48 |
|
#include "utils/simError.h" |
49 |
|
#include "types/NonBondedInteractionType.hpp" |
50 |
|
#include "types/FixedChargeAdapter.hpp" |
51 |
+ |
#include "types/FluctuatingChargeAdapter.hpp" |
52 |
|
#include "types/MultipoleAdapter.hpp" |
53 |
|
#include "io/Globals.hpp" |
54 |
+ |
#include "nonbonded/SlaterIntegrals.hpp" |
55 |
+ |
#include "utils/PhysicalConstants.hpp" |
56 |
+ |
#include "math/erfc.hpp" |
57 |
|
|
58 |
|
namespace OpenMD { |
59 |
|
|
193 |
|
|
194 |
|
// throw warning |
195 |
|
sprintf( painCave.errMsg, |
196 |
< |
"Electrostatic::initialize: dampingAlpha was not specified in the input file.\n" |
197 |
< |
"\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", |
196 |
> |
"Electrostatic::initialize: dampingAlpha was not specified in the\n" |
197 |
> |
"\tinput file. A default value of %f (1/ang) will be used for the\n" |
198 |
> |
"\tcutoff of %f (ang).\n", |
199 |
|
dampingAlpha_, cutoffRadius_); |
200 |
|
painCave.severity = OPENMD_INFO; |
201 |
|
painCave.isFatal = 0; |
218 |
|
addType(at); |
219 |
|
} |
220 |
|
|
216 |
– |
|
221 |
|
cutoffRadius2_ = cutoffRadius_ * cutoffRadius_; |
222 |
|
rcuti_ = 1.0 / cutoffRadius_; |
223 |
|
rcuti2_ = rcuti_ * rcuti_; |
284 |
|
electrostaticAtomData.is_Dipole = false; |
285 |
|
electrostaticAtomData.is_SplitDipole = false; |
286 |
|
electrostaticAtomData.is_Quadrupole = false; |
287 |
+ |
electrostaticAtomData.is_Fluctuating = false; |
288 |
|
|
289 |
|
FixedChargeAdapter fca = FixedChargeAdapter(atomType); |
290 |
|
|
291 |
|
if (fca.isFixedCharge()) { |
292 |
|
electrostaticAtomData.is_Charge = true; |
293 |
< |
electrostaticAtomData.charge = fca.getCharge(); |
293 |
> |
electrostaticAtomData.fixedCharge = fca.getCharge(); |
294 |
|
} |
295 |
|
|
296 |
|
MultipoleAdapter ma = MultipoleAdapter(atomType); |
314 |
|
} |
315 |
|
} |
316 |
|
|
317 |
+ |
FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType); |
318 |
+ |
|
319 |
+ |
if (fqa.isFluctuatingCharge()) { |
320 |
+ |
electrostaticAtomData.is_Fluctuating = true; |
321 |
+ |
electrostaticAtomData.electronegativity = fqa.getElectronegativity(); |
322 |
+ |
electrostaticAtomData.hardness = fqa.getHardness(); |
323 |
+ |
electrostaticAtomData.slaterN = fqa.getSlaterN(); |
324 |
+ |
electrostaticAtomData.slaterZeta = fqa.getSlaterZeta(); |
325 |
+ |
} |
326 |
|
|
327 |
|
pair<map<int,AtomType*>::iterator,bool> ret; |
328 |
|
ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(), |
336 |
|
simError(); |
337 |
|
} |
338 |
|
|
339 |
< |
ElectrostaticMap[atomType] = electrostaticAtomData; |
339 |
> |
ElectrostaticMap[atomType] = electrostaticAtomData; |
340 |
> |
|
341 |
> |
// Now, iterate over all known types and add to the mixing map: |
342 |
> |
|
343 |
> |
map<AtomType*, ElectrostaticAtomData>::iterator it; |
344 |
> |
for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) { |
345 |
> |
AtomType* atype2 = (*it).first; |
346 |
> |
ElectrostaticAtomData eaData2 = (*it).second; |
347 |
> |
if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) { |
348 |
> |
|
349 |
> |
RealType a = electrostaticAtomData.slaterZeta; |
350 |
> |
RealType b = eaData2.slaterZeta; |
351 |
> |
int m = electrostaticAtomData.slaterN; |
352 |
> |
int n = eaData2.slaterN; |
353 |
> |
|
354 |
> |
// Create the spline of the coulombic integral for s-type |
355 |
> |
// Slater orbitals. Add a 2 angstrom safety window to deal |
356 |
> |
// with cutoffGroups that have charged atoms longer than the |
357 |
> |
// cutoffRadius away from each other. |
358 |
> |
|
359 |
> |
RealType rval; |
360 |
> |
RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1); |
361 |
> |
vector<RealType> rvals; |
362 |
> |
vector<RealType> J1vals; |
363 |
> |
vector<RealType> J2vals; |
364 |
> |
// don't start at i = 0, as rval = 0 is undefined for the slater overlap integrals. |
365 |
> |
for (int i = 1; i < np_+1; i++) { |
366 |
> |
rval = RealType(i) * dr; |
367 |
> |
rvals.push_back(rval); |
368 |
> |
J1vals.push_back(sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromToBohr ) * PhysicalConstants::hartreeToKcal ); |
369 |
> |
// may not be necessary if Slater coulomb integral is symmetric |
370 |
> |
J2vals.push_back(sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromToBohr ) * PhysicalConstants::hartreeToKcal ); |
371 |
> |
} |
372 |
> |
|
373 |
> |
CubicSpline* J1 = new CubicSpline(); |
374 |
> |
J1->addPoints(rvals, J1vals); |
375 |
> |
CubicSpline* J2 = new CubicSpline(); |
376 |
> |
J2->addPoints(rvals, J2vals); |
377 |
> |
|
378 |
> |
pair<AtomType*, AtomType*> key1, key2; |
379 |
> |
key1 = make_pair(atomType, atype2); |
380 |
> |
key2 = make_pair(atype2, atomType); |
381 |
> |
|
382 |
> |
Jij[key1] = J1; |
383 |
> |
Jij[key2] = J2; |
384 |
> |
} |
385 |
> |
} |
386 |
> |
|
387 |
|
return; |
388 |
|
} |
389 |
|
|
449 |
|
Vector3d indirect_dVdr(V3Zero); |
450 |
|
Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero); |
451 |
|
|
452 |
+ |
RealType coulInt, vFluc1(0.0), vFluc2(0.0); |
453 |
|
pair<RealType, RealType> res; |
454 |
|
|
455 |
+ |
// splines for coulomb integrals |
456 |
+ |
CubicSpline* J1; |
457 |
+ |
CubicSpline* J2; |
458 |
+ |
|
459 |
|
if (!initialized_) initialize(); |
460 |
|
|
461 |
|
ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first]; |
472 |
|
bool i_is_Dipole = data1.is_Dipole; |
473 |
|
bool i_is_SplitDipole = data1.is_SplitDipole; |
474 |
|
bool i_is_Quadrupole = data1.is_Quadrupole; |
475 |
+ |
bool i_is_Fluctuating = data1.is_Fluctuating; |
476 |
|
|
477 |
|
bool j_is_Charge = data2.is_Charge; |
478 |
|
bool j_is_Dipole = data2.is_Dipole; |
479 |
|
bool j_is_SplitDipole = data2.is_SplitDipole; |
480 |
|
bool j_is_Quadrupole = data2.is_Quadrupole; |
481 |
+ |
bool j_is_Fluctuating = data2.is_Fluctuating; |
482 |
|
|
483 |
|
if (i_is_Charge) { |
484 |
< |
q_i = data1.charge; |
484 |
> |
q_i = data1.fixedCharge; |
485 |
> |
|
486 |
> |
if (i_is_Fluctuating) { |
487 |
> |
q_i += *(idat.flucQ1); |
488 |
> |
} |
489 |
> |
|
490 |
|
if (idat.excluded) { |
491 |
|
*(idat.skippedCharge2) += q_i; |
492 |
|
} |
524 |
|
} |
525 |
|
|
526 |
|
if (j_is_Charge) { |
527 |
< |
q_j = data2.charge; |
527 |
> |
q_j = data2.fixedCharge; |
528 |
> |
|
529 |
> |
if (j_is_Fluctuating) |
530 |
> |
q_j += *(idat.flucQ2); |
531 |
> |
|
532 |
|
if (idat.excluded) { |
533 |
|
*(idat.skippedCharge1) += q_j; |
534 |
|
} |
566 |
|
duduz_j = V3Zero; |
567 |
|
} |
568 |
|
|
569 |
+ |
if (i_is_Fluctuating && j_is_Fluctuating) { |
570 |
+ |
J1 = Jij[idat.atypes]; |
571 |
+ |
J2 = Jij[make_pair(idat.atypes.second, idat.atypes.first)]; |
572 |
+ |
} |
573 |
+ |
|
574 |
|
epot = 0.0; |
575 |
|
dVdr = V3Zero; |
576 |
|
|
579 |
|
if (j_is_Charge) { |
580 |
|
if (screeningMethod_ == DAMPED) { |
581 |
|
// assemble the damping variables |
582 |
< |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
583 |
< |
//erfcVal = res.first; |
584 |
< |
//derfcVal = res.second; |
582 |
> |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
583 |
> |
erfcVal = res.first; |
584 |
> |
derfcVal = res.second; |
585 |
|
|
586 |
< |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
587 |
< |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
586 |
> |
//erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
587 |
> |
//derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
588 |
|
|
589 |
|
c1 = erfcVal * riji; |
590 |
|
c2 = (-derfcVal + c1) * riji; |
593 |
|
c2 = c1 * riji; |
594 |
|
} |
595 |
|
|
596 |
< |
preVal = *(idat.electroMult) * pre11_ * q_i * q_j; |
596 |
> |
preVal = *(idat.electroMult) * pre11_; |
597 |
|
|
598 |
|
if (summationMethod_ == esm_SHIFTED_POTENTIAL) { |
599 |
|
vterm = preVal * (c1 - c1c_); |
622 |
|
|
623 |
|
vterm = preVal * riji * erfcVal; |
624 |
|
dudr = - *(idat.sw) * preVal * c2; |
625 |
+ |
|
626 |
+ |
} |
627 |
+ |
|
628 |
+ |
vpair += vterm * q_i * q_j; |
629 |
+ |
epot += *(idat.sw) * vterm * q_i * q_j; |
630 |
+ |
dVdr += dudr * rhat * q_i * q_j; |
631 |
|
|
632 |
+ |
if (i_is_Fluctuating) { |
633 |
+ |
if (idat.excluded) { |
634 |
+ |
// vFluc1 is the difference between the direct coulomb integral |
635 |
+ |
// and the normal 1/r-like interaction between point charges. |
636 |
+ |
coulInt = J1->getValueAt( *(idat.rij) ); |
637 |
+ |
vFluc1 = coulInt - (*(idat.sw) * vterm); |
638 |
+ |
} else { |
639 |
+ |
vFluc1 = 0.0; |
640 |
+ |
} |
641 |
+ |
*(idat.dVdFQ1) += ( *(idat.sw) * vterm + vFluc1 ) * q_j; |
642 |
|
} |
643 |
|
|
644 |
< |
vpair += vterm; |
645 |
< |
epot += *(idat.sw) * vterm; |
646 |
< |
dVdr += dudr * rhat; |
644 |
> |
if (j_is_Fluctuating) { |
645 |
> |
if (idat.excluded) { |
646 |
> |
// vFluc2 is the difference between the direct coulomb integral |
647 |
> |
// and the normal 1/r-like interaction between point charges. |
648 |
> |
coulInt = J2->getValueAt( *(idat.rij) ); |
649 |
> |
vFluc2 = coulInt - (*(idat.sw) * vterm); |
650 |
> |
} else { |
651 |
> |
vFluc2 = 0.0; |
652 |
> |
} |
653 |
> |
*(idat.dVdFQ2) += ( *(idat.sw) * vterm + vFluc2 ) * q_i; |
654 |
> |
} |
655 |
> |
|
656 |
> |
|
657 |
|
} |
658 |
|
|
659 |
|
if (j_is_Dipole) { |
726 |
|
duduz_j += -preSw * pot_term * rhat; |
727 |
|
|
728 |
|
} |
729 |
+ |
if (i_is_Fluctuating) { |
730 |
+ |
*(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i; |
731 |
+ |
} |
732 |
|
} |
733 |
|
|
734 |
|
if (j_is_Quadrupole) { |
781 |
|
dudux_j += preSw * qxx_j * cx_j * rhatdot2; |
782 |
|
duduy_j += preSw * qyy_j * cy_j * rhatdot2; |
783 |
|
duduz_j += preSw * qzz_j * cz_j * rhatdot2; |
784 |
+ |
if (i_is_Fluctuating) { |
785 |
+ |
*(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i; |
786 |
+ |
} |
787 |
+ |
|
788 |
|
} |
789 |
|
} |
790 |
|
|
861 |
|
dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3); |
862 |
|
duduz_i += preSw * pot_term * rhat; |
863 |
|
} |
864 |
+ |
|
865 |
+ |
if (j_is_Fluctuating) { |
866 |
+ |
*(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j; |
867 |
+ |
} |
868 |
+ |
|
869 |
|
} |
870 |
|
|
871 |
|
if (j_is_Dipole) { |
1016 |
|
dudux_i += preSw * qxx_i * cx_i * rhatdot2; |
1017 |
|
duduy_i += preSw * qyy_i * cy_i * rhatdot2; |
1018 |
|
duduz_i += preSw * qzz_i * cz_i * rhatdot2; |
1019 |
+ |
|
1020 |
+ |
if (j_is_Fluctuating) { |
1021 |
+ |
*(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j; |
1022 |
+ |
} |
1023 |
+ |
|
1024 |
|
} |
1025 |
|
} |
1026 |
|
|
1050 |
|
// indirect reaction field terms. |
1051 |
|
|
1052 |
|
*(idat.vpair) += indirect_vpair; |
1053 |
+ |
|
1054 |
+ |
(*(idat.excludedPot))[ELECTROSTATIC_FAMILY] += (*(idat.sw) * vterm + |
1055 |
+ |
vFluc1 ) * q_i * q_j; |
1056 |
|
(*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot; |
1057 |
|
*(idat.f1) += indirect_dVdr; |
1058 |
|
|
1062 |
|
*(idat.t2) -= cross(uz_j, indirect_duduz_j); |
1063 |
|
} |
1064 |
|
|
937 |
– |
|
1065 |
|
return; |
1066 |
|
} |
1067 |
|
|
1068 |
|
void Electrostatic::calcSelfCorrection(SelfData &sdat) { |
1069 |
< |
RealType mu1, preVal, chg1, self; |
943 |
< |
|
1069 |
> |
RealType mu1, preVal, self; |
1070 |
|
if (!initialized_) initialize(); |
1071 |
|
|
1072 |
|
ElectrostaticAtomData data = ElectrostaticMap[sdat.atype]; |
1074 |
|
// logicals |
1075 |
|
bool i_is_Charge = data.is_Charge; |
1076 |
|
bool i_is_Dipole = data.is_Dipole; |
1077 |
+ |
bool i_is_Fluctuating = data.is_Fluctuating; |
1078 |
+ |
RealType chg1 = data.fixedCharge; |
1079 |
+ |
|
1080 |
+ |
if (i_is_Fluctuating) { |
1081 |
+ |
chg1 += *(sdat.flucQ); |
1082 |
+ |
// dVdFQ is really a force, so this is negative the derivative |
1083 |
+ |
*(sdat.dVdFQ) -= *(sdat.flucQ) * data.hardness + data.electronegativity; |
1084 |
+ |
(*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) * |
1085 |
+ |
(*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity); |
1086 |
+ |
} |
1087 |
|
|
1088 |
|
if (summationMethod_ == esm_REACTION_FIELD) { |
1089 |
|
if (i_is_Dipole) { |
1100 |
|
} |
1101 |
|
} else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) { |
1102 |
|
if (i_is_Charge) { |
967 |
– |
chg1 = data.charge; |
1103 |
|
if (screeningMethod_ == DAMPED) { |
1104 |
|
self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_; |
1105 |
|
} else { |