50 |
|
#include "types/FixedChargeAdapter.hpp" |
51 |
|
#include "types/MultipoleAdapter.hpp" |
52 |
|
#include "io/Globals.hpp" |
53 |
+ |
#include "nonbonded/SlaterIntegrals.hpp" |
54 |
+ |
#include "utils/PhysicalConstants.hpp" |
55 |
|
|
56 |
+ |
|
57 |
|
namespace OpenMD { |
58 |
|
|
59 |
|
Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false), |
312 |
|
} |
313 |
|
} |
314 |
|
|
315 |
+ |
FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType); |
316 |
+ |
|
317 |
+ |
if (fqa.isFluctuatingCharge()) { |
318 |
+ |
electrostaticAtomData.is_FluctuatingCharge = true; |
319 |
+ |
electrostaticAtomData.electronegativity = fca.getElectronegativity(); |
320 |
+ |
electrostaticAtomData.hardness = fca.getHardness(); |
321 |
+ |
electrostaticAtomData.slaterN = fca.getSlaterN(); |
322 |
+ |
electrostaticAtomData.slaterZeta = fca.getSlaterZeta(); |
323 |
+ |
} |
324 |
|
|
325 |
|
pair<map<int,AtomType*>::iterator,bool> ret; |
326 |
|
ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(), |
334 |
|
simError(); |
335 |
|
} |
336 |
|
|
337 |
< |
ElectrostaticMap[atomType] = electrostaticAtomData; |
337 |
> |
ElectrostaticMap[atomType] = electrostaticAtomData; |
338 |
> |
|
339 |
> |
// Now, iterate over all known types and add to the mixing map: |
340 |
> |
|
341 |
> |
map<AtomType*, ElectrostaticAtomData>::iterator it; |
342 |
> |
for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) { |
343 |
> |
AtomType* atype2 = (*it).first; |
344 |
> |
|
345 |
> |
if ((*it).is_FluctuatingCharge && electrostaticAtomData.is_FluctuatingCharge) { |
346 |
> |
|
347 |
> |
RealType a = electrostaticAtomData.slaterZeta; |
348 |
> |
RealType b = (*it).slaterZeta; |
349 |
> |
int m = electrostaticAtomData.slaterN; |
350 |
> |
int n = (*it).slaterN; |
351 |
> |
|
352 |
> |
// Create the spline of the coulombic integral for s-type |
353 |
> |
// Slater orbitals. Add a 2 angstrom safety window to deal |
354 |
> |
// with cutoffGroups that have charged atoms longer than the |
355 |
> |
// cutoffRadius away from each other. |
356 |
> |
|
357 |
> |
RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1); |
358 |
> |
vector<RealType> rvals; |
359 |
> |
vector<RealType> J1vals; |
360 |
> |
vector<RealType> J2vals; |
361 |
> |
for (int i = 0; i < np_; i++) { |
362 |
> |
rval = RealType(i) * dr; |
363 |
> |
rvals.push_back(rval); |
364 |
> |
J1vals.push_back( sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromsToBohr ) ); |
365 |
> |
J2vals.push_back( sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromsToBohr ) ); |
366 |
> |
} |
367 |
> |
|
368 |
> |
CubicSpline J1 = new CubicSpline(); |
369 |
> |
J1->addPoints(rvals, J1vals); |
370 |
> |
CubicSpline J2 = new CubicSpline(); |
371 |
> |
J2->addPoints(rvals, J2vals); |
372 |
> |
|
373 |
> |
pair<AtomType*, AtomType*> key1, key2; |
374 |
> |
key1 = make_pair(atomType, atype2); |
375 |
> |
key2 = make_pair(atype2, atomType); |
376 |
> |
|
377 |
> |
Jij[key1] = J1; |
378 |
> |
Jij[key2] = J2; |
379 |
> |
} |
380 |
> |
} |
381 |
> |
|
382 |
|
return; |
383 |
|
} |
384 |
|
|