35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006). |
38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
|
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
47 |
|
#include "nonbonded/Electrostatic.hpp" |
48 |
|
#include "utils/simError.h" |
49 |
|
#include "types/NonBondedInteractionType.hpp" |
50 |
< |
#include "types/DirectionalAtomType.hpp" |
50 |
> |
#include "types/FixedChargeAdapter.hpp" |
51 |
> |
#include "types/FluctuatingChargeAdapter.hpp" |
52 |
> |
#include "types/MultipoleAdapter.hpp" |
53 |
|
#include "io/Globals.hpp" |
54 |
+ |
#include "nonbonded/SlaterIntegrals.hpp" |
55 |
+ |
#include "utils/PhysicalConstants.hpp" |
56 |
+ |
#include "math/erfc.hpp" |
57 |
+ |
#include "math/SquareMatrix.hpp" |
58 |
|
|
59 |
|
namespace OpenMD { |
60 |
|
|
63 |
|
haveCutoffRadius_(false), |
64 |
|
haveDampingAlpha_(false), |
65 |
|
haveDielectric_(false), |
66 |
< |
haveElectroSpline_(false) |
66 |
> |
haveElectroSplines_(false) |
67 |
|
{} |
68 |
|
|
69 |
|
void Electrostatic::initialize() { |
75 |
|
summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION; |
76 |
|
summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL; |
77 |
|
summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE; |
78 |
+ |
summationMap_["TAYLOR_SHIFTED"] = esm_TAYLOR_SHIFTED; |
79 |
|
summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD; |
80 |
|
summationMap_["EWALD_FULL"] = esm_EWALD_FULL; |
81 |
|
summationMap_["EWALD_PME"] = esm_EWALD_PME; |
90 |
|
// Charge-Dipole, assuming charges are measured in electrons, and |
91 |
|
// dipoles are measured in debyes |
92 |
|
pre12_ = 69.13373; |
93 |
< |
// Dipole-Dipole, assuming dipoles are measured in debyes |
93 |
> |
// Dipole-Dipole, assuming dipoles are measured in Debye |
94 |
|
pre22_ = 14.39325; |
95 |
|
// Charge-Quadrupole, assuming charges are measured in electrons, and |
96 |
|
// quadrupoles are measured in 10^-26 esu cm^2 |
97 |
< |
// This unit is also known affectionately as an esu centi-barn. |
97 |
> |
// This unit is also known affectionately as an esu centibarn. |
98 |
|
pre14_ = 69.13373; |
99 |
< |
|
99 |
> |
// Dipole-Quadrupole, assuming dipoles are measured in debyes and |
100 |
> |
// quadrupoles in esu centibarns: |
101 |
> |
pre24_ = 14.39325; |
102 |
> |
// Quadrupole-Quadrupole, assuming esu centibarns: |
103 |
> |
pre44_ = 14.39325; |
104 |
> |
|
105 |
|
// conversions for the simulation box dipole moment |
106 |
|
chargeToC_ = 1.60217733e-19; |
107 |
|
angstromToM_ = 1.0e-10; |
108 |
|
debyeToCm_ = 3.33564095198e-30; |
109 |
|
|
110 |
< |
// number of points for electrostatic splines |
110 |
> |
// Default number of points for electrostatic splines |
111 |
|
np_ = 100; |
112 |
|
|
113 |
|
// variables to handle different summation methods for long-range |
115 |
|
summationMethod_ = esm_HARD; |
116 |
|
screeningMethod_ = UNDAMPED; |
117 |
|
dielectric_ = 1.0; |
106 |
– |
one_third_ = 1.0 / 3.0; |
118 |
|
|
119 |
|
// check the summation method: |
120 |
|
if (simParams_->haveElectrostaticSummationMethod()) { |
130 |
|
"Electrostatic::initialize: Unknown electrostaticSummationMethod.\n" |
131 |
|
"\t(Input file specified %s .)\n" |
132 |
|
"\telectrostaticSummationMethod must be one of: \"hard\",\n" |
133 |
< |
"\t\"shifted_potential\", \"shifted_force\", or \n" |
134 |
< |
"\t\"reaction_field\".\n", myMethod.c_str() ); |
133 |
> |
"\t\"shifted_potential\", \"shifted_force\",\n" |
134 |
> |
"\t\"taylor_shifted\", or \"reaction_field\".\n", |
135 |
> |
myMethod.c_str() ); |
136 |
|
painCave.isFatal = 1; |
137 |
|
simError(); |
138 |
|
} |
200 |
|
|
201 |
|
// throw warning |
202 |
|
sprintf( painCave.errMsg, |
203 |
< |
"Electrostatic::initialize: dampingAlpha was not specified in the input file.\n" |
204 |
< |
"\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", |
203 |
> |
"Electrostatic::initialize: dampingAlpha was not specified in the\n" |
204 |
> |
"\tinput file. A default value of %f (1/ang) will be used for the\n" |
205 |
> |
"\tcutoff of %f (ang).\n", |
206 |
|
dampingAlpha_, cutoffRadius_); |
207 |
|
painCave.severity = OPENMD_INFO; |
208 |
|
painCave.isFatal = 0; |
223 |
|
|
224 |
|
if (at->isElectrostatic()) |
225 |
|
addType(at); |
226 |
+ |
} |
227 |
+ |
|
228 |
+ |
if (summationMethod_ == esm_REACTION_FIELD) { |
229 |
+ |
preRF_ = (dielectric_ - 1.0) / |
230 |
+ |
((2.0 * dielectric_ + 1.0) * pow(cutoffRadius_,3) ); |
231 |
|
} |
232 |
|
|
233 |
+ |
RealType b0c, b1c, b2c, b3c, b4c, b5c; |
234 |
+ |
RealType db0c_1, db0c_2, db0c_3, db0c_4, db0c_5; |
235 |
+ |
RealType a2, expTerm, invArootPi; |
236 |
+ |
|
237 |
+ |
RealType r = cutoffRadius_; |
238 |
+ |
RealType r2 = r * r; |
239 |
+ |
RealType ric = 1.0 / r; |
240 |
+ |
RealType ric2 = ric * ric; |
241 |
|
|
242 |
< |
cutoffRadius2_ = cutoffRadius_ * cutoffRadius_; |
243 |
< |
rcuti_ = 1.0 / cutoffRadius_; |
244 |
< |
rcuti2_ = rcuti_ * rcuti_; |
245 |
< |
rcuti3_ = rcuti2_ * rcuti_; |
246 |
< |
rcuti4_ = rcuti2_ * rcuti2_; |
247 |
< |
|
248 |
< |
if (screeningMethod_ == DAMPED) { |
249 |
< |
|
250 |
< |
alpha2_ = dampingAlpha_ * dampingAlpha_; |
251 |
< |
alpha4_ = alpha2_ * alpha2_; |
252 |
< |
alpha6_ = alpha4_ * alpha2_; |
253 |
< |
alpha8_ = alpha4_ * alpha4_; |
228 |
< |
|
229 |
< |
constEXP_ = exp(-alpha2_ * cutoffRadius2_); |
230 |
< |
invRootPi_ = 0.56418958354775628695; |
231 |
< |
alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_; |
232 |
< |
|
233 |
< |
c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_; |
234 |
< |
c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_; |
235 |
< |
c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_; |
236 |
< |
c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_; |
237 |
< |
c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_; |
238 |
< |
c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_; |
242 |
> |
if (screeningMethod_ == DAMPED) { |
243 |
> |
a2 = dampingAlpha_ * dampingAlpha_; |
244 |
> |
invArootPi = 1.0 / (dampingAlpha_ * sqrt(M_PI)); |
245 |
> |
expTerm = exp(-a2 * r2); |
246 |
> |
// values of Smith's B_l functions at the cutoff radius: |
247 |
> |
b0c = erfc(dampingAlpha_ * r) / r; |
248 |
> |
b1c = ( b0c + 2.0*a2 * expTerm * invArootPi) / r2; |
249 |
> |
b2c = (3.0 * b1c + pow(2.0*a2, 2) * expTerm * invArootPi) / r2; |
250 |
> |
b3c = (5.0 * b2c + pow(2.0*a2, 3) * expTerm * invArootPi) / r2; |
251 |
> |
b4c = (7.0 * b3c + pow(2.0*a2, 4) * expTerm * invArootPi) / r2; |
252 |
> |
b5c = (9.0 * b4c + pow(2.0*a2, 5) * expTerm * invArootPi) / r2; |
253 |
> |
selfMult_ = b0c + a2 * invArootPi; |
254 |
|
} else { |
255 |
< |
c1c_ = rcuti_; |
256 |
< |
c2c_ = c1c_ * rcuti_; |
257 |
< |
c3c_ = 3.0 * c2c_ * rcuti_; |
258 |
< |
c4c_ = 5.0 * c3c_ * rcuti2_; |
259 |
< |
c5c_ = 7.0 * c4c_ * rcuti2_; |
260 |
< |
c6c_ = 9.0 * c5c_ * rcuti2_; |
255 |
> |
a2 = 0.0; |
256 |
> |
b0c = 1.0 / r; |
257 |
> |
b1c = ( b0c) / r2; |
258 |
> |
b2c = (3.0 * b1c) / r2; |
259 |
> |
b3c = (5.0 * b2c) / r2; |
260 |
> |
b4c = (7.0 * b3c) / r2; |
261 |
> |
b5c = (9.0 * b4c) / r2; |
262 |
> |
selfMult_ = b0c; |
263 |
|
} |
264 |
< |
|
265 |
< |
if (summationMethod_ == esm_REACTION_FIELD) { |
266 |
< |
preRF_ = (dielectric_ - 1.0) / |
267 |
< |
((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_); |
268 |
< |
preRF2_ = 2.0 * preRF_; |
269 |
< |
} |
264 |
> |
|
265 |
> |
// higher derivatives of B_0 at the cutoff radius: |
266 |
> |
db0c_1 = -r * b1c; |
267 |
> |
db0c_2 = -b1c + r2 * b2c; |
268 |
> |
db0c_3 = 3.0*r*b2c - r2*r*b3c; |
269 |
> |
db0c_4 = 3.0*b2c - 6.0*r2*b3c + r2*r2*b4c; |
270 |
> |
db0c_5 = -15.0*r*b3c + 10.0*r2*r*b4c - r2*r2*r*b5c; |
271 |
|
|
272 |
+ |
|
273 |
+ |
// working variables for the splines: |
274 |
+ |
RealType ri, ri2; |
275 |
+ |
RealType b0, b1, b2, b3, b4, b5; |
276 |
+ |
RealType db0_1, db0_2, db0_3, db0_4, db0_5; |
277 |
+ |
RealType f, fc, f0; |
278 |
+ |
RealType g, gc, g0, g1, g2, g3, g4; |
279 |
+ |
RealType h, hc, h1, h2, h3, h4; |
280 |
+ |
RealType s, sc, s2, s3, s4; |
281 |
+ |
RealType t, tc, t3, t4; |
282 |
+ |
RealType u, uc, u4; |
283 |
+ |
|
284 |
+ |
// working variables for Taylor expansion: |
285 |
+ |
RealType rmRc, rmRc2, rmRc3, rmRc4; |
286 |
+ |
|
287 |
+ |
// Approximate using splines using a maximum of 0.1 Angstroms |
288 |
+ |
// between points. |
289 |
+ |
int nptest = int((cutoffRadius_ + 2.0) / 0.1); |
290 |
+ |
np_ = (np_ > nptest) ? np_ : nptest; |
291 |
+ |
|
292 |
|
// Add a 2 angstrom safety window to deal with cutoffGroups that |
293 |
|
// have charged atoms longer than the cutoffRadius away from each |
294 |
< |
// other. Splining may not be the best choice here. Direct calls |
295 |
< |
// to erfc might be preferrable. |
294 |
> |
// other. Splining is almost certainly the best choice here. |
295 |
> |
// Direct calls to erfc would be preferrable if it is a very fast |
296 |
> |
// implementation. |
297 |
|
|
298 |
< |
RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1); |
260 |
< |
RealType rval; |
261 |
< |
vector<RealType> rvals; |
262 |
< |
vector<RealType> yvals; |
263 |
< |
for (int i = 0; i < np_; i++) { |
264 |
< |
rval = RealType(i) * dx; |
265 |
< |
rvals.push_back(rval); |
266 |
< |
yvals.push_back(erfc(dampingAlpha_ * rval)); |
267 |
< |
} |
268 |
< |
erfcSpline_ = new CubicSpline(); |
269 |
< |
erfcSpline_->addPoints(rvals, yvals); |
270 |
< |
haveElectroSpline_ = true; |
298 |
> |
RealType dx = (cutoffRadius_ + 2.0) / RealType(np_); |
299 |
|
|
300 |
< |
initialized_ = true; |
301 |
< |
} |
302 |
< |
|
303 |
< |
void Electrostatic::addType(AtomType* atomType){ |
300 |
> |
// Storage vectors for the computed functions |
301 |
> |
vector<RealType> rv; |
302 |
> |
vector<RealType> v01v; |
303 |
> |
vector<RealType> v11v; |
304 |
> |
vector<RealType> v21v, v22v; |
305 |
> |
vector<RealType> v31v, v32v; |
306 |
> |
vector<RealType> v41v, v42v, v43v; |
307 |
|
|
308 |
< |
ElectrostaticAtomData electrostaticAtomData; |
309 |
< |
electrostaticAtomData.is_Charge = false; |
310 |
< |
electrostaticAtomData.is_Dipole = false; |
311 |
< |
electrostaticAtomData.is_SplitDipole = false; |
312 |
< |
electrostaticAtomData.is_Quadrupole = false; |
308 |
> |
/* |
309 |
> |
vector<RealType> dv01v; |
310 |
> |
vector<RealType> dv11v; |
311 |
> |
vector<RealType> dv21v, dv22v; |
312 |
> |
vector<RealType> dv31v, dv32v; |
313 |
> |
vector<RealType> dv41v, dv42v, dv43v; |
314 |
> |
*/ |
315 |
|
|
316 |
< |
if (atomType->isCharge()) { |
317 |
< |
GenericData* data = atomType->getPropertyByName("Charge"); |
316 |
> |
for (int i = 1; i < np_ + 1; i++) { |
317 |
> |
r = RealType(i) * dx; |
318 |
> |
rv.push_back(r); |
319 |
|
|
320 |
< |
if (data == NULL) { |
321 |
< |
sprintf( painCave.errMsg, "Electrostatic::addType could not find " |
322 |
< |
"Charge\n" |
323 |
< |
"\tparameters for atomType %s.\n", |
324 |
< |
atomType->getName().c_str()); |
325 |
< |
painCave.severity = OPENMD_ERROR; |
326 |
< |
painCave.isFatal = 1; |
327 |
< |
simError(); |
328 |
< |
} |
329 |
< |
|
330 |
< |
DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data); |
331 |
< |
if (doubleData == NULL) { |
332 |
< |
sprintf( painCave.errMsg, |
333 |
< |
"Electrostatic::addType could not convert GenericData to " |
334 |
< |
"Charge for\n" |
335 |
< |
"\tatom type %s\n", atomType->getName().c_str()); |
336 |
< |
painCave.severity = OPENMD_ERROR; |
337 |
< |
painCave.isFatal = 1; |
338 |
< |
simError(); |
339 |
< |
} |
340 |
< |
electrostaticAtomData.is_Charge = true; |
341 |
< |
electrostaticAtomData.charge = doubleData->getData(); |
342 |
< |
} |
343 |
< |
|
344 |
< |
if (atomType->isDirectional()) { |
345 |
< |
DirectionalAtomType* daType = dynamic_cast<DirectionalAtomType*>(atomType); |
346 |
< |
|
313 |
< |
if (daType->isDipole()) { |
314 |
< |
GenericData* data = daType->getPropertyByName("Dipole"); |
315 |
< |
|
316 |
< |
if (data == NULL) { |
317 |
< |
sprintf( painCave.errMsg, |
318 |
< |
"Electrostatic::addType could not find Dipole\n" |
319 |
< |
"\tparameters for atomType %s.\n", |
320 |
< |
daType->getName().c_str()); |
321 |
< |
painCave.severity = OPENMD_ERROR; |
322 |
< |
painCave.isFatal = 1; |
323 |
< |
simError(); |
324 |
< |
} |
325 |
< |
|
326 |
< |
DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data); |
327 |
< |
if (doubleData == NULL) { |
328 |
< |
sprintf( painCave.errMsg, |
329 |
< |
"Electrostatic::addType could not convert GenericData to " |
330 |
< |
"Dipole Moment\n" |
331 |
< |
"\tfor atom type %s\n", daType->getName().c_str()); |
332 |
< |
painCave.severity = OPENMD_ERROR; |
333 |
< |
painCave.isFatal = 1; |
334 |
< |
simError(); |
335 |
< |
} |
336 |
< |
electrostaticAtomData.is_Dipole = true; |
337 |
< |
electrostaticAtomData.dipole_moment = doubleData->getData(); |
320 |
> |
ri = 1.0 / r; |
321 |
> |
ri2 = ri * ri; |
322 |
> |
|
323 |
> |
r2 = r * r; |
324 |
> |
expTerm = exp(-a2 * r2); |
325 |
> |
|
326 |
> |
// Taylor expansion factors (no need for factorials this way): |
327 |
> |
rmRc = r - cutoffRadius_; |
328 |
> |
rmRc2 = rmRc * rmRc / 2.0; |
329 |
> |
rmRc3 = rmRc2 * rmRc / 3.0; |
330 |
> |
rmRc4 = rmRc3 * rmRc / 4.0; |
331 |
> |
|
332 |
> |
// values of Smith's B_l functions at r: |
333 |
> |
if (screeningMethod_ == DAMPED) { |
334 |
> |
b0 = erfc(dampingAlpha_ * r) * ri; |
335 |
> |
b1 = ( b0 + 2.0*a2 * expTerm * invArootPi) * ri2; |
336 |
> |
b2 = (3.0 * b1 + pow(2.0*a2, 2) * expTerm * invArootPi) * ri2; |
337 |
> |
b3 = (5.0 * b2 + pow(2.0*a2, 3) * expTerm * invArootPi) * ri2; |
338 |
> |
b4 = (7.0 * b3 + pow(2.0*a2, 4) * expTerm * invArootPi) * ri2; |
339 |
> |
b5 = (9.0 * b4 + pow(2.0*a2, 5) * expTerm * invArootPi) * ri2; |
340 |
> |
} else { |
341 |
> |
b0 = ri; |
342 |
> |
b1 = ( b0) * ri2; |
343 |
> |
b2 = (3.0 * b1) * ri2; |
344 |
> |
b3 = (5.0 * b2) * ri2; |
345 |
> |
b4 = (7.0 * b3) * ri2; |
346 |
> |
b5 = (9.0 * b4) * ri2; |
347 |
|
} |
348 |
+ |
|
349 |
+ |
// higher derivatives of B_0 at r: |
350 |
+ |
db0_1 = -r * b1; |
351 |
+ |
db0_2 = -b1 + r2 * b2; |
352 |
+ |
db0_3 = 3.0*r*b2 - r2*r*b3; |
353 |
+ |
db0_4 = 3.0*b2 - 6.0*r2*b3 + r2*r2*b4; |
354 |
+ |
db0_5 = -15.0*r*b3 + 10.0*r2*r*b4 - r2*r2*r*b5; |
355 |
|
|
356 |
< |
if (daType->isSplitDipole()) { |
357 |
< |
GenericData* data = daType->getPropertyByName("SplitDipoleDistance"); |
358 |
< |
|
359 |
< |
if (data == NULL) { |
360 |
< |
sprintf(painCave.errMsg, |
361 |
< |
"Electrostatic::addType could not find SplitDipoleDistance\n" |
362 |
< |
"\tparameter for atomType %s.\n", |
363 |
< |
daType->getName().c_str()); |
364 |
< |
painCave.severity = OPENMD_ERROR; |
365 |
< |
painCave.isFatal = 1; |
366 |
< |
simError(); |
367 |
< |
} |
356 |
> |
f = b0; |
357 |
> |
fc = b0c; |
358 |
> |
f0 = f - fc - rmRc*db0c_1; |
359 |
> |
|
360 |
> |
g = db0_1; |
361 |
> |
gc = db0c_1; |
362 |
> |
g0 = g - gc; |
363 |
> |
g1 = g0 - rmRc *db0c_2; |
364 |
> |
g2 = g1 - rmRc2*db0c_3; |
365 |
> |
g3 = g2 - rmRc3*db0c_4; |
366 |
> |
g4 = g3 - rmRc4*db0c_5; |
367 |
> |
|
368 |
> |
h = db0_2; |
369 |
> |
hc = db0c_2; |
370 |
> |
h1 = h - hc; |
371 |
> |
h2 = h1 - rmRc *db0c_3; |
372 |
> |
h3 = h2 - rmRc2*db0c_4; |
373 |
> |
h4 = h3 - rmRc3*db0c_5; |
374 |
> |
|
375 |
> |
s = db0_3; |
376 |
> |
sc = db0c_3; |
377 |
> |
s2 = s - sc; |
378 |
> |
s3 = s2 - rmRc *db0c_4; |
379 |
> |
s4 = s3 - rmRc2*db0c_5; |
380 |
> |
|
381 |
> |
t = db0_4; |
382 |
> |
tc = db0c_4; |
383 |
> |
t3 = t - tc; |
384 |
> |
t4 = t3 - rmRc *db0c_5; |
385 |
|
|
386 |
< |
DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data); |
387 |
< |
if (doubleData == NULL) { |
388 |
< |
sprintf( painCave.errMsg, |
356 |
< |
"Electrostatic::addType could not convert GenericData to " |
357 |
< |
"SplitDipoleDistance for\n" |
358 |
< |
"\tatom type %s\n", daType->getName().c_str()); |
359 |
< |
painCave.severity = OPENMD_ERROR; |
360 |
< |
painCave.isFatal = 1; |
361 |
< |
simError(); |
362 |
< |
} |
363 |
< |
electrostaticAtomData.is_SplitDipole = true; |
364 |
< |
electrostaticAtomData.split_dipole_distance = doubleData->getData(); |
365 |
< |
} |
386 |
> |
u = db0_5; |
387 |
> |
uc = db0c_5; |
388 |
> |
u4 = u - uc; |
389 |
|
|
390 |
< |
if (daType->isQuadrupole()) { |
391 |
< |
GenericData* data = daType->getPropertyByName("QuadrupoleMoments"); |
390 |
> |
// in what follows below, the various v functions are used for |
391 |
> |
// potentials and torques, while the w functions show up in the |
392 |
> |
// forces. |
393 |
> |
|
394 |
> |
switch (summationMethod_) { |
395 |
> |
case esm_SHIFTED_FORCE: |
396 |
> |
|
397 |
> |
v01 = f - fc - rmRc*gc; |
398 |
> |
v11 = g - gc - rmRc*hc; |
399 |
> |
v21 = g*ri - gc*ric - rmRc*(hc - gc*ric)*ric; |
400 |
> |
v22 = h - g*ri - (hc - gc*ric) - rmRc*(sc - (hc - gc*ric)*ric); |
401 |
> |
v31 = (h-g*ri)*ri - (hc-g*ric)*ric - rmRc*(sc-2.0*(hc-gc*ric)*ric)*ric; |
402 |
> |
v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric) |
403 |
> |
- rmRc*(tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric); |
404 |
> |
v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2 |
405 |
> |
- rmRc*(sc - 3.0*(hc-gc*ric)*ric)*ric2; |
406 |
> |
v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric |
407 |
> |
- rmRc*(tc - (4.0*sc - 9.0*(hc - gc*ric)*ric)*ric)*ric; |
408 |
|
|
409 |
< |
if (data == NULL) { |
410 |
< |
sprintf( painCave.errMsg, |
411 |
< |
"Electrostatic::addType could not find QuadrupoleMoments\n" |
412 |
< |
"\tparameter for atomType %s.\n", |
413 |
< |
daType->getName().c_str()); |
414 |
< |
painCave.severity = OPENMD_ERROR; |
415 |
< |
painCave.isFatal = 1; |
416 |
< |
simError(); |
417 |
< |
} |
409 |
> |
v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri) |
410 |
> |
- (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric) |
411 |
> |
- rmRc*(uc-3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric); |
412 |
> |
|
413 |
> |
dv01 = g - gc; |
414 |
> |
dv11 = h - hc; |
415 |
> |
dv21 = (h - g*ri)*ri - (hc - gc*ric)*ric; |
416 |
> |
dv22 = (s - (h - g*ri)*ri) - (sc - (hc - gc*ric)*ric); |
417 |
> |
dv31 = (s - 2.0*(h-g*ri)*ri)*ri - (sc - 2.0*(hc-gc*ric)*ric)*ric; |
418 |
> |
dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri) |
419 |
> |
- (tc - 3.0*(sc-2.0*(hc-gc*ric)*ric)*ric); |
420 |
> |
dv41 = (s - 3.0*(h - g*ri)*ri)*ri2 - (sc - 3.0*(hc - gc*ric)*ric)*ric2; |
421 |
> |
dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri |
422 |
> |
- (tc - (4.0*sc - 9.0*(hc-gc*ric)*ric)*ric)*ric; |
423 |
> |
dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri) |
424 |
> |
- (uc - 3.0*(2.0*tc - (7.0*sc - 15.0*(hc - gc*ric)*ric)*ric)*ric); |
425 |
|
|
426 |
< |
// Quadrupoles in OpenMD are set as the diagonal elements |
381 |
< |
// of the diagonalized traceless quadrupole moment tensor. |
382 |
< |
// The column vectors of the unitary matrix that diagonalizes |
383 |
< |
// the quadrupole moment tensor become the eFrame (or the |
384 |
< |
// electrostatic version of the body-fixed frame. |
426 |
> |
break; |
427 |
|
|
428 |
< |
Vector3dGenericData* v3dData = dynamic_cast<Vector3dGenericData*>(data); |
429 |
< |
if (v3dData == NULL) { |
430 |
< |
sprintf( painCave.errMsg, |
431 |
< |
"Electrostatic::addType could not convert GenericData to " |
432 |
< |
"Quadrupole Moments for\n" |
433 |
< |
"\tatom type %s\n", daType->getName().c_str()); |
434 |
< |
painCave.severity = OPENMD_ERROR; |
435 |
< |
painCave.isFatal = 1; |
436 |
< |
simError(); |
428 |
> |
case esm_TAYLOR_SHIFTED: |
429 |
> |
|
430 |
> |
v01 = f0; |
431 |
> |
v11 = g1; |
432 |
> |
v21 = g2 * ri; |
433 |
> |
v22 = h2 - v21; |
434 |
> |
v31 = (h3 - g3 * ri) * ri; |
435 |
> |
v32 = s3 - 3.0*v31; |
436 |
> |
v41 = (h4 - g4 * ri) * ri2; |
437 |
> |
v42 = s4 * ri - 3.0*v41; |
438 |
> |
v43 = t4 - 6.0*v42 - 3.0*v41; |
439 |
> |
|
440 |
> |
dv01 = g0; |
441 |
> |
dv11 = h1; |
442 |
> |
dv21 = (h2 - g2*ri)*ri; |
443 |
> |
dv22 = (s2 - (h2 - g2*ri)*ri); |
444 |
> |
dv31 = (s3 - 2.0*(h3-g3*ri)*ri)*ri; |
445 |
> |
dv32 = (t3 - 3.0*(s3-2.0*(h3-g3*ri)*ri)*ri); |
446 |
> |
dv41 = (s4 - 3.0*(h4 - g4*ri)*ri)*ri2; |
447 |
> |
dv42 = (t4 - (4.0*s4 - 9.0*(h4-g4*ri)*ri)*ri)*ri; |
448 |
> |
dv43 = (u4 - 3.0*(2.0*t4 - (7.0*s4 - 15.0*(h4 - g4*ri)*ri)*ri)*ri); |
449 |
> |
|
450 |
> |
break; |
451 |
> |
|
452 |
> |
case esm_SHIFTED_POTENTIAL: |
453 |
> |
|
454 |
> |
v01 = f - fc; |
455 |
> |
v11 = g - gc; |
456 |
> |
v21 = g*ri - gc*ric; |
457 |
> |
v22 = h - g*ri - (hc - gc*ric); |
458 |
> |
v31 = (h-g*ri)*ri - (hc-g*ric)*ric; |
459 |
> |
v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric); |
460 |
> |
v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2; |
461 |
> |
v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric; |
462 |
> |
v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri) |
463 |
> |
- (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric); |
464 |
> |
|
465 |
> |
dv01 = g; |
466 |
> |
dv11 = h; |
467 |
> |
dv21 = (h - g*ri)*ri; |
468 |
> |
dv22 = (s - (h - g*ri)*ri); |
469 |
> |
dv31 = (s - 2.0*(h-g*ri)*ri)*ri; |
470 |
> |
dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri); |
471 |
> |
dv41 = (s - 3.0*(h - g*ri)*ri)*ri2; |
472 |
> |
dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri; |
473 |
> |
dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri); |
474 |
> |
|
475 |
> |
break; |
476 |
> |
|
477 |
> |
case esm_SWITCHING_FUNCTION: |
478 |
> |
case esm_HARD: |
479 |
> |
|
480 |
> |
v01 = f; |
481 |
> |
v11 = g; |
482 |
> |
v21 = g*ri; |
483 |
> |
v22 = h - g*ri; |
484 |
> |
v31 = (h-g*ri)*ri; |
485 |
> |
v32 = (s - 3.0*(h-g*ri)*ri); |
486 |
> |
v41 = (h - g*ri)*ri2; |
487 |
> |
v42 = (s-3.0*(h-g*ri)*ri)*ri; |
488 |
> |
v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri); |
489 |
> |
|
490 |
> |
dv01 = g; |
491 |
> |
dv11 = h; |
492 |
> |
dv21 = (h - g*ri)*ri; |
493 |
> |
dv22 = (s - (h - g*ri)*ri); |
494 |
> |
dv31 = (s - 2.0*(h-g*ri)*ri)*ri; |
495 |
> |
dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri); |
496 |
> |
dv41 = (s - 3.0*(h - g*ri)*ri)*ri2; |
497 |
> |
dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri; |
498 |
> |
dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri); |
499 |
> |
|
500 |
> |
break; |
501 |
> |
|
502 |
> |
case esm_REACTION_FIELD: |
503 |
> |
|
504 |
> |
// following DL_POLY's lead for shifting the image charge potential: |
505 |
> |
f = b0 + preRF_ * r2; |
506 |
> |
fc = b0c + preRF_ * cutoffRadius_ * cutoffRadius_; |
507 |
> |
|
508 |
> |
g = db0_1 + preRF_ * 2.0 * r; |
509 |
> |
gc = db0c_1 + preRF_ * 2.0 * cutoffRadius_; |
510 |
> |
|
511 |
> |
h = db0_2 + preRF_ * 2.0; |
512 |
> |
hc = db0c_2 + preRF_ * 2.0; |
513 |
> |
|
514 |
> |
v01 = f - fc; |
515 |
> |
v11 = g - gc; |
516 |
> |
v21 = g*ri - gc*ric; |
517 |
> |
v22 = h - g*ri - (hc - gc*ric); |
518 |
> |
v31 = (h-g*ri)*ri - (hc-g*ric)*ric; |
519 |
> |
v32 = (s - 3.0*(h-g*ri)*ri) - (sc - 3.0*(hc-gc*ric)*ric); |
520 |
> |
v41 = (h - g*ri)*ri2 - (hc - gc*ric)*ric2; |
521 |
> |
v42 = (s-3.0*(h-g*ri)*ri)*ri - (sc-3.0*(hc-gc*ric)*ric)*ric; |
522 |
> |
v43 = (t - 3.0*(2.0*s - 5.0*(h - g*ri)*ri)*ri) |
523 |
> |
- (tc - 3.0*(2.0*sc - 5.0*(hc - gc*ric)*ric)*ric); |
524 |
> |
|
525 |
> |
dv01 = g; |
526 |
> |
dv11 = h; |
527 |
> |
dv21 = (h - g*ri)*ri; |
528 |
> |
dv22 = (s - (h - g*ri)*ri); |
529 |
> |
dv31 = (s - 2.0*(h-g*ri)*ri)*ri; |
530 |
> |
dv32 = (t - 3.0*(s-2.0*(h-g*ri)*ri)*ri); |
531 |
> |
dv41 = (s - 3.0*(h - g*ri)*ri)*ri2; |
532 |
> |
dv42 = (t - (4.0*s - 9.0*(h-g*ri)*ri)*ri)*ri; |
533 |
> |
dv43 = (u - 3.0*(2.0*t - (7.0*s - 15.0*(h - g*ri)*ri)*ri)*ri); |
534 |
> |
|
535 |
> |
break; |
536 |
> |
|
537 |
> |
case esm_EWALD_FULL: |
538 |
> |
case esm_EWALD_PME: |
539 |
> |
case esm_EWALD_SPME: |
540 |
> |
default : |
541 |
> |
map<string, ElectrostaticSummationMethod>::iterator i; |
542 |
> |
std::string meth; |
543 |
> |
for (i = summationMap_.begin(); i != summationMap_.end(); ++i) { |
544 |
> |
if ((*i).second == summationMethod_) meth = (*i).first; |
545 |
|
} |
546 |
+ |
sprintf( painCave.errMsg, |
547 |
+ |
"Electrostatic::initialize: electrostaticSummationMethod %s \n" |
548 |
+ |
"\thas not been implemented yet. Please select one of:\n" |
549 |
+ |
"\t\"hard\", \"shifted_potential\", or \"shifted_force\"\n", |
550 |
+ |
meth.c_str() ); |
551 |
+ |
painCave.isFatal = 1; |
552 |
+ |
simError(); |
553 |
+ |
break; |
554 |
+ |
} |
555 |
+ |
|
556 |
+ |
// Add these computed values to the storage vectors for spline creation: |
557 |
+ |
v01v.push_back(v01); |
558 |
+ |
v11v.push_back(v11); |
559 |
+ |
v21v.push_back(v21); |
560 |
+ |
v22v.push_back(v22); |
561 |
+ |
v31v.push_back(v31); |
562 |
+ |
v32v.push_back(v32); |
563 |
+ |
v41v.push_back(v41); |
564 |
+ |
v42v.push_back(v42); |
565 |
+ |
v43v.push_back(v43); |
566 |
+ |
/* |
567 |
+ |
dv01v.push_back(dv01); |
568 |
+ |
dv11v.push_back(dv11); |
569 |
+ |
dv21v.push_back(dv21); |
570 |
+ |
dv22v.push_back(dv22); |
571 |
+ |
dv31v.push_back(dv31); |
572 |
+ |
dv32v.push_back(dv32); |
573 |
+ |
dv41v.push_back(dv41); |
574 |
+ |
dv42v.push_back(dv42); |
575 |
+ |
dv43v.push_back(dv43); |
576 |
+ |
*/ |
577 |
+ |
} |
578 |
+ |
|
579 |
+ |
// construct the spline structures and fill them with the values we've |
580 |
+ |
// computed: |
581 |
+ |
|
582 |
+ |
v01s = new CubicSpline(); |
583 |
+ |
v01s->addPoints(rv, v01v); |
584 |
+ |
v11s = new CubicSpline(); |
585 |
+ |
v11s->addPoints(rv, v11v); |
586 |
+ |
v21s = new CubicSpline(); |
587 |
+ |
v21s->addPoints(rv, v21v); |
588 |
+ |
v22s = new CubicSpline(); |
589 |
+ |
v22s->addPoints(rv, v22v); |
590 |
+ |
v31s = new CubicSpline(); |
591 |
+ |
v31s->addPoints(rv, v31v); |
592 |
+ |
v32s = new CubicSpline(); |
593 |
+ |
v32s->addPoints(rv, v32v); |
594 |
+ |
v41s = new CubicSpline(); |
595 |
+ |
v41s->addPoints(rv, v41v); |
596 |
+ |
v42s = new CubicSpline(); |
597 |
+ |
v42s->addPoints(rv, v42v); |
598 |
+ |
v43s = new CubicSpline(); |
599 |
+ |
v43s->addPoints(rv, v43v); |
600 |
+ |
|
601 |
+ |
/* |
602 |
+ |
dv01s = new CubicSpline(); |
603 |
+ |
dv01s->addPoints(rv, dv01v); |
604 |
+ |
dv11s = new CubicSpline(); |
605 |
+ |
dv11s->addPoints(rv, dv11v); |
606 |
+ |
dv21s = new CubicSpline(); |
607 |
+ |
dv21s->addPoints(rv, dv21v); |
608 |
+ |
dv22s = new CubicSpline(); |
609 |
+ |
dv22s->addPoints(rv, dv22v); |
610 |
+ |
dv31s = new CubicSpline(); |
611 |
+ |
dv31s->addPoints(rv, dv31v); |
612 |
+ |
dv32s = new CubicSpline(); |
613 |
+ |
dv32s->addPoints(rv, dv32v); |
614 |
+ |
dv41s = new CubicSpline(); |
615 |
+ |
dv41s->addPoints(rv, dv41v); |
616 |
+ |
dv42s = new CubicSpline(); |
617 |
+ |
dv42s->addPoints(rv, dv42v); |
618 |
+ |
dv43s = new CubicSpline(); |
619 |
+ |
dv43s->addPoints(rv, dv43v); |
620 |
+ |
*/ |
621 |
+ |
|
622 |
+ |
haveElectroSplines_ = true; |
623 |
+ |
|
624 |
+ |
initialized_ = true; |
625 |
+ |
} |
626 |
+ |
|
627 |
+ |
void Electrostatic::addType(AtomType* atomType){ |
628 |
+ |
|
629 |
+ |
ElectrostaticAtomData electrostaticAtomData; |
630 |
+ |
electrostaticAtomData.is_Charge = false; |
631 |
+ |
electrostaticAtomData.is_Dipole = false; |
632 |
+ |
electrostaticAtomData.is_Quadrupole = false; |
633 |
+ |
electrostaticAtomData.is_Fluctuating = false; |
634 |
+ |
|
635 |
+ |
FixedChargeAdapter fca = FixedChargeAdapter(atomType); |
636 |
+ |
|
637 |
+ |
if (fca.isFixedCharge()) { |
638 |
+ |
electrostaticAtomData.is_Charge = true; |
639 |
+ |
electrostaticAtomData.fixedCharge = fca.getCharge(); |
640 |
+ |
} |
641 |
+ |
|
642 |
+ |
MultipoleAdapter ma = MultipoleAdapter(atomType); |
643 |
+ |
if (ma.isMultipole()) { |
644 |
+ |
if (ma.isDipole()) { |
645 |
+ |
electrostaticAtomData.is_Dipole = true; |
646 |
+ |
electrostaticAtomData.dipole = ma.getDipole(); |
647 |
+ |
} |
648 |
+ |
if (ma.isQuadrupole()) { |
649 |
|
electrostaticAtomData.is_Quadrupole = true; |
650 |
< |
electrostaticAtomData.quadrupole_moments = v3dData->getData(); |
650 |
> |
electrostaticAtomData.quadrupole = ma.getQuadrupole(); |
651 |
|
} |
652 |
|
} |
653 |
|
|
654 |
< |
AtomTypeProperties atp = atomType->getATP(); |
654 |
> |
FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType); |
655 |
|
|
656 |
+ |
if (fqa.isFluctuatingCharge()) { |
657 |
+ |
electrostaticAtomData.is_Fluctuating = true; |
658 |
+ |
electrostaticAtomData.electronegativity = fqa.getElectronegativity(); |
659 |
+ |
electrostaticAtomData.hardness = fqa.getHardness(); |
660 |
+ |
electrostaticAtomData.slaterN = fqa.getSlaterN(); |
661 |
+ |
electrostaticAtomData.slaterZeta = fqa.getSlaterZeta(); |
662 |
+ |
} |
663 |
+ |
|
664 |
|
pair<map<int,AtomType*>::iterator,bool> ret; |
665 |
< |
ret = ElectrostaticList.insert( pair<int,AtomType*>(atp.ident, atomType) ); |
665 |
> |
ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(), |
666 |
> |
atomType) ); |
667 |
|
if (ret.second == false) { |
668 |
|
sprintf( painCave.errMsg, |
669 |
|
"Electrostatic already had a previous entry with ident %d\n", |
670 |
< |
atp.ident); |
670 |
> |
atomType->getIdent() ); |
671 |
|
painCave.severity = OPENMD_INFO; |
672 |
|
painCave.isFatal = 0; |
673 |
|
simError(); |
674 |
|
} |
675 |
|
|
676 |
< |
ElectrostaticMap[atomType] = electrostaticAtomData; |
676 |
> |
ElectrostaticMap[atomType] = electrostaticAtomData; |
677 |
> |
|
678 |
> |
// Now, iterate over all known types and add to the mixing map: |
679 |
> |
|
680 |
> |
map<AtomType*, ElectrostaticAtomData>::iterator it; |
681 |
> |
for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) { |
682 |
> |
AtomType* atype2 = (*it).first; |
683 |
> |
ElectrostaticAtomData eaData2 = (*it).second; |
684 |
> |
if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) { |
685 |
> |
|
686 |
> |
RealType a = electrostaticAtomData.slaterZeta; |
687 |
> |
RealType b = eaData2.slaterZeta; |
688 |
> |
int m = electrostaticAtomData.slaterN; |
689 |
> |
int n = eaData2.slaterN; |
690 |
> |
|
691 |
> |
// Create the spline of the coulombic integral for s-type |
692 |
> |
// Slater orbitals. Add a 2 angstrom safety window to deal |
693 |
> |
// with cutoffGroups that have charged atoms longer than the |
694 |
> |
// cutoffRadius away from each other. |
695 |
> |
|
696 |
> |
RealType rval; |
697 |
> |
RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1); |
698 |
> |
vector<RealType> rvals; |
699 |
> |
vector<RealType> Jvals; |
700 |
> |
// don't start at i = 0, as rval = 0 is undefined for the |
701 |
> |
// slater overlap integrals. |
702 |
> |
for (int i = 1; i < np_+1; i++) { |
703 |
> |
rval = RealType(i) * dr; |
704 |
> |
rvals.push_back(rval); |
705 |
> |
Jvals.push_back(sSTOCoulInt( a, b, m, n, rval * |
706 |
> |
PhysicalConstants::angstromToBohr ) * |
707 |
> |
PhysicalConstants::hartreeToKcal ); |
708 |
> |
} |
709 |
> |
|
710 |
> |
CubicSpline* J = new CubicSpline(); |
711 |
> |
J->addPoints(rvals, Jvals); |
712 |
> |
|
713 |
> |
pair<AtomType*, AtomType*> key1, key2; |
714 |
> |
key1 = make_pair(atomType, atype2); |
715 |
> |
key2 = make_pair(atype2, atomType); |
716 |
> |
|
717 |
> |
Jij[key1] = J; |
718 |
> |
Jij[key2] = J; |
719 |
> |
} |
720 |
> |
} |
721 |
> |
|
722 |
|
return; |
723 |
|
} |
724 |
|
|
725 |
|
void Electrostatic::setCutoffRadius( RealType rCut ) { |
726 |
|
cutoffRadius_ = rCut; |
420 |
– |
rrf_ = cutoffRadius_; |
727 |
|
haveCutoffRadius_ = true; |
728 |
|
} |
729 |
|
|
424 |
– |
void Electrostatic::setSwitchingRadius( RealType rSwitch ) { |
425 |
– |
rt_ = rSwitch; |
426 |
– |
} |
730 |
|
void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) { |
731 |
|
summationMethod_ = esm; |
732 |
|
} |
744 |
|
|
745 |
|
void Electrostatic::calcForce(InteractionData &idat) { |
746 |
|
|
747 |
< |
// utility variables. Should clean these up and use the Vector3d and |
748 |
< |
// Mat3x3d to replace as many as we can in future versions: |
747 |
> |
RealType C_a, C_b; // Charges |
748 |
> |
Vector3d D_a, D_b; // Dipoles (space-fixed) |
749 |
> |
Mat3x3d Q_a, Q_b; // Quadrupoles (space-fixed) |
750 |
|
|
751 |
< |
RealType q_i, q_j, mu_i, mu_j, d_i, d_j; |
752 |
< |
RealType qxx_i, qyy_i, qzz_i; |
753 |
< |
RealType qxx_j, qyy_j, qzz_j; |
754 |
< |
RealType cx_i, cy_i, cz_i; |
755 |
< |
RealType cx_j, cy_j, cz_j; |
756 |
< |
RealType cx2, cy2, cz2; |
453 |
< |
RealType ct_i, ct_j, ct_ij, a1; |
454 |
< |
RealType riji, ri, ri2, ri3, ri4; |
455 |
< |
RealType pref, vterm, epot, dudr; |
456 |
< |
RealType vpair(0.0); |
457 |
< |
RealType scale, sc2; |
458 |
< |
RealType pot_term, preVal, rfVal; |
459 |
< |
RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj; |
460 |
< |
RealType preSw, preSwSc; |
461 |
< |
RealType c1, c2, c3, c4; |
462 |
< |
RealType erfcVal(1.0), derfcVal(0.0); |
463 |
< |
RealType BigR; |
751 |
> |
RealType ri; // Distance utility scalar |
752 |
> |
RealType rdDa, rdDb; // Dipole utility scalars |
753 |
> |
Vector3d rxDa, rxDb; // Dipole utility vectors |
754 |
> |
RealType rdQar, rdQbr, trQa, trQb; // Quadrupole utility scalars |
755 |
> |
Vector3d Qar, Qbr, rQa, rQb, rxQar, rxQbr; // Quadrupole utility vectors |
756 |
> |
RealType pref; |
757 |
|
|
758 |
< |
Vector3d Q_i, Q_j; |
759 |
< |
Vector3d ux_i, uy_i, uz_i; |
760 |
< |
Vector3d ux_j, uy_j, uz_j; |
761 |
< |
Vector3d dudux_i, duduy_i, duduz_i; |
762 |
< |
Vector3d dudux_j, duduy_j, duduz_j; |
470 |
< |
Vector3d rhatdot2, rhatc4; |
471 |
< |
Vector3d dVdr; |
758 |
> |
RealType DadDb, trQaQb, DadQbr, DbdQar; // Cross-interaction scalars |
759 |
> |
RealType rQaQbr; |
760 |
> |
Vector3d DaxDb, DadQb, DbdQa, DaxQbr, DbxQar; // Cross-interaction vectors |
761 |
> |
Vector3d rQaQb, QaQbr, QaxQb, rQaxQbr; |
762 |
> |
Mat3x3d QaQb; // Cross-interaction matrices |
763 |
|
|
764 |
< |
// variables for indirect (reaction field) interactions for excluded pairs: |
765 |
< |
RealType indirect_Pot(0.0); |
766 |
< |
RealType indirect_vpair(0.0); |
767 |
< |
Vector3d indirect_dVdr(V3Zero); |
768 |
< |
Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero); |
764 |
> |
RealType U(0.0); // Potential |
765 |
> |
Vector3d F(0.0); // Force |
766 |
> |
Vector3d Ta(0.0); // Torque on site a |
767 |
> |
Vector3d Tb(0.0); // Torque on site b |
768 |
> |
Vector3d Ea(0.0); // Electric field at site a |
769 |
> |
Vector3d Eb(0.0); // Electric field at site b |
770 |
> |
RealType dUdCa(0.0); // fluctuating charge force at site a |
771 |
> |
RealType dUdCb(0.0); // fluctuating charge force at site a |
772 |
> |
|
773 |
> |
// Indirect interactions mediated by the reaction field. |
774 |
> |
RealType indirect_Pot(0.0); // Potential |
775 |
> |
Vector3d indirect_F(0.0); // Force |
776 |
> |
Vector3d indirect_Ta(0.0); // Torque on site a |
777 |
> |
Vector3d indirect_Tb(0.0); // Torque on site b |
778 |
|
|
779 |
< |
pair<RealType, RealType> res; |
779 |
> |
// Excluded potential that is still computed for fluctuating charges |
780 |
> |
RealType excluded_Pot(0.0); |
781 |
> |
|
782 |
> |
RealType rfContrib, coulInt; |
783 |
|
|
784 |
+ |
// spline for coulomb integral |
785 |
+ |
CubicSpline* J; |
786 |
+ |
|
787 |
|
if (!initialized_) initialize(); |
788 |
|
|
789 |
|
ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first]; |
791 |
|
|
792 |
|
// some variables we'll need independent of electrostatic type: |
793 |
|
|
794 |
< |
riji = 1.0 / *(idat.rij) ; |
795 |
< |
Vector3d rhat = *(idat.d) * riji; |
796 |
< |
|
794 |
> |
ri = 1.0 / *(idat.rij); |
795 |
> |
Vector3d rhat = *(idat.d) * ri; |
796 |
> |
|
797 |
|
// logicals |
798 |
|
|
799 |
< |
bool i_is_Charge = data1.is_Charge; |
800 |
< |
bool i_is_Dipole = data1.is_Dipole; |
801 |
< |
bool i_is_SplitDipole = data1.is_SplitDipole; |
802 |
< |
bool i_is_Quadrupole = data1.is_Quadrupole; |
799 |
> |
bool a_is_Charge = data1.is_Charge; |
800 |
> |
bool a_is_Dipole = data1.is_Dipole; |
801 |
> |
bool a_is_Quadrupole = data1.is_Quadrupole; |
802 |
> |
bool a_is_Fluctuating = data1.is_Fluctuating; |
803 |
|
|
804 |
< |
bool j_is_Charge = data2.is_Charge; |
805 |
< |
bool j_is_Dipole = data2.is_Dipole; |
806 |
< |
bool j_is_SplitDipole = data2.is_SplitDipole; |
807 |
< |
bool j_is_Quadrupole = data2.is_Quadrupole; |
804 |
> |
bool b_is_Charge = data2.is_Charge; |
805 |
> |
bool b_is_Dipole = data2.is_Dipole; |
806 |
> |
bool b_is_Quadrupole = data2.is_Quadrupole; |
807 |
> |
bool b_is_Fluctuating = data2.is_Fluctuating; |
808 |
> |
|
809 |
> |
// Obtain all of the required radial function values from the |
810 |
> |
// spline structures: |
811 |
|
|
812 |
< |
if (i_is_Charge) { |
813 |
< |
q_i = data1.charge; |
814 |
< |
if (idat.excluded) { |
506 |
< |
*(idat.skippedCharge2) += q_i; |
507 |
< |
} |
812 |
> |
// needed for fields (and forces): |
813 |
> |
if (a_is_Charge || b_is_Charge) { |
814 |
> |
v01s->getValueAndDerivativeAt( *(idat.rij), v01, dv01); |
815 |
|
} |
816 |
+ |
if (a_is_Dipole || b_is_Dipole) { |
817 |
+ |
v11s->getValueAndDerivativeAt( *(idat.rij), v11, dv11); |
818 |
+ |
v11or = ri * v11; |
819 |
+ |
} |
820 |
+ |
if (a_is_Quadrupole || b_is_Quadrupole || (a_is_Dipole && b_is_Dipole)) { |
821 |
+ |
v21s->getValueAndDerivativeAt( *(idat.rij), v21, dv21); |
822 |
+ |
v22s->getValueAndDerivativeAt( *(idat.rij), v22, dv22); |
823 |
+ |
v22or = ri * v22; |
824 |
+ |
} |
825 |
|
|
826 |
< |
if (i_is_Dipole) { |
827 |
< |
mu_i = data1.dipole_moment; |
828 |
< |
uz_i = idat.eFrame1->getColumn(2); |
829 |
< |
|
830 |
< |
ct_i = dot(uz_i, rhat); |
831 |
< |
|
832 |
< |
if (i_is_SplitDipole) |
517 |
< |
d_i = data1.split_dipole_distance; |
518 |
< |
|
519 |
< |
duduz_i = V3Zero; |
826 |
> |
// needed for potentials (and forces and torques): |
827 |
> |
if ((a_is_Dipole && b_is_Quadrupole) || |
828 |
> |
(b_is_Dipole && a_is_Quadrupole)) { |
829 |
> |
v31s->getValueAndDerivativeAt( *(idat.rij), v31, dv31); |
830 |
> |
v32s->getValueAndDerivativeAt( *(idat.rij), v32, dv32); |
831 |
> |
v31or = v31 * ri; |
832 |
> |
v32or = v32 * ri; |
833 |
|
} |
834 |
+ |
if (a_is_Quadrupole && b_is_Quadrupole) { |
835 |
+ |
v41s->getValueAndDerivativeAt( *(idat.rij), v41, dv41); |
836 |
+ |
v42s->getValueAndDerivativeAt( *(idat.rij), v42, dv42); |
837 |
+ |
v43s->getValueAndDerivativeAt( *(idat.rij), v43, dv43); |
838 |
+ |
v42or = v42 * ri; |
839 |
+ |
v43or = v43 * ri; |
840 |
+ |
} |
841 |
+ |
|
842 |
+ |
// calculate the single-site contributions (fields, etc). |
843 |
|
|
844 |
< |
if (i_is_Quadrupole) { |
845 |
< |
Q_i = data1.quadrupole_moments; |
524 |
< |
qxx_i = Q_i.x(); |
525 |
< |
qyy_i = Q_i.y(); |
526 |
< |
qzz_i = Q_i.z(); |
844 |
> |
if (a_is_Charge) { |
845 |
> |
C_a = data1.fixedCharge; |
846 |
|
|
847 |
< |
ux_i = idat.eFrame1->getColumn(0); |
848 |
< |
uy_i = idat.eFrame1->getColumn(1); |
849 |
< |
uz_i = idat.eFrame1->getColumn(2); |
850 |
< |
|
532 |
< |
cx_i = dot(ux_i, rhat); |
533 |
< |
cy_i = dot(uy_i, rhat); |
534 |
< |
cz_i = dot(uz_i, rhat); |
535 |
< |
|
536 |
< |
dudux_i = V3Zero; |
537 |
< |
duduy_i = V3Zero; |
538 |
< |
duduz_i = V3Zero; |
539 |
< |
} |
540 |
< |
|
541 |
< |
if (j_is_Charge) { |
542 |
< |
q_j = data2.charge; |
847 |
> |
if (a_is_Fluctuating) { |
848 |
> |
C_a += *(idat.flucQ1); |
849 |
> |
} |
850 |
> |
|
851 |
|
if (idat.excluded) { |
852 |
< |
*(idat.skippedCharge1) += q_j; |
852 |
> |
*(idat.skippedCharge2) += C_a; |
853 |
> |
} else { |
854 |
> |
// only do the field if we're not excluded: |
855 |
> |
Eb -= C_a * pre11_ * dv01 * rhat; |
856 |
|
} |
857 |
|
} |
858 |
< |
|
859 |
< |
|
860 |
< |
if (j_is_Dipole) { |
861 |
< |
mu_j = data2.dipole_moment; |
862 |
< |
uz_j = idat.eFrame2->getColumn(2); |
858 |
> |
|
859 |
> |
if (a_is_Dipole) { |
860 |
> |
D_a = *(idat.dipole1); |
861 |
> |
rdDa = dot(rhat, D_a); |
862 |
> |
rxDa = cross(rhat, D_a); |
863 |
> |
if (!idat.excluded) |
864 |
> |
Eb -= pre12_ * ((dv11-v11or) * rdDa * rhat + v11or * D_a); |
865 |
> |
} |
866 |
> |
|
867 |
> |
if (a_is_Quadrupole) { |
868 |
> |
Q_a = *(idat.quadrupole1); |
869 |
> |
trQa = Q_a.trace(); |
870 |
> |
Qar = Q_a * rhat; |
871 |
> |
rQa = rhat * Q_a; |
872 |
> |
rdQar = dot(rhat, Qar); |
873 |
> |
rxQar = cross(rhat, Qar); |
874 |
> |
if (!idat.excluded) |
875 |
> |
Eb -= pre14_ * (trQa * rhat * dv21 + 2.0 * Qar * v22or |
876 |
> |
+ rdQar * rhat * (dv22 - 2.0*v22or)); |
877 |
> |
} |
878 |
> |
|
879 |
> |
if (b_is_Charge) { |
880 |
> |
C_b = data2.fixedCharge; |
881 |
|
|
882 |
< |
ct_j = dot(uz_j, rhat); |
883 |
< |
|
555 |
< |
if (j_is_SplitDipole) |
556 |
< |
d_j = data2.split_dipole_distance; |
882 |
> |
if (b_is_Fluctuating) |
883 |
> |
C_b += *(idat.flucQ2); |
884 |
|
|
885 |
< |
duduz_j = V3Zero; |
885 |
> |
if (idat.excluded) { |
886 |
> |
*(idat.skippedCharge1) += C_b; |
887 |
> |
} else { |
888 |
> |
// only do the field if we're not excluded: |
889 |
> |
Ea += C_b * pre11_ * dv01 * rhat; |
890 |
> |
} |
891 |
|
} |
892 |
|
|
893 |
< |
if (j_is_Quadrupole) { |
894 |
< |
Q_j = data2.quadrupole_moments; |
895 |
< |
qxx_j = Q_j.x(); |
896 |
< |
qyy_j = Q_j.y(); |
897 |
< |
qzz_j = Q_j.z(); |
898 |
< |
|
567 |
< |
ux_j = idat.eFrame2->getColumn(0); |
568 |
< |
uy_j = idat.eFrame2->getColumn(1); |
569 |
< |
uz_j = idat.eFrame2->getColumn(2); |
570 |
< |
|
571 |
< |
cx_j = dot(ux_j, rhat); |
572 |
< |
cy_j = dot(uy_j, rhat); |
573 |
< |
cz_j = dot(uz_j, rhat); |
574 |
< |
|
575 |
< |
dudux_j = V3Zero; |
576 |
< |
duduy_j = V3Zero; |
577 |
< |
duduz_j = V3Zero; |
893 |
> |
if (b_is_Dipole) { |
894 |
> |
D_b = *(idat.dipole2); |
895 |
> |
rdDb = dot(rhat, D_b); |
896 |
> |
rxDb = cross(rhat, D_b); |
897 |
> |
if (!idat.excluded) |
898 |
> |
Ea += pre12_ * ((dv11-v11or) * rdDb * rhat + v11or * D_b); |
899 |
|
} |
900 |
|
|
901 |
< |
epot = 0.0; |
902 |
< |
dVdr = V3Zero; |
901 |
> |
if (b_is_Quadrupole) { |
902 |
> |
Q_b = *(idat.quadrupole2); |
903 |
> |
trQb = Q_b.trace(); |
904 |
> |
Qbr = Q_b * rhat; |
905 |
> |
rQb = rhat * Q_b; |
906 |
> |
rdQbr = dot(rhat, Qbr); |
907 |
> |
rxQbr = cross(rhat, Qbr); |
908 |
> |
if (!idat.excluded) |
909 |
> |
Ea += pre14_ * (trQb * rhat * dv21 + 2.0 * Qbr * v22or |
910 |
> |
+ rdQbr * rhat * (dv22 - 2.0*v22or)); |
911 |
> |
} |
912 |
|
|
913 |
< |
if (i_is_Charge) { |
913 |
> |
if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) { |
914 |
> |
J = Jij[idat.atypes]; |
915 |
> |
} |
916 |
> |
|
917 |
> |
if (a_is_Charge) { |
918 |
|
|
919 |
< |
if (j_is_Charge) { |
920 |
< |
if (screeningMethod_ == DAMPED) { |
921 |
< |
// assemble the damping variables |
922 |
< |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
923 |
< |
//erfcVal = res.first; |
924 |
< |
//derfcVal = res.second; |
919 |
> |
if (b_is_Charge) { |
920 |
> |
pref = pre11_ * *(idat.electroMult); |
921 |
> |
U += C_a * C_b * pref * v01; |
922 |
> |
F += C_a * C_b * pref * dv01 * rhat; |
923 |
> |
|
924 |
> |
// If this is an excluded pair, there are still indirect |
925 |
> |
// interactions via the reaction field we must worry about: |
926 |
|
|
927 |
< |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
928 |
< |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
927 |
> |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
928 |
> |
rfContrib = preRF_ * pref * C_a * C_b * *(idat.r2); |
929 |
> |
indirect_Pot += rfContrib; |
930 |
> |
indirect_F += rfContrib * 2.0 * ri * rhat; |
931 |
> |
} |
932 |
> |
|
933 |
> |
// Fluctuating charge forces are handled via Coulomb integrals |
934 |
> |
// for excluded pairs (i.e. those connected via bonds) and |
935 |
> |
// with the standard charge-charge interaction otherwise. |
936 |
|
|
937 |
< |
c1 = erfcVal * riji; |
938 |
< |
c2 = (-derfcVal + c1) * riji; |
937 |
> |
if (idat.excluded) { |
938 |
> |
if (a_is_Fluctuating || b_is_Fluctuating) { |
939 |
> |
coulInt = J->getValueAt( *(idat.rij) ); |
940 |
> |
if (a_is_Fluctuating) dUdCa += coulInt * C_b; |
941 |
> |
if (b_is_Fluctuating) dUdCb += coulInt * C_a; |
942 |
> |
excluded_Pot += C_a * C_b * coulInt; |
943 |
> |
} |
944 |
|
} else { |
945 |
< |
c1 = riji; |
946 |
< |
c2 = c1 * riji; |
945 |
> |
if (a_is_Fluctuating) dUdCa += C_b * pref * v01; |
946 |
> |
if (a_is_Fluctuating) dUdCb += C_a * pref * v01; |
947 |
|
} |
948 |
+ |
} |
949 |
|
|
950 |
< |
preVal = *(idat.electroMult) * pre11_ * q_i * q_j; |
951 |
< |
|
952 |
< |
if (summationMethod_ == esm_SHIFTED_POTENTIAL) { |
953 |
< |
vterm = preVal * (c1 - c1c_); |
954 |
< |
dudr = - *(idat.sw) * preVal * c2; |
950 |
> |
if (b_is_Dipole) { |
951 |
> |
pref = pre12_ * *(idat.electroMult); |
952 |
> |
U += C_a * pref * v11 * rdDb; |
953 |
> |
F += C_a * pref * ((dv11 - v11or) * rdDb * rhat + v11or * D_b); |
954 |
> |
Tb += C_a * pref * v11 * rxDb; |
955 |
|
|
956 |
< |
} else if (summationMethod_ == esm_SHIFTED_FORCE) { |
609 |
< |
vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij) - cutoffRadius_) ); |
610 |
< |
dudr = *(idat.sw) * preVal * (c2c_ - c2); |
956 |
> |
if (a_is_Fluctuating) dUdCa += pref * v11 * rdDb; |
957 |
|
|
958 |
< |
} else if (summationMethod_ == esm_REACTION_FIELD) { |
959 |
< |
rfVal = preRF_ * *(idat.rij) * *(idat.rij); |
958 |
> |
// Even if we excluded this pair from direct interactions, we |
959 |
> |
// still have the reaction-field-mediated charge-dipole |
960 |
> |
// interaction: |
961 |
|
|
962 |
< |
vterm = preVal * ( riji + rfVal ); |
963 |
< |
dudr = *(idat.sw) * preVal * ( 2.0 * rfVal - riji ) * riji; |
964 |
< |
|
965 |
< |
// if this is an excluded pair, there are still indirect |
966 |
< |
// interactions via the reaction field we must worry about: |
620 |
< |
|
621 |
< |
if (idat.excluded) { |
622 |
< |
indirect_vpair += preVal * rfVal; |
623 |
< |
indirect_Pot += *(idat.sw) * preVal * rfVal; |
624 |
< |
indirect_dVdr += *(idat.sw) * preVal * 2.0 * rfVal * riji * rhat; |
625 |
< |
} |
626 |
< |
|
627 |
< |
} else { |
628 |
< |
|
629 |
< |
vterm = preVal * riji * erfcVal; |
630 |
< |
dudr = - *(idat.sw) * preVal * c2; |
631 |
< |
|
962 |
> |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
963 |
> |
rfContrib = C_a * pref * preRF_ * 2.0 * *(idat.rij); |
964 |
> |
indirect_Pot += rfContrib * rdDb; |
965 |
> |
indirect_F += rfContrib * D_b / (*idat.rij); |
966 |
> |
indirect_Tb += C_a * pref * preRF_ * rxDb; |
967 |
|
} |
633 |
– |
|
634 |
– |
vpair += vterm; |
635 |
– |
epot += *(idat.sw) * vterm; |
636 |
– |
dVdr += dudr * rhat; |
968 |
|
} |
969 |
|
|
970 |
< |
if (j_is_Dipole) { |
971 |
< |
// pref is used by all the possible methods |
972 |
< |
pref = *(idat.electroMult) * pre12_ * q_i * mu_j; |
973 |
< |
preSw = *(idat.sw) * pref; |
970 |
> |
if (b_is_Quadrupole) { |
971 |
> |
pref = pre14_ * *(idat.electroMult); |
972 |
> |
U += C_a * pref * (v21 * trQb + v22 * rdQbr); |
973 |
> |
F += C_a * pref * (trQb * dv21 * rhat + 2.0 * Qbr * v22or); |
974 |
> |
F += C_a * pref * rdQbr * rhat * (dv22 - 2.0*v22or); |
975 |
> |
Tb += C_a * pref * 2.0 * rxQbr * v22; |
976 |
|
|
977 |
< |
if (summationMethod_ == esm_REACTION_FIELD) { |
978 |
< |
ri2 = riji * riji; |
979 |
< |
ri3 = ri2 * riji; |
647 |
< |
|
648 |
< |
vterm = - pref * ct_j * ( ri2 - preRF2_ * *(idat.rij) ); |
649 |
< |
vpair += vterm; |
650 |
< |
epot += *(idat.sw) * vterm; |
977 |
> |
if (a_is_Fluctuating) dUdCa += pref * (v21 * trQb + v22 * rdQbr); |
978 |
> |
} |
979 |
> |
} |
980 |
|
|
981 |
< |
dVdr += -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j); |
653 |
< |
duduz_j += -preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
981 |
> |
if (a_is_Dipole) { |
982 |
|
|
983 |
< |
// Even if we excluded this pair from direct interactions, |
984 |
< |
// we still have the reaction-field-mediated charge-dipole |
657 |
< |
// interaction: |
983 |
> |
if (b_is_Charge) { |
984 |
> |
pref = pre12_ * *(idat.electroMult); |
985 |
|
|
986 |
< |
if (idat.excluded) { |
987 |
< |
indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij); |
988 |
< |
indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij); |
662 |
< |
indirect_dVdr += preSw * preRF2_ * uz_j; |
663 |
< |
indirect_duduz_j += preSw * rhat * preRF2_ * *(idat.rij); |
664 |
< |
} |
665 |
< |
|
666 |
< |
} else { |
667 |
< |
// determine the inverse r used if we have split dipoles |
668 |
< |
if (j_is_SplitDipole) { |
669 |
< |
BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j); |
670 |
< |
ri = 1.0 / BigR; |
671 |
< |
scale = *(idat.rij) * ri; |
672 |
< |
} else { |
673 |
< |
ri = riji; |
674 |
< |
scale = 1.0; |
675 |
< |
} |
676 |
< |
|
677 |
< |
sc2 = scale * scale; |
986 |
> |
U -= C_b * pref * v11 * rdDa; |
987 |
> |
F -= C_b * pref * ((dv11-v11or) * rdDa * rhat + v11or * D_a); |
988 |
> |
Ta -= C_b * pref * v11 * rxDa; |
989 |
|
|
990 |
< |
if (screeningMethod_ == DAMPED) { |
680 |
< |
// assemble the damping variables |
681 |
< |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
682 |
< |
//erfcVal = res.first; |
683 |
< |
//derfcVal = res.second; |
684 |
< |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
685 |
< |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
686 |
< |
c1 = erfcVal * ri; |
687 |
< |
c2 = (-derfcVal + c1) * ri; |
688 |
< |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
689 |
< |
} else { |
690 |
< |
c1 = ri; |
691 |
< |
c2 = c1 * ri; |
692 |
< |
c3 = 3.0 * c2 * ri; |
693 |
< |
} |
694 |
< |
|
695 |
< |
c2ri = c2 * ri; |
990 |
> |
if (b_is_Fluctuating) dUdCb -= pref * v11 * rdDa; |
991 |
|
|
992 |
< |
// calculate the potential |
993 |
< |
pot_term = scale * c2; |
994 |
< |
vterm = -pref * ct_j * pot_term; |
995 |
< |
vpair += vterm; |
996 |
< |
epot += *(idat.sw) * vterm; |
997 |
< |
|
998 |
< |
// calculate derivatives for forces and torques |
999 |
< |
|
705 |
< |
dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3); |
706 |
< |
duduz_j += -preSw * pot_term * rhat; |
707 |
< |
|
992 |
> |
// Even if we excluded this pair from direct interactions, |
993 |
> |
// we still have the reaction-field-mediated charge-dipole |
994 |
> |
// interaction: |
995 |
> |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
996 |
> |
rfContrib = C_b * pref * preRF_ * 2.0 * *(idat.rij); |
997 |
> |
indirect_Pot -= rfContrib * rdDa; |
998 |
> |
indirect_F -= rfContrib * D_a / (*idat.rij); |
999 |
> |
indirect_Ta -= C_b * pref * preRF_ * rxDa; |
1000 |
|
} |
1001 |
|
} |
1002 |
|
|
1003 |
< |
if (j_is_Quadrupole) { |
1004 |
< |
// first precalculate some necessary variables |
1005 |
< |
cx2 = cx_j * cx_j; |
1006 |
< |
cy2 = cy_j * cy_j; |
715 |
< |
cz2 = cz_j * cz_j; |
716 |
< |
pref = *(idat.electroMult) * pre14_ * q_i * one_third_; |
717 |
< |
|
718 |
< |
if (screeningMethod_ == DAMPED) { |
719 |
< |
// assemble the damping variables |
720 |
< |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
721 |
< |
//erfcVal = res.first; |
722 |
< |
//derfcVal = res.second; |
723 |
< |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
724 |
< |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
725 |
< |
c1 = erfcVal * riji; |
726 |
< |
c2 = (-derfcVal + c1) * riji; |
727 |
< |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji; |
728 |
< |
c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji; |
729 |
< |
} else { |
730 |
< |
c1 = riji; |
731 |
< |
c2 = c1 * riji; |
732 |
< |
c3 = 3.0 * c2 * riji; |
733 |
< |
c4 = 5.0 * c3 * riji * riji; |
734 |
< |
} |
1003 |
> |
if (b_is_Dipole) { |
1004 |
> |
pref = pre22_ * *(idat.electroMult); |
1005 |
> |
DadDb = dot(D_a, D_b); |
1006 |
> |
DaxDb = cross(D_a, D_b); |
1007 |
|
|
1008 |
< |
// precompute variables for convenience |
1009 |
< |
preSw = *(idat.sw) * pref; |
1010 |
< |
c2ri = c2 * riji; |
1011 |
< |
c3ri = c3 * riji; |
1012 |
< |
c4rij = c4 * *(idat.rij) ; |
741 |
< |
rhatdot2 = 2.0 * rhat * c3; |
742 |
< |
rhatc4 = rhat * c4rij; |
1008 |
> |
U -= pref * (DadDb * v21 + rdDa * rdDb * v22); |
1009 |
> |
F -= pref * (dv21 * DadDb * rhat + v22or * (rdDb * D_a + rdDa * D_b)); |
1010 |
> |
F -= pref * (rdDa * rdDb) * (dv22 - 2.0*v22or) * rhat; |
1011 |
> |
Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa); |
1012 |
> |
Tb += pref * (-v21 * DaxDb - v22 * rdDa * rxDb); |
1013 |
|
|
1014 |
< |
// calculate the potential |
1015 |
< |
pot_term = ( qxx_j * (cx2*c3 - c2ri) + |
1016 |
< |
qyy_j * (cy2*c3 - c2ri) + |
1017 |
< |
qzz_j * (cz2*c3 - c2ri) ); |
1018 |
< |
vterm = pref * pot_term; |
1019 |
< |
vpair += vterm; |
1020 |
< |
epot += *(idat.sw) * vterm; |
1021 |
< |
|
1022 |
< |
// calculate derivatives for the forces and torques |
1014 |
> |
// Even if we excluded this pair from direct interactions, we |
1015 |
> |
// still have the reaction-field-mediated dipole-dipole |
1016 |
> |
// interaction: |
1017 |
> |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
1018 |
> |
rfContrib = -pref * preRF_ * 2.0; |
1019 |
> |
indirect_Pot += rfContrib * DadDb; |
1020 |
> |
indirect_Ta += rfContrib * DaxDb; |
1021 |
> |
indirect_Tb -= rfContrib * DaxDb; |
1022 |
> |
} |
1023 |
> |
} |
1024 |
|
|
1025 |
< |
dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (2.0*cx_j*ux_j + rhat)*c3ri) + |
1026 |
< |
qyy_j* (cy2*rhatc4 - (2.0*cy_j*uy_j + rhat)*c3ri) + |
1027 |
< |
qzz_j* (cz2*rhatc4 - (2.0*cz_j*uz_j + rhat)*c3ri)); |
1028 |
< |
|
1029 |
< |
dudux_j += preSw * qxx_j * cx_j * rhatdot2; |
1030 |
< |
duduy_j += preSw * qyy_j * cy_j * rhatdot2; |
1031 |
< |
duduz_j += preSw * qzz_j * cz_j * rhatdot2; |
1025 |
> |
if (b_is_Quadrupole) { |
1026 |
> |
pref = pre24_ * *(idat.electroMult); |
1027 |
> |
DadQb = D_a * Q_b; |
1028 |
> |
DadQbr = dot(D_a, Qbr); |
1029 |
> |
DaxQbr = cross(D_a, Qbr); |
1030 |
> |
|
1031 |
> |
U -= pref * ((trQb*rdDa + 2.0*DadQbr)*v31 + rdDa*rdQbr*v32); |
1032 |
> |
F -= pref * (trQb*D_a + 2.0*DadQb) * v31or; |
1033 |
> |
F -= pref * (trQb*rdDa + 2.0*DadQbr) * (dv31-v31or) * rhat; |
1034 |
> |
F -= pref * (D_a*rdQbr + 2.0*rdDa*rQb) * v32or; |
1035 |
> |
F -= pref * (rdDa * rdQbr * rhat * (dv32-3.0*v32or)); |
1036 |
> |
Ta += pref * ((-trQb*rxDa + 2.0 * DaxQbr)*v31 - rxDa*rdQbr*v32); |
1037 |
> |
Tb += pref * ((2.0*cross(DadQb, rhat) - 2.0*DaxQbr)*v31 |
1038 |
> |
- 2.0*rdDa*rxQbr*v32); |
1039 |
|
} |
1040 |
|
} |
763 |
– |
|
764 |
– |
if (i_is_Dipole) { |
1041 |
|
|
1042 |
< |
if (j_is_Charge) { |
1043 |
< |
// variables used by all the methods |
1044 |
< |
pref = *(idat.electroMult) * pre12_ * q_j * mu_i; |
1045 |
< |
preSw = *(idat.sw) * pref; |
1042 |
> |
if (a_is_Quadrupole) { |
1043 |
> |
if (b_is_Charge) { |
1044 |
> |
pref = pre14_ * *(idat.electroMult); |
1045 |
> |
U += C_b * pref * (v21 * trQa + v22 * rdQar); |
1046 |
> |
F += C_b * pref * (trQa * rhat * dv21 + 2.0 * Qar * v22or); |
1047 |
> |
F += C_b * pref * rdQar * rhat * (dv22 - 2.0*v22or); |
1048 |
> |
Ta += C_b * pref * 2.0 * rxQar * v22; |
1049 |
|
|
1050 |
< |
if (summationMethod_ == esm_REACTION_FIELD) { |
1050 |
> |
if (b_is_Fluctuating) dUdCb += pref * (v21 * trQa + v22 * rdQar); |
1051 |
> |
} |
1052 |
> |
if (b_is_Dipole) { |
1053 |
> |
pref = pre24_ * *(idat.electroMult); |
1054 |
> |
DbdQa = D_b * Q_a; |
1055 |
> |
DbdQar = dot(D_b, Qar); |
1056 |
> |
DbxQar = cross(D_b, Qar); |
1057 |
|
|
1058 |
< |
ri2 = riji * riji; |
1059 |
< |
ri3 = ri2 * riji; |
1060 |
< |
|
1061 |
< |
vterm = pref * ct_i * ( ri2 - preRF2_ * *(idat.rij) ); |
1062 |
< |
vpair += vterm; |
1063 |
< |
epot += *(idat.sw) * vterm; |
1064 |
< |
|
1065 |
< |
dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i); |
781 |
< |
|
782 |
< |
duduz_i += preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
783 |
< |
|
784 |
< |
// Even if we excluded this pair from direct interactions, |
785 |
< |
// we still have the reaction-field-mediated charge-dipole |
786 |
< |
// interaction: |
787 |
< |
|
788 |
< |
if (idat.excluded) { |
789 |
< |
indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij); |
790 |
< |
indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij); |
791 |
< |
indirect_dVdr += -preSw * preRF2_ * uz_i; |
792 |
< |
indirect_duduz_i += -preSw * rhat * preRF2_ * *(idat.rij); |
793 |
< |
} |
794 |
< |
|
795 |
< |
} else { |
796 |
< |
|
797 |
< |
// determine inverse r if we are using split dipoles |
798 |
< |
if (i_is_SplitDipole) { |
799 |
< |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i); |
800 |
< |
ri = 1.0 / BigR; |
801 |
< |
scale = *(idat.rij) * ri; |
802 |
< |
} else { |
803 |
< |
ri = riji; |
804 |
< |
scale = 1.0; |
805 |
< |
} |
806 |
< |
|
807 |
< |
sc2 = scale * scale; |
808 |
< |
|
809 |
< |
if (screeningMethod_ == DAMPED) { |
810 |
< |
// assemble the damping variables |
811 |
< |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
812 |
< |
//erfcVal = res.first; |
813 |
< |
//derfcVal = res.second; |
814 |
< |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
815 |
< |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
816 |
< |
c1 = erfcVal * ri; |
817 |
< |
c2 = (-derfcVal + c1) * ri; |
818 |
< |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
819 |
< |
} else { |
820 |
< |
c1 = ri; |
821 |
< |
c2 = c1 * ri; |
822 |
< |
c3 = 3.0 * c2 * ri; |
823 |
< |
} |
824 |
< |
|
825 |
< |
c2ri = c2 * ri; |
826 |
< |
|
827 |
< |
// calculate the potential |
828 |
< |
pot_term = c2 * scale; |
829 |
< |
vterm = pref * ct_i * pot_term; |
830 |
< |
vpair += vterm; |
831 |
< |
epot += *(idat.sw) * vterm; |
832 |
< |
|
833 |
< |
// calculate derivatives for the forces and torques |
834 |
< |
dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3); |
835 |
< |
duduz_i += preSw * pot_term * rhat; |
836 |
< |
} |
1058 |
> |
U += pref * ((trQa*rdDb + 2.0*DbdQar)*v31 + rdDb*rdQar*v32); |
1059 |
> |
F += pref * (trQa*D_b + 2.0*DbdQa) * v31or; |
1060 |
> |
F += pref * (trQa*rdDb + 2.0*DbdQar) * (dv31-v31or) * rhat; |
1061 |
> |
F += pref * (D_b*rdQar + 2.0*rdDb*rQa) * v32or; |
1062 |
> |
F += pref * (rdDb * rdQar * rhat * (dv32-3.0*v32or)); |
1063 |
> |
Ta += pref * ((-2.0*cross(DbdQa, rhat) + 2.0*DbxQar)*v31 |
1064 |
> |
+ 2.0*rdDb*rxQar*v32); |
1065 |
> |
Tb += pref * ((trQa*rxDb - 2.0 * DbxQar)*v31 + rxDb*rdQar*v32); |
1066 |
|
} |
1067 |
+ |
if (b_is_Quadrupole) { |
1068 |
+ |
pref = pre44_ * *(idat.electroMult); // yes |
1069 |
+ |
QaQb = Q_a * Q_b; |
1070 |
+ |
trQaQb = QaQb.trace(); |
1071 |
+ |
rQaQb = rhat * QaQb; |
1072 |
+ |
QaQbr = QaQb * rhat; |
1073 |
+ |
QaxQb = cross(Q_a, Q_b); |
1074 |
+ |
rQaQbr = dot(rQa, Qbr); |
1075 |
+ |
rQaxQbr = cross(rQa, Qbr); |
1076 |
+ |
|
1077 |
+ |
U += pref * (trQa * trQb + 2.0 * trQaQb) * v41; |
1078 |
+ |
U += pref * (trQa * rdQbr + trQb * rdQar + 4.0 * rQaQbr) * v42; |
1079 |
+ |
U += pref * (rdQar * rdQbr) * v43; |
1080 |
|
|
1081 |
< |
if (j_is_Dipole) { |
1082 |
< |
// variables used by all methods |
1083 |
< |
ct_ij = dot(uz_i, uz_j); |
1081 |
> |
F += pref * rhat * (trQa * trQb + 2.0 * trQaQb)*dv41; |
1082 |
> |
F += pref*rhat*(trQa*rdQbr + trQb*rdQar + 4.0*rQaQbr)*(dv42-2.0*v42or); |
1083 |
> |
F += pref * rhat * (rdQar * rdQbr)*(dv43 - 4.0*v43or); |
1084 |
|
|
1085 |
< |
pref = *(idat.electroMult) * pre22_ * mu_i * mu_j; |
1086 |
< |
preSw = *(idat.sw) * pref; |
1085 |
> |
F += pref * 2.0 * (trQb*rQa + trQa*rQb) * v42or; |
1086 |
> |
F += pref * 4.0 * (rQaQb + QaQbr) * v42or; |
1087 |
> |
F += pref * 2.0 * (rQa*rdQbr + rdQar*rQb) * v43or; |
1088 |
|
|
1089 |
< |
if (summationMethod_ == esm_REACTION_FIELD) { |
1090 |
< |
ri2 = riji * riji; |
1091 |
< |
ri3 = ri2 * riji; |
1092 |
< |
ri4 = ri2 * ri2; |
1089 |
> |
Ta += pref * (- 4.0 * QaxQb * v41); |
1090 |
> |
Ta += pref * (- 2.0 * trQb * cross(rQa, rhat) |
1091 |
> |
+ 4.0 * cross(rhat, QaQbr) |
1092 |
> |
- 4.0 * rQaxQbr) * v42; |
1093 |
> |
Ta += pref * 2.0 * cross(rhat,Qar) * rdQbr * v43; |
1094 |
|
|
851 |
– |
vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) - |
852 |
– |
preRF2_ * ct_ij ); |
853 |
– |
vpair += vterm; |
854 |
– |
epot += *(idat.sw) * vterm; |
855 |
– |
|
856 |
– |
a1 = 5.0 * ct_i * ct_j - ct_ij; |
857 |
– |
|
858 |
– |
dVdr += preSw * 3.0 * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i); |
1095 |
|
|
1096 |
< |
duduz_i += preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j); |
1097 |
< |
duduz_j += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_*uz_i); |
1096 |
> |
Tb += pref * (+ 4.0 * QaxQb * v41); |
1097 |
> |
Tb += pref * (- 2.0 * trQa * cross(rQb, rhat) |
1098 |
> |
- 4.0 * cross(rQaQb, rhat) |
1099 |
> |
+ 4.0 * rQaxQbr) * v42; |
1100 |
> |
// Possible replacement for line 2 above: |
1101 |
> |
// + 4.0 * cross(rhat, QbQar) |
1102 |
|
|
1103 |
< |
if (idat.excluded) { |
864 |
< |
indirect_vpair += - pref * preRF2_ * ct_ij; |
865 |
< |
indirect_Pot += - preSw * preRF2_ * ct_ij; |
866 |
< |
indirect_duduz_i += -preSw * preRF2_ * uz_j; |
867 |
< |
indirect_duduz_j += -preSw * preRF2_ * uz_i; |
868 |
< |
} |
1103 |
> |
Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43; |
1104 |
|
|
1105 |
< |
} else { |
871 |
< |
|
872 |
< |
if (i_is_SplitDipole) { |
873 |
< |
if (j_is_SplitDipole) { |
874 |
< |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j); |
875 |
< |
} else { |
876 |
< |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i); |
877 |
< |
} |
878 |
< |
ri = 1.0 / BigR; |
879 |
< |
scale = *(idat.rij) * ri; |
880 |
< |
} else { |
881 |
< |
if (j_is_SplitDipole) { |
882 |
< |
BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j); |
883 |
< |
ri = 1.0 / BigR; |
884 |
< |
scale = *(idat.rij) * ri; |
885 |
< |
} else { |
886 |
< |
ri = riji; |
887 |
< |
scale = 1.0; |
888 |
< |
} |
889 |
< |
} |
890 |
< |
if (screeningMethod_ == DAMPED) { |
891 |
< |
// assemble damping variables |
892 |
< |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
893 |
< |
//erfcVal = res.first; |
894 |
< |
//derfcVal = res.second; |
895 |
< |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
896 |
< |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
897 |
< |
c1 = erfcVal * ri; |
898 |
< |
c2 = (-derfcVal + c1) * ri; |
899 |
< |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
900 |
< |
c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri; |
901 |
< |
} else { |
902 |
< |
c1 = ri; |
903 |
< |
c2 = c1 * ri; |
904 |
< |
c3 = 3.0 * c2 * ri; |
905 |
< |
c4 = 5.0 * c3 * ri * ri; |
906 |
< |
} |
907 |
< |
|
908 |
< |
// precompute variables for convenience |
909 |
< |
sc2 = scale * scale; |
910 |
< |
cti3 = ct_i * sc2 * c3; |
911 |
< |
ctj3 = ct_j * sc2 * c3; |
912 |
< |
ctidotj = ct_i * ct_j * sc2; |
913 |
< |
preSwSc = preSw * scale; |
914 |
< |
c2ri = c2 * ri; |
915 |
< |
c3ri = c3 * ri; |
916 |
< |
c4rij = c4 * *(idat.rij) ; |
917 |
< |
|
918 |
< |
// calculate the potential |
919 |
< |
pot_term = (ct_ij * c2ri - ctidotj * c3); |
920 |
< |
vterm = pref * pot_term; |
921 |
< |
vpair += vterm; |
922 |
< |
epot += *(idat.sw) * vterm; |
923 |
< |
|
924 |
< |
// calculate derivatives for the forces and torques |
925 |
< |
dVdr += preSwSc * ( ctidotj * rhat * c4rij - |
926 |
< |
(ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri); |
927 |
< |
|
928 |
< |
duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat); |
929 |
< |
duduz_j += preSw * (uz_i * c2ri - cti3 * rhat); |
930 |
< |
} |
1105 |
> |
// cerr << " tsum = " << Ta + Tb - cross( *(idat.d) , F ) << "\n"; |
1106 |
|
} |
1107 |
|
} |
1108 |
|
|
1109 |
< |
if (i_is_Quadrupole) { |
1110 |
< |
if (j_is_Charge) { |
1111 |
< |
// precompute some necessary variables |
937 |
< |
cx2 = cx_i * cx_i; |
938 |
< |
cy2 = cy_i * cy_i; |
939 |
< |
cz2 = cz_i * cz_i; |
940 |
< |
|
941 |
< |
pref = *(idat.electroMult) * pre14_ * q_j * one_third_; |
942 |
< |
|
943 |
< |
if (screeningMethod_ == DAMPED) { |
944 |
< |
// assemble the damping variables |
945 |
< |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
946 |
< |
//erfcVal = res.first; |
947 |
< |
//derfcVal = res.second; |
948 |
< |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
949 |
< |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
950 |
< |
c1 = erfcVal * riji; |
951 |
< |
c2 = (-derfcVal + c1) * riji; |
952 |
< |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji; |
953 |
< |
c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji; |
954 |
< |
} else { |
955 |
< |
c1 = riji; |
956 |
< |
c2 = c1 * riji; |
957 |
< |
c3 = 3.0 * c2 * riji; |
958 |
< |
c4 = 5.0 * c3 * riji * riji; |
959 |
< |
} |
960 |
< |
|
961 |
< |
// precompute some variables for convenience |
962 |
< |
preSw = *(idat.sw) * pref; |
963 |
< |
c2ri = c2 * riji; |
964 |
< |
c3ri = c3 * riji; |
965 |
< |
c4rij = c4 * *(idat.rij) ; |
966 |
< |
rhatdot2 = 2.0 * rhat * c3; |
967 |
< |
rhatc4 = rhat * c4rij; |
968 |
< |
|
969 |
< |
// calculate the potential |
970 |
< |
pot_term = ( qxx_i * (cx2 * c3 - c2ri) + |
971 |
< |
qyy_i * (cy2 * c3 - c2ri) + |
972 |
< |
qzz_i * (cz2 * c3 - c2ri) ); |
973 |
< |
|
974 |
< |
vterm = pref * pot_term; |
975 |
< |
vpair += vterm; |
976 |
< |
epot += *(idat.sw) * vterm; |
977 |
< |
|
978 |
< |
// calculate the derivatives for the forces and torques |
979 |
< |
|
980 |
< |
dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (2.0*cx_i*ux_i + rhat)*c3ri) + |
981 |
< |
qyy_i* (cy2*rhatc4 - (2.0*cy_i*uy_i + rhat)*c3ri) + |
982 |
< |
qzz_i* (cz2*rhatc4 - (2.0*cz_i*uz_i + rhat)*c3ri)); |
983 |
< |
|
984 |
< |
dudux_i += preSw * qxx_i * cx_i * rhatdot2; |
985 |
< |
duduy_i += preSw * qyy_i * cy_i * rhatdot2; |
986 |
< |
duduz_i += preSw * qzz_i * cz_i * rhatdot2; |
987 |
< |
} |
1109 |
> |
if (idat.doElectricField) { |
1110 |
> |
*(idat.eField1) += Ea * *(idat.electroMult); |
1111 |
> |
*(idat.eField2) += Eb * *(idat.electroMult); |
1112 |
|
} |
1113 |
|
|
1114 |
+ |
if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw); |
1115 |
+ |
if (b_is_Fluctuating) *(idat.dVdFQ2) += dUdCb * *(idat.sw); |
1116 |
|
|
1117 |
|
if (!idat.excluded) { |
992 |
– |
*(idat.vpair) += vpair; |
993 |
– |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += epot; |
994 |
– |
*(idat.f1) += dVdr; |
1118 |
|
|
1119 |
< |
if (i_is_Dipole || i_is_Quadrupole) |
1120 |
< |
*(idat.t1) -= cross(uz_i, duduz_i); |
1121 |
< |
if (i_is_Quadrupole) { |
999 |
< |
*(idat.t1) -= cross(ux_i, dudux_i); |
1000 |
< |
*(idat.t1) -= cross(uy_i, duduy_i); |
1001 |
< |
} |
1119 |
> |
*(idat.vpair) += U; |
1120 |
> |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += U * *(idat.sw); |
1121 |
> |
*(idat.f1) += F * *(idat.sw); |
1122 |
|
|
1123 |
< |
if (j_is_Dipole || j_is_Quadrupole) |
1124 |
< |
*(idat.t2) -= cross(uz_j, duduz_j); |
1005 |
< |
if (j_is_Quadrupole) { |
1006 |
< |
*(idat.t2) -= cross(uz_j, dudux_j); |
1007 |
< |
*(idat.t2) -= cross(uz_j, duduy_j); |
1008 |
< |
} |
1123 |
> |
if (a_is_Dipole || a_is_Quadrupole) |
1124 |
> |
*(idat.t1) += Ta * *(idat.sw); |
1125 |
|
|
1126 |
+ |
if (b_is_Dipole || b_is_Quadrupole) |
1127 |
+ |
*(idat.t2) += Tb * *(idat.sw); |
1128 |
+ |
|
1129 |
|
} else { |
1130 |
|
|
1131 |
|
// only accumulate the forces and torques resulting from the |
1132 |
|
// indirect reaction field terms. |
1133 |
|
|
1134 |
< |
*(idat.vpair) += indirect_vpair; |
1135 |
< |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot; |
1136 |
< |
*(idat.f1) += indirect_dVdr; |
1134 |
> |
*(idat.vpair) += indirect_Pot; |
1135 |
> |
(*(idat.excludedPot))[ELECTROSTATIC_FAMILY] += excluded_Pot; |
1136 |
> |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += *(idat.sw) * indirect_Pot; |
1137 |
> |
*(idat.f1) += *(idat.sw) * indirect_F; |
1138 |
|
|
1139 |
< |
if (i_is_Dipole) |
1140 |
< |
*(idat.t1) -= cross(uz_i, indirect_duduz_i); |
1141 |
< |
if (j_is_Dipole) |
1142 |
< |
*(idat.t2) -= cross(uz_j, indirect_duduz_j); |
1139 |
> |
if (a_is_Dipole || a_is_Quadrupole) |
1140 |
> |
*(idat.t1) += *(idat.sw) * indirect_Ta; |
1141 |
> |
|
1142 |
> |
if (b_is_Dipole || b_is_Quadrupole) |
1143 |
> |
*(idat.t2) += *(idat.sw) * indirect_Tb; |
1144 |
|
} |
1024 |
– |
|
1025 |
– |
|
1145 |
|
return; |
1146 |
< |
} |
1146 |
> |
} |
1147 |
|
|
1148 |
|
void Electrostatic::calcSelfCorrection(SelfData &sdat) { |
1149 |
< |
RealType mu1, preVal, chg1, self; |
1031 |
< |
|
1149 |
> |
|
1150 |
|
if (!initialized_) initialize(); |
1151 |
|
|
1152 |
|
ElectrostaticAtomData data = ElectrostaticMap[sdat.atype]; |
1153 |
< |
|
1153 |
> |
|
1154 |
|
// logicals |
1155 |
|
bool i_is_Charge = data.is_Charge; |
1156 |
|
bool i_is_Dipole = data.is_Dipole; |
1157 |
+ |
bool i_is_Fluctuating = data.is_Fluctuating; |
1158 |
+ |
RealType C_a = data.fixedCharge; |
1159 |
+ |
RealType self, preVal, DadDa; |
1160 |
+ |
|
1161 |
+ |
if (i_is_Fluctuating) { |
1162 |
+ |
C_a += *(sdat.flucQ); |
1163 |
+ |
// dVdFQ is really a force, so this is negative the derivative |
1164 |
+ |
*(sdat.dVdFQ) -= *(sdat.flucQ) * data.hardness + data.electronegativity; |
1165 |
+ |
(*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) * |
1166 |
+ |
(*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity); |
1167 |
+ |
} |
1168 |
|
|
1169 |
< |
if (summationMethod_ == esm_REACTION_FIELD) { |
1170 |
< |
if (i_is_Dipole) { |
1171 |
< |
mu1 = data.dipole_moment; |
1172 |
< |
preVal = pre22_ * preRF2_ * mu1 * mu1; |
1173 |
< |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal; |
1174 |
< |
|
1175 |
< |
// The self-correction term adds into the reaction field vector |
1176 |
< |
Vector3d uz_i = sdat.eFrame->getColumn(2); |
1177 |
< |
Vector3d ei = preVal * uz_i; |
1169 |
> |
switch (summationMethod_) { |
1170 |
> |
case esm_REACTION_FIELD: |
1171 |
> |
|
1172 |
> |
if (i_is_Charge) { |
1173 |
> |
// Self potential [see Wang and Hermans, "Reaction Field |
1174 |
> |
// Molecular Dynamics Simulation with Friedman’s Image Charge |
1175 |
> |
// Method," J. Phys. Chem. 99, 12001-12007 (1995).] |
1176 |
> |
preVal = pre11_ * preRF_ * C_a * C_a; |
1177 |
> |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal / cutoffRadius_; |
1178 |
> |
} |
1179 |
|
|
1180 |
< |
// This looks very wrong. A vector crossed with itself is zero. |
1181 |
< |
*(sdat.t) -= cross(uz_i, ei); |
1180 |
> |
if (i_is_Dipole) { |
1181 |
> |
DadDa = data.dipole.lengthSquare(); |
1182 |
> |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] -= pre22_ * preRF_ * DadDa; |
1183 |
|
} |
1184 |
< |
} else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) { |
1185 |
< |
if (i_is_Charge) { |
1186 |
< |
chg1 = data.charge; |
1187 |
< |
if (screeningMethod_ == DAMPED) { |
1188 |
< |
self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_; |
1189 |
< |
} else { |
1190 |
< |
self = - 0.5 * rcuti_ * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_; |
1060 |
< |
} |
1184 |
> |
|
1185 |
> |
break; |
1186 |
> |
|
1187 |
> |
case esm_SHIFTED_FORCE: |
1188 |
> |
case esm_SHIFTED_POTENTIAL: |
1189 |
> |
if (i_is_Charge) { |
1190 |
> |
self = - selfMult_ * C_a * (C_a + *(sdat.skippedCharge)) * pre11_; |
1191 |
|
(*(sdat.pot))[ELECTROSTATIC_FAMILY] += self; |
1192 |
|
} |
1193 |
+ |
break; |
1194 |
+ |
default: |
1195 |
+ |
break; |
1196 |
|
} |
1197 |
|
} |
1198 |
< |
|
1198 |
> |
|
1199 |
|
RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
1200 |
|
// This seems to work moderately well as a default. There's no |
1201 |
|
// inherent scale for 1/r interactions that we can standardize. |