot2;
781 <        duduz_j += preSw * qzz_j * cz_j * rhatdot2;
782 <        if (i_is_Fluctuating) {
783 <          *(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i;
958 >        // Even if we excluded this pair from direct interactions, we
959 >        // still have the reaction-field-mediated dipole-dipole
960 >        // interaction:
961 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
962 >          rfContrib = -pref * preRF_ * 2.0;
963 >          indirect_Pot += rfContrib * DadDb;
964 >          indirect_Ta  += rfContrib * DaxDb;
965 >          indirect_Tb  -= rfContrib * DaxDb;
966          }
967  
968        }
969 +
970 +      if (b_is_Quadrupole) {
971 +        pref = pre24_ * *(idat.electroMult);
972 +        DadQb = D_a * Q_b;
973 +        DadQbr = dot(D_a, Qbr);
974 +        DaxQbr = cross(D_a, Qbr);
975 +
976 +        U  -= pref * ((trQb*rdDa + 2.0*DadQbr)*v31 + rdDa*rdQbr*v32);
977 +        F  -= pref * (trQb*D_a + 2.0*DadQb) * v33;
978 +        F  -= pref * (trQb*rdDa*rhat + 2.0*DadQbr*rhat + D_a*rdQbr
979 +                      + 2.0*rdDa*rQb)*v34;
980 +        F  -= pref * (rdDa * rdQbr * rhat * v35);
981 +        Ta += pref * ((-trQb*rxDa + 2.0 * DaxQbr)*v31 - rxDa*rdQbr*v32);
982 +        Tb += pref * ((2.0*cross(DadQb, rhat) - 2.0*DaxQbr)*v31
983 +                      - 2.0*rdDa*rxQbr*v32);
984 +      }
985      }
788    
789    if (i_is_Dipole) {
986  
987 <      if (j_is_Charge) {
988 <        // variables used by all the methods
989 <        pref =  *(idat.electroMult) * pre12_ * q_j * mu_i;
990 <        preSw =  *(idat.sw)  * pref;
987 >    if (a_is_Quadrupole) {
988 >      if (b_is_Charge) {
989 >        pref = pre14_ * *(idat.electroMult);
990 >        U  += C_b * pref * (v21 * trQa + v22 * rdQar);
991 >        F  += C_b * pref * (trQa * rhat + 2.0 * Qar) * v23;
992 >        F  += C_b * pref * rdQar * rhat * v24;
993 >        Ta += C_b * pref * 2.0 * rxQar * v22;
994  
995 <        if (summationMethod_ == esm_REACTION_FIELD) {
995 >        if (b_is_Fluctuating) dUdCb += pref * (v21 * trQa + v22 * rdQar);
996 >      }
997 >      if (b_is_Dipole) {
998 >        pref = pre24_ * *(idat.electroMult);
999 >        DbdQa = D_b * Q_a;
1000 >        DbdQar = dot(D_b, Qar);
1001 >        DbxQar = cross(D_b, Qar);
1002  
1003 <          ri2 = riji * riji;
1004 <          ri3 = ri2 * riji;
1003 >        U  += pref * ((trQa*rdDb + 2.0*DbdQar)*v31 + rdDb*rdQar*v32);
1004 >        F  += pref * (trQa*D_b + 2.0*DbdQa) * v33;
1005 >        F  += pref * (trQa*rdDb*rhat + 2.0*DbdQar*rhat + D_b*rdQar
1006 >                      + 2.0*rdDb*rQa)*v34;
1007 >        F  += pref * (rdDb * rdQar * rhat * v35);
1008 >        Ta += pref * ((-2.0*cross(DbdQa, rhat) + 2.0*DbxQar)*v31
1009 >                      + 2.0*rdDb*rxQar*v32);
1010 >        Tb += pref * ((trQa*rxDb - 2.0 * DbxQar)*v31 + rxDb*rdQar*v32);
1011 >      }
1012 >      if (b_is_Quadrupole) {
1013 >        pref = pre44_ * *(idat.electroMult);  // yes
1014 >        QaQb = Q_a * Q_b;
1015 >        trQaQb = QaQb.trace();
1016 >        rQaQb = rhat * QaQb;
1017 >        QaQbr = QaQb * rhat;
1018 >        QaxQb = cross(Q_a, Q_b);
1019 >        rQaQbr = dot(rQa, Qbr);
1020 >        rQaxQbr = cross(rQa, Qbr);
1021 >        
1022 >        U  += pref * (trQa * trQb + 2.0 * trQaQb) * v41;
1023 >        U  += pref * (trQa * rdQbr + trQb * rdQar  + 4.0 * rQaQbr) * v42;
1024 >        U  += pref * (rdQar * rdQbr) * v43;
1025  
1026 <          vterm = pref * ct_i * ( ri2 - preRF2_ *  *(idat.rij)  );
1027 <          vpair += vterm;
1028 <          epot +=  *(idat.sw)  * vterm;
804 <          
805 <          dVdr += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_ * uz_i);
806 <          
807 <          duduz_i += preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );
1026 >        F  += pref * rhat * (trQa * trQb + 2.0 * trQaQb)*v44;
1027 >        F  += pref * rhat * (trQa * rdQbr + trQb * rdQar + 4.0 * rQaQbr)*v45;
1028 >        F  += pref * rhat * (rdQar * rdQbr)*v46;
1029  
1030 <          // Even if we excluded this pair from direct interactions,
1031 <          // we still have the reaction-field-mediated charge-dipole
1032 <          // interaction:
1030 >        F  += pref * 2.0 * (trQb*rQa + trQa*rQb)*v44;
1031 >        F  += pref * 4.0 * (rQaQb + QaQbr)*v44;
1032 >        F  += pref * 2.0 * (rQa*rdQbr + rdQar*rQb)*v45;
1033  
1034 <          if (idat.excluded) {
1035 <            indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij);
1036 <            indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij);
1037 <            indirect_dVdr += -preSw * preRF2_ * uz_i;
1038 <            indirect_duduz_i += -preSw * rhat * preRF2_ *  *(idat.rij);
818 <          }
819 <            
820 <        } else {
821 <          
822 <          // determine inverse r if we are using split dipoles
823 <          if (i_is_SplitDipole) {
824 <            BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
825 <            ri = 1.0 / BigR;
826 <            scale =  *(idat.rij)  * ri;
827 <          } else {
828 <            ri = riji;
829 <            scale = 1.0;
830 <          }
831 <          
832 <          sc2 = scale * scale;
833 <            
834 <          if (screeningMethod_ == DAMPED) {
835 <            // assemble the damping variables
836 <            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
837 <            //erfcVal = res.first;
838 <            //derfcVal = res.second;
839 <            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
840 <            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
841 <            c1 = erfcVal * ri;
842 <            c2 = (-derfcVal + c1) * ri;
843 <            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
844 <          } else {
845 <            c1 = ri;
846 <            c2 = c1 * ri;
847 <            c3 = 3.0 * c2 * ri;
848 <          }
849 <          
850 <          c2ri = c2 * ri;
851 <              
852 <          // calculate the potential
853 <          pot_term = c2 * scale;
854 <          vterm = pref * ct_i * pot_term;
855 <          vpair += vterm;
856 <          epot +=  *(idat.sw)  * vterm;
1034 >        Ta += pref * (- 4.0 * QaxQb * v41);
1035 >        Ta += pref * (- 2.0 * trQb * cross(rQa, rhat)
1036 >                      + 4.0 * cross(rhat, QaQbr)
1037 >                      - 4.0 * rQaxQbr) * v42;
1038 >        Ta += pref * 2.0 * cross(rhat,Qar) * rdQbr * v43;
1039  
858          // calculate derivatives for the forces and torques
859          dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3);
860          duduz_i += preSw * pot_term * rhat;
861        }
1040  
1041 <        if (j_is_Fluctuating) {
1042 <          *(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j;
1043 <        }
1041 >        Tb += pref * (+ 4.0 * QaxQb * v41);
1042 >        Tb += pref * (- 2.0 * trQa * cross(rQb, rhat)
1043 >                      - 4.0 * cross(rQaQb, rhat)
1044 >                      + 4.0 * rQaxQbr) * v42;
1045 >        // Possible replacement for line 2 above:
1046 >        //             + 4.0 * cross(rhat, QbQar)
1047  
1048 <      }
1048 >        Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43;
1049  
1050 <      if (j_is_Dipole) {
870 <        // variables used by all methods
871 <        ct_ij = dot(uz_i, uz_j);
872 <
873 <        pref =  *(idat.electroMult) * pre22_ * mu_i * mu_j;
874 <        preSw =  *(idat.sw)  * pref;
875 <
876 <        if (summationMethod_ == esm_REACTION_FIELD) {
877 <          ri2 = riji * riji;
878 <          ri3 = ri2 * riji;
879 <          ri4 = ri2 * ri2;
880 <
881 <          vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
882 <                           preRF2_ * ct_ij );
883 <          vpair += vterm;
884 <          epot +=  *(idat.sw)  * vterm;
885 <            
886 <          a1 = 5.0 * ct_i * ct_j - ct_ij;
887 <            
888 <          dVdr += preSw * three * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
889 <
890 <          duduz_i += preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
891 <          duduz_j += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_*uz_i);
892 <
893 <          if (idat.excluded) {
894 <            indirect_vpair +=  - pref * preRF2_ * ct_ij;
895 <            indirect_Pot +=    - preSw * preRF2_ * ct_ij;
896 <            indirect_duduz_i += -preSw * preRF2_ * uz_j;
897 <            indirect_duduz_j += -preSw * preRF2_ * uz_i;
898 <          }
899 <
900 <        } else {
901 <          
902 <          if (i_is_SplitDipole) {
903 <            if (j_is_SplitDipole) {
904 <              BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
905 <            } else {
906 <              BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
907 <            }
908 <            ri = 1.0 / BigR;
909 <            scale =  *(idat.rij)  * ri;
910 <          } else {
911 <            if (j_is_SplitDipole) {
912 <              BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
913 <              ri = 1.0 / BigR;
914 <              scale =  *(idat.rij)  * ri;
915 <            } else {
916 <              ri = riji;
917 <              scale = 1.0;
918 <            }
919 <          }
920 <          if (screeningMethod_ == DAMPED) {
921 <            // assemble damping variables
922 <            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
923 <            //erfcVal = res.first;
924 <            //derfcVal = res.second;
925 <            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
926 <            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
927 <            c1 = erfcVal * ri;
928 <            c2 = (-derfcVal + c1) * ri;
929 <            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
930 <            c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri;
931 <          } else {
932 <            c1 = ri;
933 <            c2 = c1 * ri;
934 <            c3 = 3.0 * c2 * ri;
935 <            c4 = 5.0 * c3 * ri * ri;
936 <          }
937 <
938 <          // precompute variables for convenience
939 <          sc2 = scale * scale;
940 <          cti3 = ct_i * sc2 * c3;
941 <          ctj3 = ct_j * sc2 * c3;
942 <          ctidotj = ct_i * ct_j * sc2;
943 <          preSwSc = preSw * scale;
944 <          c2ri = c2 * ri;
945 <          c3ri = c3 * ri;
946 <          c4rij = c4 *  *(idat.rij) ;
947 <
948 <          // calculate the potential
949 <          pot_term = (ct_ij * c2ri - ctidotj * c3);
950 <          vterm = pref * pot_term;
951 <          vpair += vterm;
952 <          epot +=  *(idat.sw)  * vterm;
953 <
954 <          // calculate derivatives for the forces and torques
955 <          dVdr += preSwSc * ( ctidotj * rhat * c4rij  -
956 <                              (ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri);
957 <          
958 <          duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat);
959 <          duduz_j += preSw * (uz_i * c2ri - cti3 * rhat);
960 <        }
1050 >        //  cerr << " tsum = " << Ta + Tb - cross(  *(idat.d) , F ) << "\n";
1051        }
1052      }
1053  
1054 <    if (i_is_Quadrupole) {
1055 <      if (j_is_Charge) {
1056 <        // precompute some necessary variables
967 <        cx2 = cx_i * cx_i;
968 <        cy2 = cy_i * cy_i;
969 <        cz2 = cz_i * cz_i;
970 <
971 <        pref =  *(idat.electroMult) * pre14_ * q_j * one_third_;
972 <
973 <        if (screeningMethod_ == DAMPED) {
974 <          // assemble the damping variables
975 <          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
976 <          //erfcVal = res.first;
977 <          //derfcVal = res.second;
978 <          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
979 <          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
980 <          c1 = erfcVal * riji;
981 <          c2 = (-derfcVal + c1) * riji;
982 <          c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
983 <          c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
984 <        } else {
985 <          c1 = riji;
986 <          c2 = c1 * riji;
987 <          c3 = 3.0 * c2 * riji;
988 <          c4 = 5.0 * c3 * riji * riji;
989 <        }
990 <          
991 <        // precompute some variables for convenience
992 <        preSw =  *(idat.sw)  * pref;
993 <        c2ri = c2 * riji;
994 <        c3ri = c3 * riji;
995 <        c4rij = c4 *  *(idat.rij) ;
996 <        rhatdot2 = two * rhat * c3;
997 <        rhatc4 = rhat * c4rij;
998 <
999 <        // calculate the potential
1000 <        pot_term = ( qxx_i * (cx2 * c3 - c2ri) +
1001 <                     qyy_i * (cy2 * c3 - c2ri) +
1002 <                     qzz_i * (cz2 * c3 - c2ri) );
1003 <        
1004 <        vterm = pref * pot_term;
1005 <        vpair += vterm;
1006 <        epot +=  *(idat.sw)  * vterm;
1007 <
1008 <        // calculate the derivatives for the forces and torques
1009 <
1010 <        dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (two*cx_i*ux_i + rhat)*c3ri) +
1011 <                          qyy_i* (cy2*rhatc4 - (two*cy_i*uy_i + rhat)*c3ri) +
1012 <                          qzz_i* (cz2*rhatc4 - (two*cz_i*uz_i + rhat)*c3ri));
1013 <
1014 <        dudux_i += preSw * qxx_i * cx_i *  rhatdot2;
1015 <        duduy_i += preSw * qyy_i * cy_i *  rhatdot2;
1016 <        duduz_i += preSw * qzz_i * cz_i *  rhatdot2;
1017 <
1018 <        if (j_is_Fluctuating) {
1019 <          *(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j;
1020 <        }
1021 <
1022 <      }
1054 >    if (idat.doElectricField) {
1055 >      *(idat.eField1) += Ea * *(idat.electroMult);
1056 >      *(idat.eField2) += Eb * *(idat.electroMult);
1057      }
1058  
1059 +    if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw);
1060 +    if (b_is_Fluctuating) *(idat.dVdFQ2) += dUdCb * *(idat.sw);
1061  
1062      if (!idat.excluded) {
1027      *(idat.vpair) += vpair;
1028      (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
1029      *(idat.f1) += dVdr;
1063        
1064 <      if (i_is_Dipole || i_is_Quadrupole)
1065 <        *(idat.t1) -= cross(uz_i, duduz_i);
1066 <      if (i_is_Quadrupole) {
1034 <        *(idat.t1) -= cross(ux_i, dudux_i);
1035 <        *(idat.t1) -= cross(uy_i, duduy_i);
1036 <      }
1064 >      *(idat.vpair) += U;
1065 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += U * *(idat.sw);
1066 >      *(idat.f1) += F * *(idat.sw);
1067        
1068 <      if (j_is_Dipole || j_is_Quadrupole)
1069 <        *(idat.t2) -= cross(uz_j, duduz_j);
1040 <      if (j_is_Quadrupole) {
1041 <        *(idat.t2) -= cross(uz_j, dudux_j);
1042 <        *(idat.t2) -= cross(uz_j, duduy_j);
1043 <      }
1068 >      if (a_is_Dipole || a_is_Quadrupole)
1069 >        *(idat.t1) += Ta * *(idat.sw);
1070  
1071 +      if (b_is_Dipole || b_is_Quadrupole)
1072 +        *(idat.t2) += Tb * *(idat.sw);
1073 +      
1074      } else {
1075  
1076        // only accumulate the forces and torques resulting from the
1077        // indirect reaction field terms.
1078  
1079 <      *(idat.vpair) += indirect_vpair;
1080 <      (*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot;
1081 <      *(idat.f1) += indirect_dVdr;
1079 >      *(idat.vpair) += indirect_Pot;      
1080 >      (*(idat.excludedPot))[ELECTROSTATIC_FAMILY] +=  excluded_Pot;
1081 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += *(idat.sw) * indirect_Pot;
1082 >      *(idat.f1) += *(idat.sw) * indirect_F;
1083        
1084 <      if (i_is_Dipole)
1085 <        *(idat.t1) -= cross(uz_i, indirect_duduz_i);
1086 <      if (j_is_Dipole)
1087 <        *(idat.t2) -= cross(uz_j, indirect_duduz_j);
1084 >      if (a_is_Dipole || a_is_Quadrupole)
1085 >        *(idat.t1) += *(idat.sw) * indirect_Ta;
1086 >            
1087 >      if (b_is_Dipole || b_is_Quadrupole)
1088 >        *(idat.t2) += *(idat.sw) * indirect_Tb;
1089      }
1059
1090      return;
1091    }  
1092      
1093    void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1094 <    RealType mu1, preVal, chg1, self;
1065 <    
1094 >
1095      if (!initialized_) initialize();
1096  
1097      ElectrostaticAtomData data = ElectrostaticMap[sdat.atype];
1098 <  
1098 >    
1099      // logicals
1100      bool i_is_Charge = data.is_Charge;
1101      bool i_is_Dipole = data.is_Dipole;
1102 +    bool i_is_Fluctuating = data.is_Fluctuating;
1103 +    RealType C_a = data.fixedCharge;  
1104 +    RealType self, preVal, DadDa;
1105 +    
1106 +    if (i_is_Fluctuating) {
1107 +      C_a += *(sdat.flucQ);
1108 +      // dVdFQ is really a force, so this is negative the derivative
1109 +      *(sdat.dVdFQ) -=  *(sdat.flucQ) * data.hardness + data.electronegativity;
1110 +      (*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) *
1111 +        (*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity);
1112 +    }
1113  
1114 <    if (summationMethod_ == esm_REACTION_FIELD) {
1115 <      if (i_is_Dipole) {
1116 <        mu1 = data.dipole_moment;          
1117 <        preVal = pre22_ * preRF2_ * mu1 * mu1;
1118 <        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal;
1119 <        
1120 <        // The self-correction term adds into the reaction field vector
1121 <        Vector3d uz_i = sdat.eFrame->getColumn(2);
1122 <        Vector3d ei = preVal * uz_i;
1114 >    switch (summationMethod_) {
1115 >    case esm_REACTION_FIELD:
1116 >      
1117 >      if (i_is_Charge) {
1118 >        // Self potential [see Wang and Hermans, "Reaction Field
1119 >        // Molecular Dynamics Simulation with Friedman’s Image Charge
1120 >        // Method," J. Phys. Chem. 99, 12001-12007 (1995).]
1121 >        preVal = pre11_ * preRF_ * C_a * C_a;
1122 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal / cutoffRadius_;
1123 >      }
1124  
1125 <        // This looks very wrong.  A vector crossed with itself is zero.
1126 <        *(sdat.t) -= cross(uz_i, ei);
1125 >      if (i_is_Dipole) {
1126 >        DadDa = data.dipole.lengthSquare();
1127 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= pre22_ * preRF_ * DadDa;
1128        }
1129 <    } else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) {
1129 >      
1130 >      break;
1131 >      
1132 >    case esm_SHIFTED_FORCE:
1133 >    case esm_SHIFTED_POTENTIAL:
1134        if (i_is_Charge) {        
1135 <        chg1 = data.fixedCharge;
1090 <        if (screeningMethod_ == DAMPED) {
1091 <          self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1092 <        } else {        
1093 <          self = - 0.5 * rcuti_ * chg1 * (chg1 +  *(sdat.skippedCharge)) * pre11_;
1094 <        }
1135 >        self = -0.5 * selfMult_ * C_a * (C_a + *(sdat.skippedCharge)) * pre11_;
1136          (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1137        }
1138 +      break;
1139 +    default:
1140 +      break;
1141      }
1142    }
1143 <
1143 >  
1144    RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1145      // This seems to work moderately well as a default.  There's no
1146      // inherent scale for 1/r interactions that we can standardize.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines