ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Electrostatic.cpp
(Generate patch)

Comparing branches/development/src/nonbonded/Electrostatic.cpp (file contents):
Revision 1504 by gezelter, Sat Oct 2 20:41:53 2010 UTC vs.
Revision 1767 by gezelter, Fri Jul 6 22:01:58 2012 UTC

# Line 34 | Line 34
34   * work.  Good starting points are:
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 < * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   #include <stdio.h>
# Line 46 | Line 47
47   #include "nonbonded/Electrostatic.hpp"
48   #include "utils/simError.h"
49   #include "types/NonBondedInteractionType.hpp"
50 < #include "types/DirectionalAtomType.hpp"
50 > #include "types/FixedChargeAdapter.hpp"
51 > #include "types/FluctuatingChargeAdapter.hpp"
52 > #include "types/MultipoleAdapter.hpp"
53 > #include "io/Globals.hpp"
54 > #include "nonbonded/SlaterIntegrals.hpp"
55 > #include "utils/PhysicalConstants.hpp"
56 > #include "math/erfc.hpp"
57  
51
58   namespace OpenMD {
59    
60    Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
61 <                                  forceField_(NULL) {}
61 >                                  forceField_(NULL), info_(NULL),
62 >                                  haveCutoffRadius_(false),
63 >                                  haveDampingAlpha_(false),
64 >                                  haveDielectric_(false),
65 >                                  haveElectroSpline_(false)
66 >  {}
67    
68    void Electrostatic::initialize() {
69 +    
70 +    Globals* simParams_ = info_->getSimParams();
71 +
72 +    summationMap_["HARD"]               = esm_HARD;
73 +    summationMap_["NONE"]               = esm_HARD;
74 +    summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
75 +    summationMap_["SHIFTED_POTENTIAL"]  = esm_SHIFTED_POTENTIAL;
76 +    summationMap_["SHIFTED_FORCE"]      = esm_SHIFTED_FORCE;    
77 +    summationMap_["REACTION_FIELD"]     = esm_REACTION_FIELD;    
78 +    summationMap_["EWALD_FULL"]         = esm_EWALD_FULL;        
79 +    summationMap_["EWALD_PME"]          = esm_EWALD_PME;        
80 +    summationMap_["EWALD_SPME"]         = esm_EWALD_SPME;        
81 +    screeningMap_["DAMPED"]             = DAMPED;
82 +    screeningMap_["UNDAMPED"]           = UNDAMPED;
83 +
84      // these prefactors convert the multipole interactions into kcal / mol
85      // all were computed assuming distances are measured in angstroms
86      // Charge-Charge, assuming charges are measured in electrons
# Line 79 | Line 105 | namespace OpenMD {
105      
106      // variables to handle different summation methods for long-range
107      // electrostatics:
108 <    summationMethod_ = NONE;    
108 >    summationMethod_ = esm_HARD;    
109      screeningMethod_ = UNDAMPED;
110      dielectric_ = 1.0;
111      one_third_ = 1.0 / 3.0;
86    haveDefaultCutoff_ = false;
87    haveDampingAlpha_ = false;
88    haveDielectric_ = false;  
89    haveElectroSpline_ = false;
112    
113 +    // check the summation method:
114 +    if (simParams_->haveElectrostaticSummationMethod()) {
115 +      string myMethod = simParams_->getElectrostaticSummationMethod();
116 +      toUpper(myMethod);
117 +      map<string, ElectrostaticSummationMethod>::iterator i;
118 +      i = summationMap_.find(myMethod);
119 +      if ( i != summationMap_.end() ) {
120 +        summationMethod_ = (*i).second;
121 +      } else {
122 +        // throw error
123 +        sprintf( painCave.errMsg,
124 +                 "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
125 +                 "\t(Input file specified %s .)\n"
126 +                 "\telectrostaticSummationMethod must be one of: \"hard\",\n"
127 +                 "\t\"shifted_potential\", \"shifted_force\", or \n"
128 +                 "\t\"reaction_field\".\n", myMethod.c_str() );
129 +        painCave.isFatal = 1;
130 +        simError();
131 +      }
132 +    } else {
133 +      // set ElectrostaticSummationMethod to the cutoffMethod:
134 +      if (simParams_->haveCutoffMethod()){
135 +        string myMethod = simParams_->getCutoffMethod();
136 +        toUpper(myMethod);
137 +        map<string, ElectrostaticSummationMethod>::iterator i;
138 +        i = summationMap_.find(myMethod);
139 +        if ( i != summationMap_.end() ) {
140 +          summationMethod_ = (*i).second;
141 +        }
142 +      }
143 +    }
144 +    
145 +    if (summationMethod_ == esm_REACTION_FIELD) {        
146 +      if (!simParams_->haveDielectric()) {
147 +        // throw warning
148 +        sprintf( painCave.errMsg,
149 +                 "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
150 +                 "\tA default value of %f will be used for the dielectric.\n", dielectric_);
151 +        painCave.isFatal = 0;
152 +        painCave.severity = OPENMD_INFO;
153 +        simError();
154 +      } else {
155 +        dielectric_ = simParams_->getDielectric();      
156 +      }
157 +      haveDielectric_ = true;
158 +    }
159 +    
160 +    if (simParams_->haveElectrostaticScreeningMethod()) {
161 +      string myScreen = simParams_->getElectrostaticScreeningMethod();
162 +      toUpper(myScreen);
163 +      map<string, ElectrostaticScreeningMethod>::iterator i;
164 +      i = screeningMap_.find(myScreen);
165 +      if ( i != screeningMap_.end()) {
166 +        screeningMethod_ = (*i).second;
167 +      } else {
168 +        sprintf( painCave.errMsg,
169 +                 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
170 +                 "\t(Input file specified %s .)\n"
171 +                 "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
172 +                 "or \"damped\".\n", myScreen.c_str() );
173 +        painCave.isFatal = 1;
174 +        simError();
175 +      }
176 +    }
177 +
178 +    // check to make sure a cutoff value has been set:
179 +    if (!haveCutoffRadius_) {
180 +      sprintf( painCave.errMsg, "Electrostatic::initialize has no Default "
181 +               "Cutoff value!\n");
182 +      painCave.severity = OPENMD_ERROR;
183 +      painCave.isFatal = 1;
184 +      simError();
185 +    }
186 +          
187 +    if (screeningMethod_ == DAMPED) {      
188 +      if (!simParams_->haveDampingAlpha()) {
189 +        // first set a cutoff dependent alpha value
190 +        // we assume alpha depends linearly with rcut from 0 to 20.5 ang
191 +        dampingAlpha_ = 0.425 - cutoffRadius_* 0.02;
192 +        if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;
193 +        
194 +        // throw warning
195 +        sprintf( painCave.errMsg,
196 +                 "Electrostatic::initialize: dampingAlpha was not specified in the\n"
197 +                 "\tinput file.  A default value of %f (1/ang) will be used for the\n"
198 +                 "\tcutoff of %f (ang).\n",
199 +                 dampingAlpha_, cutoffRadius_);
200 +        painCave.severity = OPENMD_INFO;
201 +        painCave.isFatal = 0;
202 +        simError();
203 +      } else {
204 +        dampingAlpha_ = simParams_->getDampingAlpha();
205 +      }
206 +      haveDampingAlpha_ = true;
207 +    }
208 +
209      // find all of the Electrostatic atom Types:
210      ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
211      ForceField::AtomTypeContainer::MapTypeIterator i;
212      AtomType* at;
213 <
213 >    
214      for (at = atomTypes->beginType(i); at != NULL;
215           at = atomTypes->nextType(i)) {
216        
# Line 100 | Line 218 | namespace OpenMD {
218          addType(at);
219      }
220      
221 <    // check to make sure a cutoff value has been set:
222 <    if (!haveDefaultCutoff_) {
105 <      sprintf( painCave.errMsg, "Electrostatic::initialize has no Default "
106 <               "Cutoff value!\n");
107 <      painCave.severity = OPENMD_ERROR;
108 <      painCave.isFatal = 1;
109 <      simError();
110 <    }
111 <
112 <    defaultCutoff2_ = defaultCutoff_ * defaultCutoff_;
113 <    rcuti_ = 1.0 / defaultCutoff_;
221 >    cutoffRadius2_ = cutoffRadius_ * cutoffRadius_;
222 >    rcuti_ = 1.0 / cutoffRadius_;
223      rcuti2_ = rcuti_ * rcuti_;
224      rcuti3_ = rcuti2_ * rcuti_;
225      rcuti4_ = rcuti2_ * rcuti2_;
226  
227      if (screeningMethod_ == DAMPED) {
228 <      if (!haveDampingAlpha_) {
120 <        sprintf( painCave.errMsg, "Electrostatic::initialize has no "
121 <                 "DampingAlpha value!\n");
122 <        painCave.severity = OPENMD_ERROR;
123 <        painCave.isFatal = 1;
124 <        simError();
125 <      }
126 <
228 >      
229        alpha2_ = dampingAlpha_ * dampingAlpha_;
230        alpha4_ = alpha2_ * alpha2_;
231        alpha6_ = alpha4_ * alpha2_;
232        alpha8_ = alpha4_ * alpha4_;
233        
234 <      constEXP_ = exp(-alpha2_ * defaultCutoff2_);
234 >      constEXP_ = exp(-alpha2_ * cutoffRadius2_);
235        invRootPi_ = 0.56418958354775628695;
236        alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_;
237  
238 <      c1c_ = erfc(dampingAlpha_ * defaultCutoff_) * rcuti_;
238 >      c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_;
239        c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_;
240        c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_;
241        c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_;
# Line 148 | Line 250 | namespace OpenMD {
250        c6c_ = 9.0 * c5c_ * rcuti2_;
251      }
252    
253 <    if (summationMethod_ == REACTION_FIELD) {
254 <      if (haveDielectric_) {
255 <        preRF_ = (dielectric_ - 1.0) /
256 <            ((2.0 * dielectric_ + 1.0) * defaultCutoff2_ * defaultCutoff_);
155 <        preRF2_ = 2.0 * preRF_;
156 <      } else {
157 <        sprintf( painCave.errMsg, "Electrostatic::initialize has no Dielectric"
158 <                 " value!\n");
159 <        painCave.severity = OPENMD_ERROR;
160 <        painCave.isFatal = 1;
161 <        simError();
162 <      }
253 >    if (summationMethod_ == esm_REACTION_FIELD) {
254 >      preRF_ = (dielectric_ - 1.0) /
255 >        ((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_);
256 >      preRF2_ = 2.0 * preRF_;
257      }
258 <                              
259 <    RealType dx = defaultCutoff_ / RealType(np_ - 1);
258 >    
259 >    // Add a 2 angstrom safety window to deal with cutoffGroups that
260 >    // have charged atoms longer than the cutoffRadius away from each
261 >    // other.  Splining may not be the best choice here.  Direct calls
262 >    // to erfc might be preferrable.
263 >
264 >    RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
265      RealType rval;
266      vector<RealType> rvals;
267      vector<RealType> yvals;
# Line 185 | Line 284 | namespace OpenMD {
284      electrostaticAtomData.is_Dipole = false;
285      electrostaticAtomData.is_SplitDipole = false;
286      electrostaticAtomData.is_Quadrupole = false;
287 +    electrostaticAtomData.is_Fluctuating = false;
288  
289 <    if (atomType->isCharge()) {
190 <      GenericData* data = atomType->getPropertyByName("Charge");
289 >    FixedChargeAdapter fca = FixedChargeAdapter(atomType);
290  
291 <      if (data == NULL) {
193 <        sprintf( painCave.errMsg, "Electrostatic::addType could not find "
194 <                 "Charge\n"
195 <                 "\tparameters for atomType %s.\n",
196 <                 atomType->getName().c_str());
197 <        painCave.severity = OPENMD_ERROR;
198 <        painCave.isFatal = 1;
199 <        simError();                  
200 <      }
201 <      
202 <      DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
203 <      if (doubleData == NULL) {
204 <        sprintf( painCave.errMsg,
205 <                 "Electrostatic::addType could not convert GenericData to "
206 <                 "Charge for\n"
207 <                 "\tatom type %s\n", atomType->getName().c_str());
208 <        painCave.severity = OPENMD_ERROR;
209 <        painCave.isFatal = 1;
210 <        simError();          
211 <      }
291 >    if (fca.isFixedCharge()) {
292        electrostaticAtomData.is_Charge = true;
293 <      electrostaticAtomData.charge = doubleData->getData();          
293 >      electrostaticAtomData.fixedCharge = fca.getCharge();
294      }
295  
296 <    if (atomType->isDirectional()) {
297 <      DirectionalAtomType* daType = dynamic_cast<DirectionalAtomType*>(atomType);
298 <      
219 <      if (daType->isDipole()) {
220 <        GenericData* data = daType->getPropertyByName("Dipole");
221 <        
222 <        if (data == NULL) {
223 <          sprintf( painCave.errMsg,
224 <                   "Electrostatic::addType could not find Dipole\n"
225 <                   "\tparameters for atomType %s.\n",
226 <                   daType->getName().c_str());
227 <          painCave.severity = OPENMD_ERROR;
228 <          painCave.isFatal = 1;
229 <          simError();                  
230 <        }
231 <      
232 <        DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
233 <        if (doubleData == NULL) {
234 <          sprintf( painCave.errMsg,
235 <                   "Electrostatic::addType could not convert GenericData to "
236 <                   "Dipole Moment\n"
237 <                   "\tfor atom type %s\n", daType->getName().c_str());
238 <          painCave.severity = OPENMD_ERROR;
239 <          painCave.isFatal = 1;
240 <          simError();          
241 <        }
296 >    MultipoleAdapter ma = MultipoleAdapter(atomType);
297 >    if (ma.isMultipole()) {
298 >      if (ma.isDipole()) {
299          electrostaticAtomData.is_Dipole = true;
300 <        electrostaticAtomData.dipole_moment = doubleData->getData();
301 <      }
302 <
246 <      if (daType->isSplitDipole()) {
247 <        GenericData* data = daType->getPropertyByName("SplitDipoleDistance");
248 <        
249 <        if (data == NULL) {
250 <          sprintf(painCave.errMsg,
251 <                  "Electrostatic::addType could not find SplitDipoleDistance\n"
252 <                  "\tparameter for atomType %s.\n",
253 <                  daType->getName().c_str());
254 <          painCave.severity = OPENMD_ERROR;
255 <          painCave.isFatal = 1;
256 <          simError();                  
257 <        }
258 <      
259 <        DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
260 <        if (doubleData == NULL) {
261 <          sprintf( painCave.errMsg,
262 <                   "Electrostatic::addType could not convert GenericData to "
263 <                   "SplitDipoleDistance for\n"
264 <                   "\tatom type %s\n", daType->getName().c_str());
265 <          painCave.severity = OPENMD_ERROR;
266 <          painCave.isFatal = 1;
267 <          simError();          
268 <        }
300 >        electrostaticAtomData.dipole_moment = ma.getDipoleMoment();
301 >      }
302 >      if (ma.isSplitDipole()) {
303          electrostaticAtomData.is_SplitDipole = true;
304 <        electrostaticAtomData.split_dipole_distance = doubleData->getData();
304 >        electrostaticAtomData.split_dipole_distance = ma.getSplitDipoleDistance();
305        }
306 <
307 <      if (daType->isQuadrupole()) {
308 <        GenericData* data = daType->getPropertyByName("QuadrupoleMoments");
309 <        
310 <        if (data == NULL) {
311 <          sprintf( painCave.errMsg,
278 <                   "Electrostatic::addType could not find QuadrupoleMoments\n"
279 <                   "\tparameter for atomType %s.\n",
280 <                   daType->getName().c_str());
281 <          painCave.severity = OPENMD_ERROR;
282 <          painCave.isFatal = 1;
283 <          simError();                  
284 <        }
285 <        
286 <        Vector3dGenericData* v3dData = dynamic_cast<Vector3dGenericData*>(data);
287 <        if (v3dData == NULL) {
288 <          sprintf( painCave.errMsg,
289 <                   "Electrostatic::addType could not convert GenericData to "
290 <                   "Quadrupole Moments for\n"
291 <                   "\tatom type %s\n", daType->getName().c_str());
292 <          painCave.severity = OPENMD_ERROR;
293 <          painCave.isFatal = 1;
294 <          simError();          
295 <        }
306 >      if (ma.isQuadrupole()) {
307 >        // Quadrupoles in OpenMD are set as the diagonal elements
308 >        // of the diagonalized traceless quadrupole moment tensor.
309 >        // The column vectors of the unitary matrix that diagonalizes
310 >        // the quadrupole moment tensor become the eFrame (or the
311 >        // electrostatic version of the body-fixed frame.
312          electrostaticAtomData.is_Quadrupole = true;
313 <        electrostaticAtomData.quadrupole_moments = v3dData->getData();
313 >        electrostaticAtomData.quadrupole_moments = ma.getQuadrupoleMoments();
314        }
315      }
316      
317 <    AtomTypeProperties atp = atomType->getATP();    
317 >    FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType);
318  
319 +    if (fqa.isFluctuatingCharge()) {
320 +      electrostaticAtomData.is_Fluctuating = true;
321 +      electrostaticAtomData.electronegativity = fqa.getElectronegativity();
322 +      electrostaticAtomData.hardness = fqa.getHardness();
323 +      electrostaticAtomData.slaterN = fqa.getSlaterN();
324 +      electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
325 +    }
326 +
327      pair<map<int,AtomType*>::iterator,bool> ret;    
328 <    ret = ElectrostaticList.insert( pair<int,AtomType*>(atp.ident, atomType) );
328 >    ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(),
329 >                                                        atomType) );
330      if (ret.second == false) {
331        sprintf( painCave.errMsg,
332                 "Electrostatic already had a previous entry with ident %d\n",
333 <               atp.ident);
333 >               atomType->getIdent() );
334        painCave.severity = OPENMD_INFO;
335        painCave.isFatal = 0;
336        simError();        
337      }
338      
339 <    ElectrostaticMap[atomType] = electrostaticAtomData;    
339 >    ElectrostaticMap[atomType] = electrostaticAtomData;  
340 >
341 >    // Now, iterate over all known types and add to the mixing map:
342 >    
343 >    map<AtomType*, ElectrostaticAtomData>::iterator it;
344 >    for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) {
345 >      AtomType* atype2 = (*it).first;
346 >      ElectrostaticAtomData eaData2 = (*it).second;
347 >      if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) {
348 >        
349 >        RealType a = electrostaticAtomData.slaterZeta;
350 >        RealType b = eaData2.slaterZeta;
351 >        int m = electrostaticAtomData.slaterN;
352 >        int n = eaData2.slaterN;
353 >
354 >        // Create the spline of the coulombic integral for s-type
355 >        // Slater orbitals.  Add a 2 angstrom safety window to deal
356 >        // with cutoffGroups that have charged atoms longer than the
357 >        // cutoffRadius away from each other.
358 >
359 >        RealType rval;
360 >        RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
361 >        vector<RealType> rvals;
362 >        vector<RealType> J1vals;
363 >        vector<RealType> J2vals;
364 >        // don't start at i = 0, as rval = 0 is undefined for the slater overlap integrals.
365 >        for (int i = 1; i < np_+1; i++) {
366 >          rval = RealType(i) * dr;
367 >          rvals.push_back(rval);
368 >          J1vals.push_back(sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromToBohr ) * PhysicalConstants::hartreeToKcal );
369 >          // may not be necessary if Slater coulomb integral is symmetric
370 >          J2vals.push_back(sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromToBohr ) * PhysicalConstants::hartreeToKcal );
371 >        }
372 >
373 >        CubicSpline* J1 = new CubicSpline();
374 >        J1->addPoints(rvals, J1vals);
375 >        CubicSpline* J2 = new CubicSpline();
376 >        J2->addPoints(rvals, J2vals);
377 >        
378 >        pair<AtomType*, AtomType*> key1, key2;
379 >        key1 = make_pair(atomType, atype2);
380 >        key2 = make_pair(atype2, atomType);
381 >        
382 >        Jij[key1] = J1;
383 >        Jij[key2] = J2;
384 >      }
385 >    }
386 >
387      return;
388    }
389    
390 <  void Electrostatic::setElectrostaticCutoffRadius( RealType theECR,
391 <                                                    RealType theRSW ) {
392 <    defaultCutoff_ = theECR;
393 <    rrf_ = defaultCutoff_;
322 <    rt_ = theRSW;
323 <    haveDefaultCutoff_ = true;
390 >  void Electrostatic::setCutoffRadius( RealType rCut ) {
391 >    cutoffRadius_ = rCut;
392 >    rrf_ = cutoffRadius_;
393 >    haveCutoffRadius_ = true;
394    }
395 +
396 +  void Electrostatic::setSwitchingRadius( RealType rSwitch ) {
397 +    rt_ = rSwitch;
398 +  }
399    void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
400      summationMethod_ = esm;
401    }
# Line 337 | Line 411 | namespace OpenMD {
411      haveDielectric_ = true;
412    }
413  
414 <  void Electrostatic::calcForce(InteractionData idat) {
414 >  void Electrostatic::calcForce(InteractionData &idat) {
415  
416      // utility variables.  Should clean these up and use the Vector3d and
417      // Mat3x3d to replace as many as we can in future versions:
# Line 351 | Line 425 | namespace OpenMD {
425      RealType ct_i, ct_j, ct_ij, a1;
426      RealType riji, ri, ri2, ri3, ri4;
427      RealType pref, vterm, epot, dudr;
428 +    RealType vpair(0.0);
429      RealType scale, sc2;
430      RealType pot_term, preVal, rfVal;
431      RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
432      RealType preSw, preSwSc;
433      RealType c1, c2, c3, c4;
434 <    RealType erfcVal, derfcVal;
434 >    RealType erfcVal(1.0), derfcVal(0.0);
435      RealType BigR;
436 +    RealType two(2.0), three(3.0);
437  
438      Vector3d Q_i, Q_j;
439      Vector3d ux_i, uy_i, uz_i;
# Line 367 | Line 443 | namespace OpenMD {
443      Vector3d rhatdot2, rhatc4;
444      Vector3d dVdr;
445  
446 +    // variables for indirect (reaction field) interactions for excluded pairs:
447 +    RealType indirect_Pot(0.0);
448 +    RealType indirect_vpair(0.0);
449 +    Vector3d indirect_dVdr(V3Zero);
450 +    Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero);
451 +
452 +    RealType coulInt, vFluc1(0.0), vFluc2(0.0);
453      pair<RealType, RealType> res;
454      
455 +    // splines for coulomb integrals
456 +    CubicSpline* J1;
457 +    CubicSpline* J2;
458 +    
459      if (!initialized_) initialize();
460      
461 <    ElectrostaticAtomData data1 = ElectrostaticMap[idat.atype1];
462 <    ElectrostaticAtomData data2 = ElectrostaticMap[idat.atype2];
461 >    ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
462 >    ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
463      
464      // some variables we'll need independent of electrostatic type:
465  
466 <    riji = 1.0 / idat.rij;
467 <    Vector3d rhat = idat.d  * riji;
466 >    riji = 1.0 /  *(idat.rij) ;
467 >    Vector3d rhat =  *(idat.d)   * riji;
468  
469      // logicals
470  
# Line 385 | Line 472 | namespace OpenMD {
472      bool i_is_Dipole = data1.is_Dipole;
473      bool i_is_SplitDipole = data1.is_SplitDipole;
474      bool i_is_Quadrupole = data1.is_Quadrupole;
475 +    bool i_is_Fluctuating = data1.is_Fluctuating;
476  
477      bool j_is_Charge = data2.is_Charge;
478      bool j_is_Dipole = data2.is_Dipole;
479      bool j_is_SplitDipole = data2.is_SplitDipole;
480      bool j_is_Quadrupole = data2.is_Quadrupole;
481 +    bool j_is_Fluctuating = data2.is_Fluctuating;
482      
483 <    if (i_is_Charge)
484 <      q_i = data1.charge;
483 >    if (i_is_Charge) {
484 >      q_i = data1.fixedCharge;
485  
486 +      if (i_is_Fluctuating) {
487 +        q_i += *(idat.flucQ1);
488 +      }
489 +      
490 +      if (idat.excluded) {
491 +        *(idat.skippedCharge2) += q_i;
492 +      }
493 +    }
494 +
495      if (i_is_Dipole) {
496        mu_i = data1.dipole_moment;
497 <      uz_i = idat.eFrame1.getColumn(2);
497 >      uz_i = idat.eFrame1->getColumn(2);
498        
499        ct_i = dot(uz_i, rhat);
500  
# Line 412 | Line 510 | namespace OpenMD {
510        qyy_i = Q_i.y();
511        qzz_i = Q_i.z();
512        
513 <      ux_i = idat.eFrame1.getColumn(0);
514 <      uy_i = idat.eFrame1.getColumn(1);
515 <      uz_i = idat.eFrame1.getColumn(2);
513 >      ux_i = idat.eFrame1->getColumn(0);
514 >      uy_i = idat.eFrame1->getColumn(1);
515 >      uz_i = idat.eFrame1->getColumn(2);
516  
517        cx_i = dot(ux_i, rhat);
518        cy_i = dot(uy_i, rhat);
# Line 425 | Line 523 | namespace OpenMD {
523        duduz_i = V3Zero;
524      }
525  
526 <    if (j_is_Charge)
527 <      q_j = data2.charge;
526 >    if (j_is_Charge) {
527 >      q_j = data2.fixedCharge;
528  
529 +      if (j_is_Fluctuating)
530 +        q_j += *(idat.flucQ2);
531 +
532 +      if (idat.excluded) {
533 +        *(idat.skippedCharge1) += q_j;
534 +      }
535 +    }
536 +
537 +
538      if (j_is_Dipole) {
539        mu_j = data2.dipole_moment;
540 <      uz_j = idat.eFrame2.getColumn(2);
540 >      uz_j = idat.eFrame2->getColumn(2);
541        
542        ct_j = dot(uz_j, rhat);
543  
# Line 446 | Line 553 | namespace OpenMD {
553        qyy_j = Q_j.y();
554        qzz_j = Q_j.z();
555        
556 <      ux_j = idat.eFrame2.getColumn(0);
557 <      uy_j = idat.eFrame2.getColumn(1);
558 <      uz_j = idat.eFrame2.getColumn(2);
556 >      ux_j = idat.eFrame2->getColumn(0);
557 >      uy_j = idat.eFrame2->getColumn(1);
558 >      uz_j = idat.eFrame2->getColumn(2);
559  
560        cx_j = dot(ux_j, rhat);
561        cy_j = dot(uy_j, rhat);
# Line 459 | Line 566 | namespace OpenMD {
566        duduz_j = V3Zero;
567      }
568      
569 +    if (i_is_Fluctuating && j_is_Fluctuating) {
570 +      J1 = Jij[idat.atypes];
571 +      J2 = Jij[make_pair(idat.atypes.second, idat.atypes.first)];
572 +    }
573 +
574      epot = 0.0;
575      dVdr = V3Zero;
576      
# Line 467 | Line 579 | namespace OpenMD {
579        if (j_is_Charge) {
580          if (screeningMethod_ == DAMPED) {
581            // assemble the damping variables
582 <          res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
582 >          res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
583            erfcVal = res.first;
584            derfcVal = res.second;
585 +
586 +          //erfcVal = erfc(dampingAlpha_ * *(idat.rij));
587 +          //derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
588 +
589            c1 = erfcVal * riji;
590            c2 = (-derfcVal + c1) * riji;
591          } else {
# Line 477 | Line 593 | namespace OpenMD {
593            c2 = c1 * riji;
594          }
595  
596 <        preVal = idat.electroMult * pre11_ * q_i * q_j;
596 >        preVal =  *(idat.electroMult) * pre11_;
597          
598 <        if (summationMethod_ == SHIFTED_POTENTIAL) {
598 >        if (summationMethod_ == esm_SHIFTED_POTENTIAL) {
599            vterm = preVal * (c1 - c1c_);
600 <          dudr  = -idat.sw * preVal * c2;
600 >          dudr  = - *(idat.sw)  * preVal * c2;
601  
602 <        } else if (summationMethod_ == SHIFTED_FORCE)  {
603 <          vterm = preVal * ( c1 - c1c_ + c2c_*(idat.rij - defaultCutoff_) );
604 <          dudr  = idat.sw * preVal * (c2c_ - c2);
602 >        } else if (summationMethod_ == esm_SHIFTED_FORCE)  {
603 >          vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij)  - cutoffRadius_) );
604 >          dudr  =  *(idat.sw)  * preVal * (c2c_ - c2);
605  
606 <        } else if (summationMethod_ == REACTION_FIELD) {
607 <          rfVal = idat.electroMult * preRF_ * idat.rij * idat.rij;
606 >        } else if (summationMethod_ == esm_REACTION_FIELD) {
607 >          rfVal = preRF_ *  *(idat.rij)  *  *(idat.rij);
608 >
609            vterm = preVal * ( riji + rfVal );            
610 <          dudr  = idat.sw * preVal * ( 2.0 * rfVal - riji ) * riji;
610 >          dudr  =  *(idat.sw)  * preVal * ( 2.0 * rfVal - riji ) * riji;
611 >          
612 >          // if this is an excluded pair, there are still indirect
613 >          // interactions via the reaction field we must worry about:
614  
615 +          if (idat.excluded) {
616 +            indirect_vpair += preVal * rfVal;
617 +            indirect_Pot += *(idat.sw) * preVal * rfVal;
618 +            indirect_dVdr += *(idat.sw)  * preVal * two * rfVal  * riji * rhat;
619 +          }
620 +          
621          } else {
496          vterm = preVal * riji * erfcVal;            
622  
623 <          dudr  = - idat.sw * preVal * c2;
623 >          vterm = preVal * riji * erfcVal;          
624 >          dudr  = -  *(idat.sw)  * preVal * c2;
625 >          
626 >        }
627 >        
628 >        vpair += vterm * q_i * q_j;
629 >        epot +=  *(idat.sw)  * vterm * q_i * q_j;
630 >        dVdr += dudr * rhat * q_i * q_j;
631  
632 +        if (i_is_Fluctuating) {
633 +          if (idat.excluded) {
634 +            // vFluc1 is the difference between the direct coulomb integral
635 +            // and the normal 1/r-like  interaction between point charges.
636 +            coulInt = J1->getValueAt( *(idat.rij) );
637 +            vFluc1 = coulInt - (*(idat.sw) * vterm);
638 +          } else {
639 +            vFluc1 = 0.0;
640 +          }
641 +          *(idat.dVdFQ1) += ( *(idat.sw) * vterm + vFluc1 ) * q_j;
642          }
501
502        idat.vpair += vterm;
503        epot += idat.sw * vterm;
643  
644 <        dVdr += dudr * rhat;      
644 >        if (j_is_Fluctuating) {
645 >          if (idat.excluded) {
646 >            // vFluc2 is the difference between the direct coulomb integral
647 >            // and the normal 1/r-like  interaction between point charges.
648 >            coulInt = J2->getValueAt( *(idat.rij) );
649 >            vFluc2 = coulInt - (*(idat.sw) * vterm);
650 >          } else {
651 >            vFluc2 = 0.0;
652 >          }
653 >          *(idat.dVdFQ2) += ( *(idat.sw) * vterm + vFluc2 ) * q_i;
654 >        }
655 >          
656 >
657        }
658  
659        if (j_is_Dipole) {
660          // pref is used by all the possible methods
661 <        pref = idat.electroMult * pre12_ * q_i * mu_j;
662 <        preSw = idat.sw * pref;
661 >        pref =  *(idat.electroMult) * pre12_ * q_i * mu_j;
662 >        preSw =  *(idat.sw)  * pref;
663  
664 <        if (summationMethod_ == REACTION_FIELD) {
664 >        if (summationMethod_ == esm_REACTION_FIELD) {
665            ri2 = riji * riji;
666            ri3 = ri2 * riji;
667      
668 <          vterm = - pref * ct_j * ( ri2 - preRF2_ * idat.rij );
669 <          idat.vpair += vterm;
670 <          epot += idat.sw * vterm;
668 >          vterm = - pref * ct_j * ( ri2 - preRF2_ *  *(idat.rij)  );
669 >          vpair += vterm;
670 >          epot +=  *(idat.sw)  * vterm;
671  
672 <          dVdr +=  -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
673 <          duduz_j += -preSw * rhat * (ri2 - preRF2_ * idat.rij);  
672 >          dVdr +=  -preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
673 >          duduz_j += -preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );  
674  
675 +          // Even if we excluded this pair from direct interactions,
676 +          // we still have the reaction-field-mediated charge-dipole
677 +          // interaction:
678 +
679 +          if (idat.excluded) {
680 +            indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij);
681 +            indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij);
682 +            indirect_dVdr += preSw * preRF2_ * uz_j;
683 +            indirect_duduz_j += preSw * rhat * preRF2_ *  *(idat.rij);
684 +          }
685 +                      
686          } else {
687            // determine the inverse r used if we have split dipoles
688            if (j_is_SplitDipole) {
689 <            BigR = sqrt(idat.r2 + 0.25 * d_j * d_j);
689 >            BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
690              ri = 1.0 / BigR;
691 <            scale = idat.rij * ri;
691 >            scale =  *(idat.rij)  * ri;
692            } else {
693              ri = riji;
694              scale = 1.0;
# Line 536 | Line 698 | namespace OpenMD {
698  
699            if (screeningMethod_ == DAMPED) {
700              // assemble the damping variables
701 <            res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
702 <            erfcVal = res.first;
703 <            derfcVal = res.second;
701 >            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
702 >            //erfcVal = res.first;
703 >            //derfcVal = res.second;
704 >            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
705 >            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
706              c1 = erfcVal * ri;
707              c2 = (-derfcVal + c1) * ri;
708              c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
# Line 553 | Line 717 | namespace OpenMD {
717            // calculate the potential
718            pot_term =  scale * c2;
719            vterm = -pref * ct_j * pot_term;
720 <          idat.vpair += vterm;
721 <          epot += idat.sw * vterm;
720 >          vpair += vterm;
721 >          epot +=  *(idat.sw)  * vterm;
722              
723            // calculate derivatives for forces and torques
724  
# Line 562 | Line 726 | namespace OpenMD {
726            duduz_j += -preSw * pot_term * rhat;
727  
728          }
729 +        if (i_is_Fluctuating) {
730 +          *(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i;
731 +        }
732        }
733  
734        if (j_is_Quadrupole) {
# Line 569 | Line 736 | namespace OpenMD {
736          cx2 = cx_j * cx_j;
737          cy2 = cy_j * cy_j;
738          cz2 = cz_j * cz_j;
739 <        pref =  idat.electroMult * pre14_ * q_i * one_third_;
739 >        pref =   *(idat.electroMult) * pre14_ * q_i * one_third_;
740            
741          if (screeningMethod_ == DAMPED) {
742            // assemble the damping variables
743 <          res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
744 <          erfcVal = res.first;
745 <          derfcVal = res.second;
743 >          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
744 >          //erfcVal = res.first;
745 >          //derfcVal = res.second;
746 >          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
747 >          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
748            c1 = erfcVal * riji;
749            c2 = (-derfcVal + c1) * riji;
750            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
# Line 588 | Line 757 | namespace OpenMD {
757          }
758  
759          // precompute variables for convenience
760 <        preSw = idat.sw * pref;
760 >        preSw =  *(idat.sw)  * pref;
761          c2ri = c2 * riji;
762          c3ri = c3 * riji;
763 <        c4rij = c4 * idat.rij;
764 <        rhatdot2 = 2.0 * rhat * c3;
763 >        c4rij = c4 *  *(idat.rij) ;
764 >        rhatdot2 = two * rhat * c3;
765          rhatc4 = rhat * c4rij;
766  
767          // calculate the potential
# Line 600 | Line 769 | namespace OpenMD {
769                       qyy_j * (cy2*c3 - c2ri) +
770                       qzz_j * (cz2*c3 - c2ri) );
771          vterm = pref * pot_term;
772 <        idat.vpair += vterm;
773 <        epot += idat.sw * vterm;
772 >        vpair += vterm;
773 >        epot +=  *(idat.sw)  * vterm;
774                  
775          // calculate derivatives for the forces and torques
776  
777 <        dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (2.0*cx_j*ux_j + rhat)*c3ri) +
778 <                           qyy_j* (cy2*rhatc4 - (2.0*cy_j*uy_j + rhat)*c3ri) +
779 <                           qzz_j* (cz2*rhatc4 - (2.0*cz_j*uz_j + rhat)*c3ri));
777 >        dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (two*cx_j*ux_j + rhat)*c3ri) +
778 >                           qyy_j* (cy2*rhatc4 - (two*cy_j*uy_j + rhat)*c3ri) +
779 >                           qzz_j* (cz2*rhatc4 - (two*cz_j*uz_j + rhat)*c3ri));
780                            
781          dudux_j += preSw * qxx_j * cx_j * rhatdot2;
782          duduy_j += preSw * qyy_j * cy_j * rhatdot2;
783          duduz_j += preSw * qzz_j * cz_j * rhatdot2;
784 +        if (i_is_Fluctuating) {
785 +          *(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i;
786 +        }
787 +
788        }
789      }
790      
# Line 619 | Line 792 | namespace OpenMD {
792  
793        if (j_is_Charge) {
794          // variables used by all the methods
795 <        pref = idat.electroMult * pre12_ * q_j * mu_i;
796 <        preSw = idat.sw * pref;
795 >        pref =  *(idat.electroMult) * pre12_ * q_j * mu_i;
796 >        preSw =  *(idat.sw)  * pref;
797  
798 <        if (summationMethod_ == REACTION_FIELD) {
798 >        if (summationMethod_ == esm_REACTION_FIELD) {
799  
800            ri2 = riji * riji;
801            ri3 = ri2 * riji;
802  
803 <          vterm = pref * ct_i * ( ri2 - preRF2_ * idat.rij );
804 <          idat.vpair += vterm;
805 <          epot += idat.sw * vterm;
803 >          vterm = pref * ct_i * ( ri2 - preRF2_ *  *(idat.rij)  );
804 >          vpair += vterm;
805 >          epot +=  *(idat.sw)  * vterm;
806            
807 <          dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);
807 >          dVdr += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_ * uz_i);
808            
809 <          duduz_i += preSw * rhat * (ri2 - preRF2_ * idat.rij);
809 >          duduz_i += preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );
810 >
811 >          // Even if we excluded this pair from direct interactions,
812 >          // we still have the reaction-field-mediated charge-dipole
813 >          // interaction:
814 >
815 >          if (idat.excluded) {
816 >            indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij);
817 >            indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij);
818 >            indirect_dVdr += -preSw * preRF2_ * uz_i;
819 >            indirect_duduz_i += -preSw * rhat * preRF2_ *  *(idat.rij);
820 >          }
821              
822          } else {
823            
824            // determine inverse r if we are using split dipoles
825            if (i_is_SplitDipole) {
826 <            BigR = sqrt(idat.r2 + 0.25 * d_i * d_i);
826 >            BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
827              ri = 1.0 / BigR;
828 <            scale = idat.rij * ri;
828 >            scale =  *(idat.rij)  * ri;
829            } else {
830              ri = riji;
831              scale = 1.0;
# Line 651 | Line 835 | namespace OpenMD {
835              
836            if (screeningMethod_ == DAMPED) {
837              // assemble the damping variables
838 <            res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
839 <            erfcVal = res.first;
840 <            derfcVal = res.second;
838 >            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
839 >            //erfcVal = res.first;
840 >            //derfcVal = res.second;
841 >            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
842 >            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
843              c1 = erfcVal * ri;
844              c2 = (-derfcVal + c1) * ri;
845              c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
# Line 668 | Line 854 | namespace OpenMD {
854            // calculate the potential
855            pot_term = c2 * scale;
856            vterm = pref * ct_i * pot_term;
857 <          idat.vpair += vterm;
858 <          epot += idat.sw * vterm;
857 >          vpair += vterm;
858 >          epot +=  *(idat.sw)  * vterm;
859  
860            // calculate derivatives for the forces and torques
861            dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3);
862            duduz_i += preSw * pot_term * rhat;
863          }
864 +
865 +        if (j_is_Fluctuating) {
866 +          *(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j;
867 +        }
868 +
869        }
870  
871        if (j_is_Dipole) {
872          // variables used by all methods
873          ct_ij = dot(uz_i, uz_j);
874  
875 <        pref = idat.electroMult * pre22_ * mu_i * mu_j;
876 <        preSw = idat.sw * pref;
875 >        pref =  *(idat.electroMult) * pre22_ * mu_i * mu_j;
876 >        preSw =  *(idat.sw)  * pref;
877  
878 <        if (summationMethod_ == REACTION_FIELD) {
878 >        if (summationMethod_ == esm_REACTION_FIELD) {
879            ri2 = riji * riji;
880            ri3 = ri2 * riji;
881            ri4 = ri2 * ri2;
882  
883            vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
884                             preRF2_ * ct_ij );
885 <          idat.vpair += vterm;
886 <          epot += idat.sw * vterm;
885 >          vpair += vterm;
886 >          epot +=  *(idat.sw)  * vterm;
887              
888            a1 = 5.0 * ct_i * ct_j - ct_ij;
889              
890 <          dVdr += preSw * 3.0 * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
890 >          dVdr += preSw * three * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
891  
892 <          duduz_i += preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
893 <          duduz_j += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_*uz_i);
892 >          duduz_i += preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
893 >          duduz_j += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_*uz_i);
894  
895 +          if (idat.excluded) {
896 +            indirect_vpair +=  - pref * preRF2_ * ct_ij;
897 +            indirect_Pot +=    - preSw * preRF2_ * ct_ij;
898 +            indirect_duduz_i += -preSw * preRF2_ * uz_j;
899 +            indirect_duduz_j += -preSw * preRF2_ * uz_i;
900 +          }
901 +
902          } else {
903            
904            if (i_is_SplitDipole) {
905              if (j_is_SplitDipole) {
906 <              BigR = sqrt(idat.r2 + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
906 >              BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
907              } else {
908 <              BigR = sqrt(idat.r2 + 0.25 * d_i * d_i);
908 >              BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
909              }
910              ri = 1.0 / BigR;
911 <            scale = idat.rij * ri;
911 >            scale =  *(idat.rij)  * ri;
912            } else {
913              if (j_is_SplitDipole) {
914 <              BigR = sqrt(idat.r2 + 0.25 * d_j * d_j);
914 >              BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
915                ri = 1.0 / BigR;
916 <              scale = idat.rij * ri;
916 >              scale =  *(idat.rij)  * ri;
917              } else {
918                ri = riji;
919                scale = 1.0;
# Line 723 | Line 921 | namespace OpenMD {
921            }
922            if (screeningMethod_ == DAMPED) {
923              // assemble damping variables
924 <            res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
925 <            erfcVal = res.first;
926 <            derfcVal = res.second;
924 >            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
925 >            //erfcVal = res.first;
926 >            //derfcVal = res.second;
927 >            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
928 >            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
929              c1 = erfcVal * ri;
930              c2 = (-derfcVal + c1) * ri;
931              c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
# Line 745 | Line 945 | namespace OpenMD {
945            preSwSc = preSw * scale;
946            c2ri = c2 * ri;
947            c3ri = c3 * ri;
948 <          c4rij = c4 * idat.rij;
948 >          c4rij = c4 *  *(idat.rij) ;
949  
950            // calculate the potential
951            pot_term = (ct_ij * c2ri - ctidotj * c3);
952            vterm = pref * pot_term;
953 <          idat.vpair += vterm;
954 <          epot += idat.sw * vterm;
953 >          vpair += vterm;
954 >          epot +=  *(idat.sw)  * vterm;
955  
956            // calculate derivatives for the forces and torques
957            dVdr += preSwSc * ( ctidotj * rhat * c4rij  -
# Line 770 | Line 970 | namespace OpenMD {
970          cy2 = cy_i * cy_i;
971          cz2 = cz_i * cz_i;
972  
973 <        pref = idat.electroMult * pre14_ * q_j * one_third_;
973 >        pref =  *(idat.electroMult) * pre14_ * q_j * one_third_;
974  
975          if (screeningMethod_ == DAMPED) {
976            // assemble the damping variables
977 <          res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
978 <          erfcVal = res.first;
979 <          derfcVal = res.second;
977 >          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
978 >          //erfcVal = res.first;
979 >          //derfcVal = res.second;
980 >          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
981 >          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
982            c1 = erfcVal * riji;
983            c2 = (-derfcVal + c1) * riji;
984            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
# Line 789 | Line 991 | namespace OpenMD {
991          }
992            
993          // precompute some variables for convenience
994 <        preSw = idat.sw * pref;
994 >        preSw =  *(idat.sw)  * pref;
995          c2ri = c2 * riji;
996          c3ri = c3 * riji;
997 <        c4rij = c4 * idat.rij;
998 <        rhatdot2 = 2.0 * rhat * c3;
997 >        c4rij = c4 *  *(idat.rij) ;
998 >        rhatdot2 = two * rhat * c3;
999          rhatc4 = rhat * c4rij;
1000  
1001          // calculate the potential
# Line 802 | Line 1004 | namespace OpenMD {
1004                       qzz_i * (cz2 * c3 - c2ri) );
1005          
1006          vterm = pref * pot_term;
1007 <        idat.vpair += vterm;
1008 <        epot += idat.sw * vterm;
1007 >        vpair += vterm;
1008 >        epot +=  *(idat.sw)  * vterm;
1009  
1010          // calculate the derivatives for the forces and torques
1011  
1012 <        dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (2.0*cx_i*ux_i + rhat)*c3ri) +
1013 <                          qyy_i* (cy2*rhatc4 - (2.0*cy_i*uy_i + rhat)*c3ri) +
1014 <                          qzz_i* (cz2*rhatc4 - (2.0*cz_i*uz_i + rhat)*c3ri));
1012 >        dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (two*cx_i*ux_i + rhat)*c3ri) +
1013 >                          qyy_i* (cy2*rhatc4 - (two*cy_i*uy_i + rhat)*c3ri) +
1014 >                          qzz_i* (cz2*rhatc4 - (two*cz_i*uz_i + rhat)*c3ri));
1015  
1016          dudux_i += preSw * qxx_i * cx_i *  rhatdot2;
1017          duduy_i += preSw * qyy_i * cy_i *  rhatdot2;
1018          duduz_i += preSw * qzz_i * cz_i *  rhatdot2;
817      }
818    }
1019  
1020 <    idat.pot += epot;
1021 <    idat.f1 += dVdr;
1020 >        if (j_is_Fluctuating) {
1021 >          *(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j;
1022 >        }
1023  
1024 <    if (i_is_Dipole || i_is_Quadrupole)
824 <      idat.t1 -= cross(uz_i, duduz_i);
825 <    if (i_is_Quadrupole) {
826 <      idat.t1 -= cross(ux_i, dudux_i);
827 <      idat.t1 -= cross(uy_i, duduy_i);
1024 >      }
1025      }
1026  
830    if (j_is_Dipole || j_is_Quadrupole)
831      idat.t2 -= cross(uz_j, duduz_j);
832    if (j_is_Quadrupole) {
833      idat.t2 -= cross(uz_j, dudux_j);
834      idat.t2 -= cross(uz_j, duduy_j);
835    }
1027  
1028 <    return;
1029 <  }  
1028 >    if (!idat.excluded) {
1029 >      *(idat.vpair) += vpair;
1030 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
1031 >      *(idat.f1) += dVdr;
1032 >      
1033 >      if (i_is_Dipole || i_is_Quadrupole)
1034 >        *(idat.t1) -= cross(uz_i, duduz_i);
1035 >      if (i_is_Quadrupole) {
1036 >        *(idat.t1) -= cross(ux_i, dudux_i);
1037 >        *(idat.t1) -= cross(uy_i, duduy_i);
1038 >      }
1039 >      
1040 >      if (j_is_Dipole || j_is_Quadrupole)
1041 >        *(idat.t2) -= cross(uz_j, duduz_j);
1042 >      if (j_is_Quadrupole) {
1043 >        *(idat.t2) -= cross(uz_j, dudux_j);
1044 >        *(idat.t2) -= cross(uz_j, duduy_j);
1045 >      }
1046  
1047 <  void Electrostatic::calcSkipCorrection(SkipCorrectionData skdat) {
1047 >    } else {
1048  
1049 <    if (!initialized_) initialize();
1050 <    
844 <    ElectrostaticAtomData data1 = ElectrostaticMap[skdat.atype1];
845 <    ElectrostaticAtomData data2 = ElectrostaticMap[skdat.atype2];
846 <    
847 <    // logicals
1049 >      // only accumulate the forces and torques resulting from the
1050 >      // indirect reaction field terms.
1051  
1052 <    bool i_is_Charge = data1.is_Charge;
850 <    bool i_is_Dipole = data1.is_Dipole;
851 <
852 <    bool j_is_Charge = data2.is_Charge;
853 <    bool j_is_Dipole = data2.is_Dipole;
854 <
855 <    RealType q_i, q_j;
856 <    
857 <    // The skippedCharge computation is needed by the real-space cutoff methods
858 <    // (i.e. shifted force and shifted potential)
859 <
860 <    if (i_is_Charge) {
861 <      q_i = data1.charge;
862 <      skdat.skippedCharge2 += q_i;
863 <    }
864 <
865 <    if (j_is_Charge) {
866 <      q_j = data2.charge;
867 <      skdat.skippedCharge1 += q_j;
868 <    }
869 <
870 <    // the rest of this function should only be necessary for reaction field.
871 <
872 <    if (summationMethod_ == REACTION_FIELD) {
873 <      RealType riji, ri2, ri3;
874 <      RealType q_i, mu_i, ct_i;
875 <      RealType q_j, mu_j, ct_j;
876 <      RealType preVal, rfVal, vterm, dudr, pref, myPot;
877 <      Vector3d dVdr, uz_i, uz_j, duduz_i, duduz_j, rhat;
878 <
879 <      // some variables we'll need independent of electrostatic type:
1052 >      *(idat.vpair) += indirect_vpair;
1053        
1054 <      riji = 1.0 / skdat.rij;
1055 <      rhat = skdat.d  * riji;
1056 <
1057 <      if (i_is_Dipole) {
885 <        mu_i = data1.dipole_moment;
886 <        uz_i = skdat.eFrame1.getColumn(2);      
887 <        ct_i = dot(uz_i, rhat);
888 <        duduz_i = V3Zero;
889 <      }
890 <            
891 <      if (j_is_Dipole) {
892 <        mu_j = data2.dipole_moment;
893 <        uz_j = skdat.eFrame2.getColumn(2);      
894 <        ct_j = dot(uz_j, rhat);
895 <        duduz_j = V3Zero;
896 <      }
897 <    
898 <      if (i_is_Charge) {
899 <        if (j_is_Charge) {
900 <          preVal = skdat.electroMult * pre11_ * q_i * q_j;
901 <          rfVal = preRF_ * skdat.rij * skdat.rij;
902 <          vterm = preVal * rfVal;
903 <          myPot += skdat.sw * vterm;        
904 <          dudr  = skdat.sw * preVal * 2.0 * rfVal * riji;        
905 <          dVdr += dudr * rhat;
906 <        }
907 <        
908 <        if (j_is_Dipole) {
909 <          ri2 = riji * riji;
910 <          ri3 = ri2 * riji;        
911 <          pref = skdat.electroMult * pre12_ * q_i * mu_j;
912 <          vterm = - pref * ct_j * ( ri2 - preRF2_ * skdat.rij );
913 <          myPot += skdat.sw * vterm;        
914 <          dVdr += -skdat.sw * pref * ( ri3 * ( uz_j - 3.0 * ct_j * rhat) - preRF2_ * uz_j);
915 <          duduz_j += -skdat.sw * pref * rhat * (ri2 - preRF2_ * skdat.rij);
916 <        }
917 <      }
918 <      if (i_is_Dipole) {
919 <        if (j_is_Charge) {
920 <          ri2 = riji * riji;
921 <          ri3 = ri2 * riji;        
922 <          pref = skdat.electroMult * pre12_ * q_j * mu_i;
923 <          vterm = - pref * ct_i * ( ri2 - preRF2_ * skdat.rij );
924 <          myPot += skdat.sw * vterm;        
925 <          dVdr += skdat.sw * pref * ( ri3 * ( uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);      
926 <          duduz_i += skdat.sw * pref * rhat * (ri2 - preRF2_ * skdat.rij);
927 <        }
928 <      }
1054 >      (*(idat.excludedPot))[ELECTROSTATIC_FAMILY] +=   (*(idat.sw) * vterm +
1055 >                                                        vFluc1 ) * q_i * q_j;
1056 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot;
1057 >      *(idat.f1) += indirect_dVdr;
1058        
930      // accumulate the forces and torques resulting from the self term
931      skdat.pot += myPot;
932      skdat.f1 += dVdr;
933      
1059        if (i_is_Dipole)
1060 <        skdat.t1 -= cross(uz_i, duduz_i);
1060 >        *(idat.t1) -= cross(uz_i, indirect_duduz_i);
1061        if (j_is_Dipole)
1062 <        skdat.t2 -= cross(uz_j, duduz_j);
1062 >        *(idat.t2) -= cross(uz_j, indirect_duduz_j);
1063      }
1064 <  }
1064 >
1065 >    return;
1066 >  }  
1067      
1068 <  void Electrostatic::calcSelfCorrection(SelfCorrectionData scdat) {
1069 <    RealType mu1, preVal, chg1, self;
943 <    
1068 >  void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1069 >    RealType mu1, preVal, self;
1070      if (!initialized_) initialize();
1071 <    
1072 <    ElectrostaticAtomData data = ElectrostaticMap[scdat.atype];
1071 >
1072 >    ElectrostaticAtomData data = ElectrostaticMap[sdat.atype];
1073    
1074      // logicals
949
1075      bool i_is_Charge = data.is_Charge;
1076      bool i_is_Dipole = data.is_Dipole;
1077 +    bool i_is_Fluctuating = data.is_Fluctuating;
1078 +    RealType chg1 = data.fixedCharge;  
1079 +    
1080 +    if (i_is_Fluctuating) {
1081 +      chg1 += *(sdat.flucQ);
1082 +      // dVdFQ is really a force, so this is negative the derivative
1083 +      *(sdat.dVdFQ) -=  *(sdat.flucQ) * data.hardness + data.electronegativity;
1084 +      (*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) *
1085 +        (*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity);
1086 +    }
1087  
1088 <    if (summationMethod_ == REACTION_FIELD) {
1088 >    if (summationMethod_ == esm_REACTION_FIELD) {
1089        if (i_is_Dipole) {
1090          mu1 = data.dipole_moment;          
1091          preVal = pre22_ * preRF2_ * mu1 * mu1;
1092 <        scdat.pot -= 0.5 * preVal;
1092 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal;
1093          
1094          // The self-correction term adds into the reaction field vector
1095 <        Vector3d uz_i = scdat.eFrame.getColumn(2);
1095 >        Vector3d uz_i = sdat.eFrame->getColumn(2);
1096          Vector3d ei = preVal * uz_i;
1097  
1098          // This looks very wrong.  A vector crossed with itself is zero.
1099 <        scdat.t -= cross(uz_i, ei);
1099 >        *(sdat.t) -= cross(uz_i, ei);
1100        }
1101 <    } else if (summationMethod_ == SHIFTED_FORCE || summationMethod_ == SHIFTED_POTENTIAL) {
1101 >    } else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) {
1102        if (i_is_Charge) {        
968        chg1 = data.charge;
1103          if (screeningMethod_ == DAMPED) {
1104 <          self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + scdat.skippedCharge) * pre11_;
1104 >          self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1105          } else {        
1106 <          self = - 0.5 * rcuti_ * chg1 * (chg1 + scdat.skippedCharge) * pre11_;
1106 >          self = - 0.5 * rcuti_ * chg1 * (chg1 +  *(sdat.skippedCharge)) * pre11_;
1107          }
1108 <        scdat.pot += self;
1108 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1109        }
1110      }
1111    }
1112 +
1113 +  RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1114 +    // This seems to work moderately well as a default.  There's no
1115 +    // inherent scale for 1/r interactions that we can standardize.
1116 +    // 12 angstroms seems to be a reasonably good guess for most
1117 +    // cases.
1118 +    return 12.0;
1119 +  }
1120   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines