ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Electrostatic.cpp
(Generate patch)

Comparing branches/development/src/nonbonded/Electrostatic.cpp (file contents):
Revision 1665 by gezelter, Tue Nov 22 20:38:56 2011 UTC vs.
Revision 1823 by gezelter, Tue Jan 8 21:02:27 2013 UTC

# Line 47 | Line 47
47   #include "nonbonded/Electrostatic.hpp"
48   #include "utils/simError.h"
49   #include "types/NonBondedInteractionType.hpp"
50 < #include "types/DirectionalAtomType.hpp"
50 > #include "types/FixedChargeAdapter.hpp"
51 > #include "types/FluctuatingChargeAdapter.hpp"
52 > #include "types/MultipoleAdapter.hpp"
53   #include "io/Globals.hpp"
54 + #include "nonbonded/SlaterIntegrals.hpp"
55 + #include "utils/PhysicalConstants.hpp"
56 + #include "math/erfc.hpp"
57 + #include "math/SquareMatrix.hpp"
58  
59   namespace OpenMD {
60    
# Line 57 | Line 63 | namespace OpenMD {
63                                    haveCutoffRadius_(false),
64                                    haveDampingAlpha_(false),
65                                    haveDielectric_(false),
66 <                                  haveElectroSpline_(false)
66 >                                  haveElectroSplines_(false)
67    {}
68    
69    void Electrostatic::initialize() {
# Line 83 | Line 89 | namespace OpenMD {
89      // Charge-Dipole, assuming charges are measured in electrons, and
90      // dipoles are measured in debyes
91      pre12_ = 69.13373;
92 <    // Dipole-Dipole, assuming dipoles are measured in debyes
92 >    // Dipole-Dipole, assuming dipoles are measured in Debye
93      pre22_ = 14.39325;
94      // Charge-Quadrupole, assuming charges are measured in electrons, and
95      // quadrupoles are measured in 10^-26 esu cm^2
96 <    // This unit is also known affectionately as an esu centi-barn.
96 >    // This unit is also known affectionately as an esu centibarn.
97      pre14_ = 69.13373;
98 <    
98 >    // Dipole-Quadrupole, assuming dipoles are measured in debyes and
99 >    // quadrupoles in esu centibarns:
100 >    pre24_ = 14.39325;
101 >    // Quadrupole-Quadrupole, assuming esu centibarns:
102 >    pre44_ = 14.39325;
103 >
104      // conversions for the simulation box dipole moment
105      chargeToC_ = 1.60217733e-19;
106      angstromToM_ = 1.0e-10;
107      debyeToCm_ = 3.33564095198e-30;
108      
109 <    // number of points for electrostatic splines
110 <    np_ = 100;
109 >    // Default number of points for electrostatic splines
110 >    np_ = 140;
111      
112      // variables to handle different summation methods for long-range
113      // electrostatics:
114      summationMethod_ = esm_HARD;    
115      screeningMethod_ = UNDAMPED;
116      dielectric_ = 1.0;
106    one_third_ = 1.0 / 3.0;
117    
118      // check the summation method:
119      if (simParams_->haveElectrostaticSummationMethod()) {
# Line 188 | Line 198 | namespace OpenMD {
198          
199          // throw warning
200          sprintf( painCave.errMsg,
201 <                 "Electrostatic::initialize: dampingAlpha was not specified in the input file.\n"
202 <                 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n",
201 >                 "Electrostatic::initialize: dampingAlpha was not specified in the\n"
202 >                 "\tinput file.  A default value of %f (1/ang) will be used for the\n"
203 >                 "\tcutoff of %f (ang).\n",
204                   dampingAlpha_, cutoffRadius_);
205          painCave.severity = OPENMD_INFO;
206          painCave.isFatal = 0;
# Line 210 | Line 221 | namespace OpenMD {
221        
222        if (at->isElectrostatic())
223          addType(at);
224 <    }
224 >    }  
225      
215
216    cutoffRadius2_ = cutoffRadius_ * cutoffRadius_;
217    rcuti_ = 1.0 / cutoffRadius_;
218    rcuti2_ = rcuti_ * rcuti_;
219    rcuti3_ = rcuti2_ * rcuti_;
220    rcuti4_ = rcuti2_ * rcuti2_;
221
222    if (screeningMethod_ == DAMPED) {
223      
224      alpha2_ = dampingAlpha_ * dampingAlpha_;
225      alpha4_ = alpha2_ * alpha2_;
226      alpha6_ = alpha4_ * alpha2_;
227      alpha8_ = alpha4_ * alpha4_;
228      
229      constEXP_ = exp(-alpha2_ * cutoffRadius2_);
230      invRootPi_ = 0.56418958354775628695;
231      alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_;
232
233      c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_;
234      c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_;
235      c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_;
236      c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_;
237      c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_;
238      c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_;
239    } else {
240      c1c_ = rcuti_;
241      c2c_ = c1c_ * rcuti_;
242      c3c_ = 3.0 * c2c_ * rcuti_;
243      c4c_ = 5.0 * c3c_ * rcuti2_;
244      c5c_ = 7.0 * c4c_ * rcuti2_;
245      c6c_ = 9.0 * c5c_ * rcuti2_;
246    }
247  
226      if (summationMethod_ == esm_REACTION_FIELD) {
227        preRF_ = (dielectric_ - 1.0) /
228 <        ((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_);
251 <      preRF2_ = 2.0 * preRF_;
228 >        ((2.0 * dielectric_ + 1.0) * pow(cutoffRadius_,3) );
229      }
230      
231 <    // Add a 2 angstrom safety window to deal with cutoffGroups that
232 <    // have charged atoms longer than the cutoffRadius away from each
233 <    // other.  Splining may not be the best choice here.  Direct calls
234 <    // to erfc might be preferrable.
231 >    RealType b0c, b1c, b2c, b3c, b4c, b5c;
232 >    RealType db0c_1, db0c_2, db0c_3, db0c_4, db0c_5;
233 >    RealType a2, expTerm, invArootPi;
234 >    
235 >    RealType r = cutoffRadius_;
236 >    RealType r2 = r * r;
237  
238 <    RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
239 <    RealType rval;
240 <    vector<RealType> rvals;
241 <    vector<RealType> yvals;
242 <    for (int i = 0; i < np_; i++) {
243 <      rval = RealType(i) * dx;
244 <      rvals.push_back(rval);
245 <      yvals.push_back(erfc(dampingAlpha_ * rval));
246 <    }
247 <    erfcSpline_ = new CubicSpline();
248 <    erfcSpline_->addPoints(rvals, yvals);
249 <    haveElectroSpline_ = true;
250 <
251 <    initialized_ = true;
252 <  }
253 <      
254 <  void Electrostatic::addType(AtomType* atomType){
255 <
256 <    ElectrostaticAtomData electrostaticAtomData;
257 <    electrostaticAtomData.is_Charge = false;
258 <    electrostaticAtomData.is_Dipole = false;
280 <    electrostaticAtomData.is_SplitDipole = false;
281 <    electrostaticAtomData.is_Quadrupole = false;
282 <
283 <    if (atomType->isCharge()) {
284 <      GenericData* data = atomType->getPropertyByName("Charge");
285 <
286 <      if (data == NULL) {
287 <        sprintf( painCave.errMsg, "Electrostatic::addType could not find "
288 <                 "Charge\n"
289 <                 "\tparameters for atomType %s.\n",
290 <                 atomType->getName().c_str());
291 <        painCave.severity = OPENMD_ERROR;
292 <        painCave.isFatal = 1;
293 <        simError();                  
294 <      }
295 <      
296 <      DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
297 <      if (doubleData == NULL) {
298 <        sprintf( painCave.errMsg,
299 <                 "Electrostatic::addType could not convert GenericData to "
300 <                 "Charge for\n"
301 <                 "\tatom type %s\n", atomType->getName().c_str());
302 <        painCave.severity = OPENMD_ERROR;
303 <        painCave.isFatal = 1;
304 <        simError();          
305 <      }
306 <      electrostaticAtomData.is_Charge = true;
307 <      electrostaticAtomData.charge = doubleData->getData();          
238 >    if (screeningMethod_ == DAMPED) {      
239 >      a2 = dampingAlpha_ * dampingAlpha_;
240 >      invArootPi = 1.0 / (dampingAlpha_ * sqrt(M_PI));    
241 >      expTerm = exp(-a2 * r2);
242 >      // values of Smith's B_l functions at the cutoff radius:
243 >      b0c = erfc(dampingAlpha_ * r) / r;
244 >      b1c = (      b0c     + 2.0*a2     * expTerm * invArootPi) / r2;
245 >      b2c = (3.0 * b1c + pow(2.0*a2, 2) * expTerm * invArootPi) / r2;
246 >      b3c = (5.0 * b2c + pow(2.0*a2, 3) * expTerm * invArootPi) / r2;
247 >      b4c = (7.0 * b3c + pow(2.0*a2, 4) * expTerm * invArootPi) / r2;
248 >      b5c = (9.0 * b4c + pow(2.0*a2, 5) * expTerm * invArootPi) / r2;
249 >      selfMult_ = b0c + a2 * invArootPi;
250 >    } else {
251 >      a2 = 0.0;
252 >      b0c = 1.0 / r;
253 >      b1c = (      b0c) / r2;
254 >      b2c = (3.0 * b1c) / r2;
255 >      b3c = (5.0 * b2c) / r2;
256 >      b4c = (7.0 * b3c) / r2;
257 >      b5c = (9.0 * b4c) / r2;
258 >      selfMult_ = b0c;
259      }
260  
261 <    if (atomType->isDirectional()) {
262 <      DirectionalAtomType* daType = dynamic_cast<DirectionalAtomType*>(atomType);
263 <      
264 <      if (daType->isDipole()) {
265 <        GenericData* data = daType->getPropertyByName("Dipole");
266 <        
267 <        if (data == NULL) {
268 <          sprintf( painCave.errMsg,
269 <                   "Electrostatic::addType could not find Dipole\n"
270 <                   "\tparameters for atomType %s.\n",
271 <                   daType->getName().c_str());
272 <          painCave.severity = OPENMD_ERROR;
273 <          painCave.isFatal = 1;
274 <          simError();                  
275 <        }
276 <      
277 <        DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
278 <        if (doubleData == NULL) {
279 <          sprintf( painCave.errMsg,
280 <                   "Electrostatic::addType could not convert GenericData to "
281 <                   "Dipole Moment\n"
282 <                   "\tfor atom type %s\n", daType->getName().c_str());
283 <          painCave.severity = OPENMD_ERROR;
284 <          painCave.isFatal = 1;
285 <          simError();          
286 <        }
287 <        electrostaticAtomData.is_Dipole = true;
288 <        electrostaticAtomData.dipole_moment = doubleData->getData();
261 >    // higher derivatives of B_0 at the cutoff radius:
262 >    db0c_1 = -r * b1c;
263 >    db0c_2 =     -b1c + r2 * b2c;
264 >    db0c_3 =          3.0*r*b2c  - r2*r*b3c;
265 >    db0c_4 =          3.0*b2c  - 6.0*r2*b3c     + r2*r2*b4c;
266 >    db0c_5 =                    -15.0*r*b3c + 10.0*r2*r*b4c - r2*r2*r*b5c;
267 >    
268 >    // working variables for the splines:
269 >    RealType ri, ri2;
270 >    RealType b0, b1, b2, b3, b4, b5;
271 >    RealType db0_1, db0_2, db0_3, db0_4, db0_5;
272 >    RealType f0;
273 >    RealType g0, g1, g2, g3, g4;
274 >    RealType h1, h2, h3, h4;
275 >    RealType s2, s3, s4;
276 >    RealType t3, t4;
277 >    RealType u4;
278 >
279 >    // working variables for Taylor expansion:
280 >    RealType rmRc, rmRc2, rmRc3, rmRc4;
281 >
282 >    // Approximate using splines using a maximum of 0.1 Angstroms
283 >    // between points.
284 >    int nptest = int((cutoffRadius_ + 2.0) / 0.1);
285 >    np_ = (np_ > nptest) ? np_ : nptest;
286 >  
287 >    // Add a 2 angstrom safety window to deal with cutoffGroups that
288 >    // have charged atoms longer than the cutoffRadius away from each
289 >    // other.  Splining is almost certainly the best choice here.
290 >    // Direct calls to erfc would be preferrable if it is a very fast
291 >    // implementation.
292 >
293 >    RealType dx = (cutoffRadius_ + 2.0) / RealType(np_);
294 >
295 >    // Storage vectors for the computed functions    
296 >    vector<RealType> rv;
297 >    vector<RealType> v01v, v02v;
298 >    vector<RealType> v11v, v12v, v13v;
299 >    vector<RealType> v21v, v22v, v23v, v24v;
300 >    vector<RealType> v31v, v32v, v33v, v34v, v35v;
301 >    vector<RealType> v41v, v42v, v43v, v44v, v45v, v46v;
302 >
303 >    for (int i = 1; i < np_ + 1; i++) {
304 >      r = RealType(i) * dx;
305 >      rv.push_back(r);
306 >
307 >      ri = 1.0 / r;
308 >      ri2 = ri * ri;
309 >
310 >      r2 = r * r;
311 >      expTerm = exp(-a2 * r2);
312 >
313 >      // Taylor expansion factors (no need for factorials this way):
314 >      rmRc = r - cutoffRadius_;
315 >      rmRc2 = rmRc  * rmRc / 2.0;
316 >      rmRc3 = rmRc2 * rmRc / 3.0;
317 >      rmRc4 = rmRc3 * rmRc / 4.0;
318 >
319 >      // values of Smith's B_l functions at r:
320 >      if (screeningMethod_ == DAMPED) {            
321 >        b0 = erfc(dampingAlpha_ * r) * ri;
322 >        b1 = (      b0 +     2.0*a2     * expTerm * invArootPi) * ri2;
323 >        b2 = (3.0 * b1 + pow(2.0*a2, 2) * expTerm * invArootPi) * ri2;
324 >        b3 = (5.0 * b2 + pow(2.0*a2, 3) * expTerm * invArootPi) * ri2;
325 >        b4 = (7.0 * b3 + pow(2.0*a2, 4) * expTerm * invArootPi) * ri2;
326 >        b5 = (9.0 * b4 + pow(2.0*a2, 5) * expTerm * invArootPi) * ri2;
327 >      } else {
328 >        b0 = ri;
329 >        b1 = (      b0) * ri2;
330 >        b2 = (3.0 * b1) * ri2;
331 >        b3 = (5.0 * b2) * ri2;
332 >        b4 = (7.0 * b3) * ri2;
333 >        b5 = (9.0 * b4) * ri2;
334        }
335 +                
336 +      // higher derivatives of B_0 at r:
337 +      db0_1 = -r * b1;
338 +      db0_2 =     -b1 + r2 * b2;
339 +      db0_3 =          3.0*r*b2   - r2*r*b3;
340 +      db0_4 =          3.0*b2   - 6.0*r2*b3     + r2*r2*b4;
341 +      db0_5 =                    -15.0*r*b3 + 10.0*r2*r*b4 - r2*r2*r*b5;
342  
343 <      if (daType->isSplitDipole()) {
344 <        GenericData* data = daType->getPropertyByName("SplitDipoleDistance");
343 >
344 >      switch (summationMethod_) {
345 >      case esm_SHIFTED_FORCE:
346 >        f0 = b0 - b0c - rmRc*db0c_1;
347          
348 <        if (data == NULL) {
349 <          sprintf(painCave.errMsg,
350 <                  "Electrostatic::addType could not find SplitDipoleDistance\n"
351 <                  "\tparameter for atomType %s.\n",
352 <                  daType->getName().c_str());
353 <          painCave.severity = OPENMD_ERROR;
354 <          painCave.isFatal = 1;
355 <          simError();                  
356 <        }
357 <      
358 <        DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
359 <        if (doubleData == NULL) {
360 <          sprintf( painCave.errMsg,
361 <                   "Electrostatic::addType could not convert GenericData to "
362 <                   "SplitDipoleDistance for\n"
363 <                   "\tatom type %s\n", daType->getName().c_str());
364 <          painCave.severity = OPENMD_ERROR;
365 <          painCave.isFatal = 1;
366 <          simError();          
367 <        }
363 <        electrostaticAtomData.is_SplitDipole = true;
364 <        electrostaticAtomData.split_dipole_distance = doubleData->getData();
365 <      }
348 >        g0 = db0_1 - db0c_1;
349 >        g1 = g0 - rmRc *db0c_2;
350 >        g2 = g1 - rmRc2*db0c_3;
351 >        g3 = g2 - rmRc3*db0c_4;
352 >        g4 = g3 - rmRc4*db0c_5;
353 >        
354 >        h1 = db0_2 - db0c_2;
355 >        h2 = h1 - rmRc *db0c_3;
356 >        h3 = h2 - rmRc2*db0c_4;
357 >        h4 = h3 - rmRc3*db0c_5;
358 >        
359 >        s2 = db0_3 - db0c_3;
360 >        s3 = s2 - rmRc *db0c_4;
361 >        s4 = s3 - rmRc2*db0c_5;
362 >        
363 >        t3 = db0_4 - db0c_4;
364 >        t4 = t3 - rmRc *db0c_5;
365 >        
366 >        u4 = db0_5 - db0c_5;
367 >        break;
368  
369 <      if (daType->isQuadrupole()) {
370 <        GenericData* data = daType->getPropertyByName("QuadrupoleMoments");
369 >      case esm_SHIFTED_POTENTIAL:
370 >        f0 = b0 - b0c;
371          
372 <        if (data == NULL) {
373 <          sprintf( painCave.errMsg,
374 <                   "Electrostatic::addType could not find QuadrupoleMoments\n"
375 <                   "\tparameter for atomType %s.\n",
376 <                   daType->getName().c_str());
377 <          painCave.severity = OPENMD_ERROR;
378 <          painCave.isFatal = 1;
379 <          simError();                  
380 <        }
372 >        g0 = db0_1;
373 >        g1 = db0_1 - db0c_1;
374 >        g2 = g1 - rmRc *db0c_2;
375 >        g3 = g2 - rmRc2*db0c_3;
376 >        g4 = g3 - rmRc3*db0c_4;
377 >
378 >        h1 = db0_2;
379 >        h2 = db0_2 - db0c_2;
380 >        h3 = h2 - rmRc *db0c_3;
381 >        h4 = h3 - rmRc2*db0c_4;
382          
383 <        // Quadrupoles in OpenMD are set as the diagonal elements
384 <        // of the diagonalized traceless quadrupole moment tensor.
385 <        // The column vectors of the unitary matrix that diagonalizes
383 <        // the quadrupole moment tensor become the eFrame (or the
384 <        // electrostatic version of the body-fixed frame.
383 >        s2 = db0_3;
384 >        s3 = db0_3 - db0c_3;
385 >        s4 = s3 - rmRc *db0c_4;
386  
387 <        Vector3dGenericData* v3dData = dynamic_cast<Vector3dGenericData*>(data);
388 <        if (v3dData == NULL) {
389 <          sprintf( painCave.errMsg,
390 <                   "Electrostatic::addType could not convert GenericData to "
391 <                   "Quadrupole Moments for\n"
392 <                   "\tatom type %s\n", daType->getName().c_str());
393 <          painCave.severity = OPENMD_ERROR;
394 <          painCave.isFatal = 1;
395 <          simError();          
387 >        t3 = db0_4;
388 >        t4 = db0_4 - db0c_4;
389 >        
390 >        u4 = db0_5;
391 >        break;
392 >
393 >      case esm_SWITCHING_FUNCTION:
394 >      case esm_HARD:
395 >        f0 = b0;
396 >        
397 >        g0 = db0_1;
398 >        g1 = g0;
399 >        g2 = g1;
400 >        g3 = g2;
401 >        g4 = g3;
402 >        
403 >        h1 = db0_2;
404 >        h2 = h1;
405 >        h3 = h2;
406 >        h4 = h3;
407 >        
408 >        s2 = db0_3;
409 >        s3 = s2;
410 >        s4 = s3;
411 >        
412 >        t3 = db0_4;
413 >        t4 = t3;
414 >        
415 >        u4 = db0_5;
416 >        break;
417 >
418 >      case esm_REACTION_FIELD:
419 >
420 >        // following DL_POLY's lead for shifting the image charge potential:
421 >        f0 = b0  + preRF_ * r2
422 >          - (b0c + preRF_ * cutoffRadius_ * cutoffRadius_);
423 >
424 >        g0 = db0_1 + preRF_ * 2.0 * r;
425 >        g1 = g0;
426 >        g2 = g1;
427 >        g3 = g2;
428 >        g4 = g3;
429 >
430 >        h1 = db0_2 + preRF_ * 2.0;
431 >        h2 = h1;
432 >        h3 = h2;
433 >        h4 = h3;
434 >
435 >        s2 = db0_3;
436 >        s3 = s2;
437 >        s4 = s3;
438 >        
439 >        t3 = db0_4;
440 >        t4 = t3;
441 >        
442 >        u4 = db0_5;        
443 >        break;
444 >                
445 >      case esm_EWALD_FULL:
446 >      case esm_EWALD_PME:
447 >      case esm_EWALD_SPME:
448 >      default :
449 >        map<string, ElectrostaticSummationMethod>::iterator i;
450 >        std::string meth;
451 >        for (i = summationMap_.begin(); i != summationMap_.end(); ++i) {
452 >          if ((*i).second == summationMethod_) meth = (*i).first;
453          }
454 +        sprintf( painCave.errMsg,
455 +                 "Electrostatic::initialize: electrostaticSummationMethod %s \n"
456 +                 "\thas not been implemented yet. Please select one of:\n"
457 +                 "\t\"hard\", \"shifted_potential\", or \"shifted_force\"\n",
458 +                 meth.c_str() );
459 +        painCave.isFatal = 1;
460 +        simError();
461 +        break;      
462 +      }
463 +
464 +      v01 = f0;
465 +      v02 = g0;
466 +
467 +      v11 = g1;
468 +      v12 = g1 * ri;
469 +      v13 = h1 - v12;
470 +
471 +      v21 = g2 * ri;
472 +      v22 = h2 - v21;
473 +      v23 = v22 * ri;
474 +      v24 = s2 - 3.0*v23;        
475 +
476 +      v31 = (h3 - g3 * ri) * ri;
477 +      v32 = s3 - 3.0*v31;
478 +      v33 = v31 * ri;
479 +      v34 = v32 * ri;
480 +      v35 = t3 - 6.0*v34 - 3.0*v33;
481 +
482 +      v41 = (h4 - g4 * ri) * ri2;
483 +      v42 = s4 * ri - 3.0*v41;
484 +      v43 = t4 - 6.0*v42 - 3.0*v41;
485 +      v44 = v42 * ri;
486 +      v45 = v43 * ri;
487 +      v46 = u4 - 10.0*v45 - 15.0*v44;
488 +
489 +      // Add these computed values to the storage vectors for spline creation:
490 +      v01v.push_back(v01);
491 +      v02v.push_back(v02);
492 +
493 +      v11v.push_back(v11);
494 +      v12v.push_back(v12);
495 +      v13v.push_back(v13);
496 +
497 +      v21v.push_back(v21);
498 +      v22v.push_back(v22);
499 +      v23v.push_back(v23);
500 +      v24v.push_back(v24);
501 +
502 +      v31v.push_back(v31);
503 +      v32v.push_back(v32);
504 +      v33v.push_back(v33);
505 +      v34v.push_back(v34);
506 +      v35v.push_back(v35);
507 +      
508 +      v41v.push_back(v41);
509 +      v42v.push_back(v42);
510 +      v43v.push_back(v43);
511 +      v44v.push_back(v44);
512 +      v45v.push_back(v45);
513 +      v46v.push_back(v46);
514 +    }
515 +
516 +    // construct the spline structures and fill them with the values we've
517 +    // computed:
518 +
519 +    v01s = new CubicSpline();
520 +    v01s->addPoints(rv, v01v);
521 +    v02s = new CubicSpline();
522 +    v02s->addPoints(rv, v02v);
523 +
524 +    v11s = new CubicSpline();
525 +    v11s->addPoints(rv, v11v);
526 +    v12s = new CubicSpline();
527 +    v12s->addPoints(rv, v12v);
528 +    v13s = new CubicSpline();
529 +    v13s->addPoints(rv, v13v);
530 +
531 +    v21s = new CubicSpline();
532 +    v21s->addPoints(rv, v21v);
533 +    v22s = new CubicSpline();
534 +    v22s->addPoints(rv, v22v);
535 +    v23s = new CubicSpline();
536 +    v23s->addPoints(rv, v23v);
537 +    v24s = new CubicSpline();
538 +    v24s->addPoints(rv, v24v);
539 +
540 +    v31s = new CubicSpline();
541 +    v31s->addPoints(rv, v31v);
542 +    v32s = new CubicSpline();
543 +    v32s->addPoints(rv, v32v);
544 +    v33s = new CubicSpline();
545 +    v33s->addPoints(rv, v33v);
546 +    v34s = new CubicSpline();
547 +    v34s->addPoints(rv, v34v);
548 +    v35s = new CubicSpline();
549 +    v35s->addPoints(rv, v35v);
550 +
551 +    v41s = new CubicSpline();
552 +    v41s->addPoints(rv, v41v);
553 +    v42s = new CubicSpline();
554 +    v42s->addPoints(rv, v42v);
555 +    v43s = new CubicSpline();
556 +    v43s->addPoints(rv, v43v);
557 +    v44s = new CubicSpline();
558 +    v44s->addPoints(rv, v44v);
559 +    v45s = new CubicSpline();
560 +    v45s->addPoints(rv, v45v);
561 +    v46s = new CubicSpline();
562 +    v46s->addPoints(rv, v46v);
563 +
564 +    haveElectroSplines_ = true;
565 +
566 +    initialized_ = true;
567 +  }
568 +      
569 +  void Electrostatic::addType(AtomType* atomType){
570 +
571 +    ElectrostaticAtomData electrostaticAtomData;
572 +    electrostaticAtomData.is_Charge = false;
573 +    electrostaticAtomData.is_Dipole = false;
574 +    electrostaticAtomData.is_Quadrupole = false;
575 +    electrostaticAtomData.is_Fluctuating = false;
576 +
577 +    FixedChargeAdapter fca = FixedChargeAdapter(atomType);
578 +
579 +    if (fca.isFixedCharge()) {
580 +      electrostaticAtomData.is_Charge = true;
581 +      electrostaticAtomData.fixedCharge = fca.getCharge();
582 +    }
583 +
584 +    MultipoleAdapter ma = MultipoleAdapter(atomType);
585 +    if (ma.isMultipole()) {
586 +      if (ma.isDipole()) {
587 +        electrostaticAtomData.is_Dipole = true;
588 +        electrostaticAtomData.dipole = ma.getDipole();
589 +      }
590 +      if (ma.isQuadrupole()) {
591          electrostaticAtomData.is_Quadrupole = true;
592 <        electrostaticAtomData.quadrupole_moments = v3dData->getData();
592 >        electrostaticAtomData.quadrupole = ma.getQuadrupole();
593        }
594      }
595      
596 <    AtomTypeProperties atp = atomType->getATP();    
596 >    FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType);
597  
598 +    if (fqa.isFluctuatingCharge()) {
599 +      electrostaticAtomData.is_Fluctuating = true;
600 +      electrostaticAtomData.electronegativity = fqa.getElectronegativity();
601 +      electrostaticAtomData.hardness = fqa.getHardness();
602 +      electrostaticAtomData.slaterN = fqa.getSlaterN();
603 +      electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
604 +    }
605 +
606      pair<map<int,AtomType*>::iterator,bool> ret;    
607 <    ret = ElectrostaticList.insert( pair<int,AtomType*>(atp.ident, atomType) );
607 >    ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(),
608 >                                                        atomType) );
609      if (ret.second == false) {
610        sprintf( painCave.errMsg,
611                 "Electrostatic already had a previous entry with ident %d\n",
612 <               atp.ident);
612 >               atomType->getIdent() );
613        painCave.severity = OPENMD_INFO;
614        painCave.isFatal = 0;
615        simError();        
616      }
617      
618 <    ElectrostaticMap[atomType] = electrostaticAtomData;    
618 >    ElectrostaticMap[atomType] = electrostaticAtomData;  
619 >
620 >    // Now, iterate over all known types and add to the mixing map:
621 >    
622 >    map<AtomType*, ElectrostaticAtomData>::iterator it;
623 >    for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) {
624 >      AtomType* atype2 = (*it).first;
625 >      ElectrostaticAtomData eaData2 = (*it).second;
626 >      if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) {
627 >        
628 >        RealType a = electrostaticAtomData.slaterZeta;
629 >        RealType b = eaData2.slaterZeta;
630 >        int m = electrostaticAtomData.slaterN;
631 >        int n = eaData2.slaterN;
632 >
633 >        // Create the spline of the coulombic integral for s-type
634 >        // Slater orbitals.  Add a 2 angstrom safety window to deal
635 >        // with cutoffGroups that have charged atoms longer than the
636 >        // cutoffRadius away from each other.
637 >
638 >        RealType rval;
639 >        RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
640 >        vector<RealType> rvals;
641 >        vector<RealType> Jvals;
642 >        // don't start at i = 0, as rval = 0 is undefined for the
643 >        // slater overlap integrals.
644 >        for (int i = 1; i < np_+1; i++) {
645 >          rval = RealType(i) * dr;
646 >          rvals.push_back(rval);
647 >          Jvals.push_back(sSTOCoulInt( a, b, m, n, rval *
648 >                                       PhysicalConstants::angstromToBohr ) *
649 >                          PhysicalConstants::hartreeToKcal );
650 >        }
651 >        
652 >        CubicSpline* J = new CubicSpline();
653 >        J->addPoints(rvals, Jvals);
654 >        
655 >        pair<AtomType*, AtomType*> key1, key2;
656 >        key1 = make_pair(atomType, atype2);
657 >        key2 = make_pair(atype2, atomType);
658 >        
659 >        Jij[key1] = J;
660 >        Jij[key2] = J;
661 >      }
662 >    }
663 >
664      return;
665    }
666    
667    void Electrostatic::setCutoffRadius( RealType rCut ) {
668      cutoffRadius_ = rCut;
420    rrf_ = cutoffRadius_;
669      haveCutoffRadius_ = true;
670    }
671  
424  void Electrostatic::setSwitchingRadius( RealType rSwitch ) {
425    rt_ = rSwitch;
426  }
672    void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
673      summationMethod_ = esm;
674    }
# Line 441 | Line 686 | namespace OpenMD {
686  
687    void Electrostatic::calcForce(InteractionData &idat) {
688  
689 <    // utility variables.  Should clean these up and use the Vector3d and
690 <    // Mat3x3d to replace as many as we can in future versions:
689 >    RealType C_a, C_b;  // Charges
690 >    Vector3d D_a, D_b;  // Dipoles (space-fixed)
691 >    Mat3x3d  Q_a, Q_b;  // Quadrupoles (space-fixed)
692  
693 <    RealType q_i, q_j, mu_i, mu_j, d_i, d_j;
694 <    RealType qxx_i, qyy_i, qzz_i;
695 <    RealType qxx_j, qyy_j, qzz_j;
696 <    RealType cx_i, cy_i, cz_i;
697 <    RealType cx_j, cy_j, cz_j;
698 <    RealType cx2, cy2, cz2;
453 <    RealType ct_i, ct_j, ct_ij, a1;
454 <    RealType riji, ri, ri2, ri3, ri4;
455 <    RealType pref, vterm, epot, dudr;
456 <    RealType vpair(0.0);
457 <    RealType scale, sc2;
458 <    RealType pot_term, preVal, rfVal;
459 <    RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
460 <    RealType preSw, preSwSc;
461 <    RealType c1, c2, c3, c4;
462 <    RealType erfcVal(1.0), derfcVal(0.0);
463 <    RealType BigR;
693 >    RealType ri, ri2, ri3, ri4;                  // Distance utility scalars
694 >    RealType rdDa, rdDb;                         // Dipole utility scalars
695 >    Vector3d rxDa, rxDb;                         // Dipole utility vectors
696 >    RealType rdQar, rdQbr, trQa, trQb;           // Quadrupole utility scalars
697 >    Vector3d Qar, Qbr, rQa, rQb, rxQar, rxQbr;   // Quadrupole utility vectors
698 >    RealType pref;
699  
700 <    Vector3d Q_i, Q_j;
701 <    Vector3d ux_i, uy_i, uz_i;
702 <    Vector3d ux_j, uy_j, uz_j;
703 <    Vector3d dudux_i, duduy_i, duduz_i;
704 <    Vector3d dudux_j, duduy_j, duduz_j;
470 <    Vector3d rhatdot2, rhatc4;
471 <    Vector3d dVdr;
700 >    RealType DadDb, trQaQb, DadQbr, DbdQar;       // Cross-interaction scalars
701 >    RealType rQaQbr;
702 >    Vector3d DaxDb, DadQb, DbdQa, DaxQbr, DbxQar; // Cross-interaction vectors
703 >    Vector3d rQaQb, QaQbr, QaxQb, rQaxQbr;
704 >    Mat3x3d  QaQb;                                // Cross-interaction matrices
705  
706 <    // variables for indirect (reaction field) interactions for excluded pairs:
707 <    RealType indirect_Pot(0.0);
708 <    RealType indirect_vpair(0.0);
709 <    Vector3d indirect_dVdr(V3Zero);
710 <    Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero);
706 >    RealType U(0.0);  // Potential
707 >    Vector3d F(0.0);  // Force
708 >    Vector3d Ta(0.0); // Torque on site a
709 >    Vector3d Tb(0.0); // Torque on site b
710 >    Vector3d Ea(0.0); // Electric field at site a
711 >    Vector3d Eb(0.0); // Electric field at site b
712 >    RealType dUdCa(0.0); // fluctuating charge force at site a
713 >    RealType dUdCb(0.0); // fluctuating charge force at site a
714 >    
715 >    // Indirect interactions mediated by the reaction field.
716 >    RealType indirect_Pot(0.0);  // Potential
717 >    Vector3d indirect_F(0.0);    // Force
718 >    Vector3d indirect_Ta(0.0);   // Torque on site a
719 >    Vector3d indirect_Tb(0.0);   // Torque on site b
720  
721 <    pair<RealType, RealType> res;
721 >    // Excluded potential that is still computed for fluctuating charges
722 >    RealType excluded_Pot(0.0);
723 >
724 >    RealType rfContrib, coulInt;
725      
726 +    // spline for coulomb integral
727 +    CubicSpline* J;
728 +
729      if (!initialized_) initialize();
730      
731      ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
# Line 485 | Line 733 | namespace OpenMD {
733      
734      // some variables we'll need independent of electrostatic type:
735  
736 <    riji = 1.0 /  *(idat.rij) ;
737 <    Vector3d rhat =  *(idat.d)   * riji;
738 <
736 >    ri = 1.0 /  *(idat.rij);
737 >    Vector3d rhat =  *(idat.d)  * ri;
738 >    ri2 = ri * ri;
739 >      
740      // logicals
741  
742 <    bool i_is_Charge = data1.is_Charge;
743 <    bool i_is_Dipole = data1.is_Dipole;
744 <    bool i_is_SplitDipole = data1.is_SplitDipole;
745 <    bool i_is_Quadrupole = data1.is_Quadrupole;
742 >    bool a_is_Charge = data1.is_Charge;
743 >    bool a_is_Dipole = data1.is_Dipole;
744 >    bool a_is_Quadrupole = data1.is_Quadrupole;
745 >    bool a_is_Fluctuating = data1.is_Fluctuating;
746  
747 <    bool j_is_Charge = data2.is_Charge;
748 <    bool j_is_Dipole = data2.is_Dipole;
749 <    bool j_is_SplitDipole = data2.is_SplitDipole;
750 <    bool j_is_Quadrupole = data2.is_Quadrupole;
747 >    bool b_is_Charge = data2.is_Charge;
748 >    bool b_is_Dipole = data2.is_Dipole;
749 >    bool b_is_Quadrupole = data2.is_Quadrupole;
750 >    bool b_is_Fluctuating = data2.is_Fluctuating;
751 >
752 >    // Obtain all of the required radial function values from the
753 >    // spline structures:
754      
755 <    if (i_is_Charge) {
756 <      q_i = data1.charge;
757 <      if (idat.excluded) {
506 <        *(idat.skippedCharge2) += q_i;
507 <      }
755 >    // needed for fields (and forces):
756 >    if (a_is_Charge || b_is_Charge) {
757 >      v02 = v02s->getValueAt( *(idat.rij) );
758      }
759 +    if (a_is_Dipole || b_is_Dipole) {
760 +      v12 = v12s->getValueAt( *(idat.rij) );
761 +      v13 = v13s->getValueAt( *(idat.rij) );
762 +    }
763 +    if (a_is_Quadrupole || b_is_Quadrupole) {
764 +      v23 = v23s->getValueAt( *(idat.rij) );
765 +      v24 = v24s->getValueAt( *(idat.rij) );
766 +    }
767  
768 <    if (i_is_Dipole) {
769 <      mu_i = data1.dipole_moment;
770 <      uz_i = idat.eFrame1->getColumn(2);
771 <      
772 <      ct_i = dot(uz_i, rhat);
768 >    // needed for potentials (and torques):
769 >    if (a_is_Charge && b_is_Charge) {
770 >      v01 = v01s->getValueAt( *(idat.rij) );
771 >    }
772 >    if ((a_is_Charge && b_is_Dipole) || (b_is_Charge && a_is_Dipole)) {
773 >      v11 = v11s->getValueAt( *(idat.rij) );
774 >    }
775 >    if ((a_is_Charge && b_is_Quadrupole) || (b_is_Charge && a_is_Quadrupole)) {
776 >      v21 = v21s->getValueAt( *(idat.rij) );
777 >      v22 = v22s->getValueAt( *(idat.rij) );
778 >    } else if (a_is_Dipole && b_is_Dipole) {
779 >      v21 = v21s->getValueAt( *(idat.rij) );
780 >      v22 = v22s->getValueAt( *(idat.rij) );
781 >      v23 = v23s->getValueAt( *(idat.rij) );
782 >      v24 = v24s->getValueAt( *(idat.rij) );
783 >    }
784 >    if ((a_is_Dipole && b_is_Quadrupole) ||
785 >        (b_is_Dipole && a_is_Quadrupole)) {
786 >      v31 = v31s->getValueAt( *(idat.rij) );
787 >      v32 = v32s->getValueAt( *(idat.rij) );
788 >      v33 = v33s->getValueAt( *(idat.rij) );
789 >      v34 = v34s->getValueAt( *(idat.rij) );
790 >      v35 = v35s->getValueAt( *(idat.rij) );
791 >    }
792 >    if (a_is_Quadrupole && b_is_Quadrupole) {
793 >      v41 = v41s->getValueAt( *(idat.rij) );
794 >      v42 = v42s->getValueAt( *(idat.rij) );
795 >      v43 = v43s->getValueAt( *(idat.rij) );
796 >      v44 = v44s->getValueAt( *(idat.rij) );
797 >      v45 = v45s->getValueAt( *(idat.rij) );
798 >      v46 = v46s->getValueAt( *(idat.rij) );
799 >    }
800  
801 <      if (i_is_SplitDipole)
802 <        d_i = data1.split_dipole_distance;
801 >    // calculate the single-site contributions (fields, etc).
802 >    
803 >    if (a_is_Charge) {
804 >      C_a = data1.fixedCharge;
805        
806 <      duduz_i = V3Zero;
806 >      if (a_is_Fluctuating) {
807 >        C_a += *(idat.flucQ1);
808 >      }
809 >      
810 >      if (idat.excluded) {
811 >        *(idat.skippedCharge2) += C_a;
812 >      }
813 >      Eb -= C_a *  pre11_ * v02 * rhat;
814      }
815      
816 <    if (i_is_Quadrupole) {
817 <      Q_i = data1.quadrupole_moments;
818 <      qxx_i = Q_i.x();
819 <      qyy_i = Q_i.y();
820 <      qzz_i = Q_i.z();
527 <      
528 <      ux_i = idat.eFrame1->getColumn(0);
529 <      uy_i = idat.eFrame1->getColumn(1);
530 <      uz_i = idat.eFrame1->getColumn(2);
531 <
532 <      cx_i = dot(ux_i, rhat);
533 <      cy_i = dot(uy_i, rhat);
534 <      cz_i = dot(uz_i, rhat);
535 <
536 <      dudux_i = V3Zero;
537 <      duduy_i = V3Zero;
538 <      duduz_i = V3Zero;
816 >    if (a_is_Dipole) {
817 >      D_a = *(idat.dipole1);
818 >      rdDa = dot(rhat, D_a);
819 >      rxDa = cross(rhat, D_a);
820 >      Eb -=  pre12_ * (v13 * rdDa * rhat + v12 * D_a);
821      }
822 <
823 <    if (j_is_Charge) {
824 <      q_j = data2.charge;
825 <      if (idat.excluded) {
826 <        *(idat.skippedCharge1) += q_j;
827 <      }
822 >    
823 >    if (a_is_Quadrupole) {
824 >      Q_a = *(idat.quadrupole1);
825 >      trQa =  Q_a.trace();
826 >      Qar =   Q_a * rhat;
827 >      rQa = rhat * Q_a;
828 >      rdQar = dot(rhat, Qar);
829 >      rxQar = cross(rhat, Qar);
830 >      Eb -= pre14_ * ((trQa * rhat + 2.0 * Qar) * v23 + rdQar * rhat * v24);
831      }
832 <
833 <
834 <    if (j_is_Dipole) {
550 <      mu_j = data2.dipole_moment;
551 <      uz_j = idat.eFrame2->getColumn(2);
832 >    
833 >    if (b_is_Charge) {
834 >      C_b = data2.fixedCharge;
835        
836 <      ct_j = dot(uz_j, rhat);
837 <
555 <      if (j_is_SplitDipole)
556 <        d_j = data2.split_dipole_distance;
836 >      if (b_is_Fluctuating)
837 >        C_b += *(idat.flucQ2);
838        
839 <      duduz_j = V3Zero;
839 >      if (idat.excluded) {
840 >        *(idat.skippedCharge1) += C_b;
841 >      }
842 >      Ea += C_b *  pre11_ * v02 * rhat;
843      }
844      
845 <    if (j_is_Quadrupole) {
846 <      Q_j = data2.quadrupole_moments;
847 <      qxx_j = Q_j.x();
848 <      qyy_j = Q_j.y();
849 <      qzz_j = Q_j.z();
566 <      
567 <      ux_j = idat.eFrame2->getColumn(0);
568 <      uy_j = idat.eFrame2->getColumn(1);
569 <      uz_j = idat.eFrame2->getColumn(2);
570 <
571 <      cx_j = dot(ux_j, rhat);
572 <      cy_j = dot(uy_j, rhat);
573 <      cz_j = dot(uz_j, rhat);
574 <
575 <      dudux_j = V3Zero;
576 <      duduy_j = V3Zero;
577 <      duduz_j = V3Zero;
845 >    if (b_is_Dipole) {
846 >      D_b = *(idat.dipole2);
847 >      rdDb = dot(rhat, D_b);
848 >      rxDb = cross(rhat, D_b);
849 >      Ea += pre12_ * (v13 * rdDb * rhat + v12 * D_b);
850      }
851      
852 <    epot = 0.0;
853 <    dVdr = V3Zero;
852 >    if (b_is_Quadrupole) {
853 >      Q_b = *(idat.quadrupole2);
854 >      trQb =  Q_b.trace();
855 >      Qbr =   Q_b * rhat;
856 >      rQb = rhat * Q_b;
857 >      rdQbr = dot(rhat, Qbr);
858 >      rxQbr = cross(rhat, Qbr);
859 >      Ea += pre14_ * ((trQb * rhat + 2.0 * Qbr) * v23 + rdQbr * rhat * v24);
860 >    }
861      
862 <    if (i_is_Charge) {
862 >    if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) {
863 >      J = Jij[idat.atypes];
864 >    }    
865 >    
866 >    if (a_is_Charge) {    
867        
868 <      if (j_is_Charge) {
869 <        if (screeningMethod_ == DAMPED) {
870 <          // assemble the damping variables
871 <          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
872 <          //erfcVal = res.first;
873 <          //derfcVal = res.second;
868 >      if (b_is_Charge) {
869 >        pref =  pre11_ * *(idat.electroMult);          
870 >        U  += C_a * C_b * pref * v01;
871 >        F  += C_a * C_b * pref * v02 * rhat;
872 >        
873 >        // If this is an excluded pair, there are still indirect
874 >        // interactions via the reaction field we must worry about:
875  
876 <          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
877 <          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
876 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
877 >          rfContrib = preRF_ * pref * C_a * C_b * *(idat.r2);
878 >          indirect_Pot += rfContrib;
879 >          indirect_F   += rfContrib * 2.0 * ri * rhat;
880 >        }
881 >        
882 >        // Fluctuating charge forces are handled via Coulomb integrals
883 >        // for excluded pairs (i.e. those connected via bonds) and
884 >        // with the standard charge-charge interaction otherwise.
885  
886 <          c1 = erfcVal * riji;
887 <          c2 = (-derfcVal + c1) * riji;
886 >        if (idat.excluded) {          
887 >          if (a_is_Fluctuating || b_is_Fluctuating) {
888 >            coulInt = J->getValueAt( *(idat.rij) );
889 >            if (a_is_Fluctuating)  dUdCa += coulInt * C_b;
890 >            if (b_is_Fluctuating)  dUdCb += coulInt * C_a;
891 >            excluded_Pot += C_a * C_b * coulInt;
892 >          }          
893          } else {
894 <          c1 = riji;
895 <          c2 = c1 * riji;
894 >          if (a_is_Fluctuating) dUdCa += C_b * pref * v01;
895 >          if (a_is_Fluctuating) dUdCb += C_a * pref * v01;
896          }
897 +      }
898  
899 <        preVal =  *(idat.electroMult) * pre11_ * q_i * q_j;
900 <        
901 <        if (summationMethod_ == esm_SHIFTED_POTENTIAL) {
902 <          vterm = preVal * (c1 - c1c_);
903 <          dudr  = - *(idat.sw)  * preVal * c2;
899 >      if (b_is_Dipole) {
900 >        pref =  pre12_ * *(idat.electroMult);        
901 >        U  += C_a * pref * v11 * rdDb;
902 >        F  += C_a * pref * (v13 * rdDb * rhat + v12 * D_b);
903 >        Tb += C_a * pref * v11 * rxDb;
904  
905 <        } else if (summationMethod_ == esm_SHIFTED_FORCE)  {
609 <          vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij)  - cutoffRadius_) );
610 <          dudr  =  *(idat.sw)  * preVal * (c2c_ - c2);
905 >        if (a_is_Fluctuating) dUdCa += pref * v11 * rdDb;
906  
907 <        } else if (summationMethod_ == esm_REACTION_FIELD) {
908 <          rfVal = preRF_ *  *(idat.rij)  *  *(idat.rij);
907 >        // Even if we excluded this pair from direct interactions, we
908 >        // still have the reaction-field-mediated charge-dipole
909 >        // interaction:
910  
911 <          vterm = preVal * ( riji + rfVal );            
912 <          dudr  =  *(idat.sw)  * preVal * ( 2.0 * rfVal - riji ) * riji;
913 <          
914 <          // if this is an excluded pair, there are still indirect
915 <          // interactions via the reaction field we must worry about:
620 <
621 <          if (idat.excluded) {
622 <            indirect_vpair += preVal * rfVal;
623 <            indirect_Pot += *(idat.sw) * preVal * rfVal;
624 <            indirect_dVdr += *(idat.sw)  * preVal * 2.0 * rfVal  * riji * rhat;
625 <          }
626 <          
627 <        } else {
628 <
629 <          vterm = preVal * riji * erfcVal;          
630 <          dudr  = -  *(idat.sw)  * preVal * c2;
631 <
911 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
912 >          rfContrib = C_a * pref * preRF_ * 2.0 * *(idat.rij);
913 >          indirect_Pot += rfContrib * rdDb;
914 >          indirect_F   += rfContrib * D_b / (*idat.rij);
915 >          indirect_Tb  += C_a * pref * preRF_ * rxDb;
916          }
633
634        vpair += vterm;
635        epot +=  *(idat.sw)  * vterm;
636        dVdr += dudr * rhat;                
917        }
918  
919 <      if (j_is_Dipole) {
920 <        // pref is used by all the possible methods
921 <        pref =  *(idat.electroMult) * pre12_ * q_i * mu_j;
922 <        preSw =  *(idat.sw)  * pref;
919 >      if (b_is_Quadrupole) {
920 >        pref = pre14_ * *(idat.electroMult);
921 >        U  +=  C_a * pref * (v21 * trQb + v22 * rdQbr);
922 >        F  +=  C_a * pref * (trQb * rhat + 2.0 * Qbr) * v23;
923 >        F  +=  C_a * pref * rdQbr * rhat * v24;
924 >        Tb +=  C_a * pref * 2.0 * rxQbr * v22;
925  
926 <        if (summationMethod_ == esm_REACTION_FIELD) {
927 <          ri2 = riji * riji;
928 <          ri3 = ri2 * riji;
647 <    
648 <          vterm = - pref * ct_j * ( ri2 - preRF2_ *  *(idat.rij)  );
649 <          vpair += vterm;
650 <          epot +=  *(idat.sw)  * vterm;
926 >        if (a_is_Fluctuating) dUdCa += pref * (v21 * trQb + v22 * rdQbr);
927 >      }
928 >    }
929  
930 <          dVdr +=  -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
653 <          duduz_j += -preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );  
930 >    if (a_is_Dipole) {
931  
932 <          // Even if we excluded this pair from direct interactions,
933 <          // we still have the reaction-field-mediated charge-dipole
657 <          // interaction:
932 >      if (b_is_Charge) {
933 >        pref = pre12_ * *(idat.electroMult);
934  
935 <          if (idat.excluded) {
936 <            indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij);
937 <            indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij);
662 <            indirect_dVdr += preSw * preRF2_ * uz_j;
663 <            indirect_duduz_j += preSw * rhat * preRF2_ *  *(idat.rij);
664 <          }
665 <                      
666 <        } else {
667 <          // determine the inverse r used if we have split dipoles
668 <          if (j_is_SplitDipole) {
669 <            BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
670 <            ri = 1.0 / BigR;
671 <            scale =  *(idat.rij)  * ri;
672 <          } else {
673 <            ri = riji;
674 <            scale = 1.0;
675 <          }
676 <          
677 <          sc2 = scale * scale;
935 >        U  -= C_b * pref * v11 * rdDa;
936 >        F  -= C_b * pref * (v13 * rdDa * rhat + v12 * D_a);
937 >        Ta -= C_b * pref * v11 * rxDa;
938  
939 <          if (screeningMethod_ == DAMPED) {
680 <            // assemble the damping variables
681 <            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
682 <            //erfcVal = res.first;
683 <            //derfcVal = res.second;
684 <            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
685 <            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
686 <            c1 = erfcVal * ri;
687 <            c2 = (-derfcVal + c1) * ri;
688 <            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
689 <          } else {
690 <            c1 = ri;
691 <            c2 = c1 * ri;
692 <            c3 = 3.0 * c2 * ri;
693 <          }
694 <            
695 <          c2ri = c2 * ri;
939 >        if (b_is_Fluctuating) dUdCb -= pref * v11 * rdDa;
940  
941 <          // calculate the potential
942 <          pot_term =  scale * c2;
943 <          vterm = -pref * ct_j * pot_term;
944 <          vpair += vterm;
945 <          epot +=  *(idat.sw)  * vterm;
946 <            
947 <          // calculate derivatives for forces and torques
948 <
705 <          dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3);
706 <          duduz_j += -preSw * pot_term * rhat;
707 <
941 >        // Even if we excluded this pair from direct interactions,
942 >        // we still have the reaction-field-mediated charge-dipole
943 >        // interaction:
944 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
945 >          rfContrib = C_b * pref * preRF_ * 2.0 * *(idat.rij);
946 >          indirect_Pot -= rfContrib * rdDa;
947 >          indirect_F   -= rfContrib * D_a / (*idat.rij);
948 >          indirect_Ta  -= C_b * pref * preRF_ * rxDa;
949          }
950        }
951  
952 <      if (j_is_Quadrupole) {
953 <        // first precalculate some necessary variables
954 <        cx2 = cx_j * cx_j;
955 <        cy2 = cy_j * cy_j;
956 <        cz2 = cz_j * cz_j;
957 <        pref =   *(idat.electroMult) * pre14_ * q_i * one_third_;
958 <          
959 <        if (screeningMethod_ == DAMPED) {
960 <          // assemble the damping variables
961 <          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
962 <          //erfcVal = res.first;
963 <          //derfcVal = res.second;
964 <          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
965 <          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
966 <          c1 = erfcVal * riji;
967 <          c2 = (-derfcVal + c1) * riji;
968 <          c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
969 <          c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
970 <        } else {
730 <          c1 = riji;
731 <          c2 = c1 * riji;
732 <          c3 = 3.0 * c2 * riji;
733 <          c4 = 5.0 * c3 * riji * riji;
952 >      if (b_is_Dipole) {
953 >        pref = pre22_ * *(idat.electroMult);
954 >        DadDb = dot(D_a, D_b);
955 >        DaxDb = cross(D_a, D_b);
956 >
957 >        U  -= pref * (DadDb * v21 + rdDa * rdDb * v22);
958 >        F  -= pref * (DadDb * rhat + rdDb * D_a + rdDa * D_b)*v23;
959 >        F  -= pref * (rdDa * rdDb) * v24 * rhat;
960 >        Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa);
961 >        Tb += pref * (-v21 * DaxDb - v22 * rdDa * rxDb);
962 >
963 >        // Even if we excluded this pair from direct interactions, we
964 >        // still have the reaction-field-mediated dipole-dipole
965 >        // interaction:
966 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
967 >          rfContrib = -pref * preRF_ * 2.0;
968 >          indirect_Pot += rfContrib * DadDb;
969 >          indirect_Ta  += rfContrib * DaxDb;
970 >          indirect_Tb  -= rfContrib * DaxDb;
971          }
972  
973 <        // precompute variables for convenience
737 <        preSw =  *(idat.sw)  * pref;
738 <        c2ri = c2 * riji;
739 <        c3ri = c3 * riji;
740 <        c4rij = c4 *  *(idat.rij) ;
741 <        rhatdot2 = 2.0 * rhat * c3;
742 <        rhatc4 = rhat * c4rij;
973 >      }
974  
975 <        // calculate the potential
976 <        pot_term = ( qxx_j * (cx2*c3 - c2ri) +
977 <                     qyy_j * (cy2*c3 - c2ri) +
978 <                     qzz_j * (cz2*c3 - c2ri) );
979 <        vterm = pref * pot_term;
749 <        vpair += vterm;
750 <        epot +=  *(idat.sw)  * vterm;
751 <                
752 <        // calculate derivatives for the forces and torques
975 >      if (b_is_Quadrupole) {
976 >        pref = pre24_ * *(idat.electroMult);
977 >        DadQb = D_a * Q_b;
978 >        DadQbr = dot(D_a, Qbr);
979 >        DaxQbr = cross(D_a, Qbr);
980  
981 <        dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (2.0*cx_j*ux_j + rhat)*c3ri) +
982 <                           qyy_j* (cy2*rhatc4 - (2.0*cy_j*uy_j + rhat)*c3ri) +
983 <                           qzz_j* (cz2*rhatc4 - (2.0*cz_j*uz_j + rhat)*c3ri));
984 <                          
985 <        dudux_j += preSw * qxx_j * cx_j * rhatdot2;
986 <        duduy_j += preSw * qyy_j * cy_j * rhatdot2;
987 <        duduz_j += preSw * qzz_j * cz_j * rhatdot2;
981 >        U  -= pref * ((trQb*rdDa + 2.0*DadQbr)*v31 + rdDa*rdQbr*v32);
982 >        F  -= pref * (trQb*D_a + 2.0*DadQb) * v33;
983 >        F  -= pref * (trQb*rdDa*rhat + 2.0*DadQbr*rhat + D_a*rdQbr
984 >                      + 2.0*rdDa*rQb)*v34;
985 >        F  -= pref * (rdDa * rdQbr * rhat * v35);
986 >        Ta += pref * ((-trQb*rxDa + 2.0 * DaxQbr)*v31 - rxDa*rdQbr*v32);
987 >        Tb += pref * ((2.0*cross(DadQb, rhat) - 2.0*DaxQbr)*v31
988 >                      - 2.0*rdDa*rxQbr*v32);
989        }
990      }
763    
764    if (i_is_Dipole) {
991  
992 <      if (j_is_Charge) {
993 <        // variables used by all the methods
994 <        pref =  *(idat.electroMult) * pre12_ * q_j * mu_i;
995 <        preSw =  *(idat.sw)  * pref;
992 >    if (a_is_Quadrupole) {
993 >      if (b_is_Charge) {
994 >        pref = pre14_ * *(idat.electroMult);
995 >        U  += C_b * pref * (v21 * trQa + v22 * rdQar);
996 >        F  += C_b * pref * (trQa * rhat + 2.0 * Qar) * v23;
997 >        F  += C_b * pref * rdQar * rhat * v24;
998 >        Ta += C_b * pref * 2.0 * rxQar * v22;
999  
1000 <        if (summationMethod_ == esm_REACTION_FIELD) {
1000 >        if (b_is_Fluctuating) dUdCb += pref * (v21 * trQa + v22 * rdQar);
1001 >      }
1002 >      if (b_is_Dipole) {
1003 >        pref = pre24_ * *(idat.electroMult);
1004 >        DbdQa = D_b * Q_a;
1005 >        DbdQar = dot(D_b, Qar);
1006 >        DbxQar = cross(D_b, Qar);
1007  
1008 <          ri2 = riji * riji;
1009 <          ri3 = ri2 * riji;
1010 <
1011 <          vterm = pref * ct_i * ( ri2 - preRF2_ *  *(idat.rij)  );
1012 <          vpair += vterm;
1013 <          epot +=  *(idat.sw)  * vterm;
1014 <          
1015 <          dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);
781 <          
782 <          duduz_i += preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );
783 <
784 <          // Even if we excluded this pair from direct interactions,
785 <          // we still have the reaction-field-mediated charge-dipole
786 <          // interaction:
787 <
788 <          if (idat.excluded) {
789 <            indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij);
790 <            indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij);
791 <            indirect_dVdr += -preSw * preRF2_ * uz_i;
792 <            indirect_duduz_i += -preSw * rhat * preRF2_ *  *(idat.rij);
793 <          }
794 <            
795 <        } else {
796 <          
797 <          // determine inverse r if we are using split dipoles
798 <          if (i_is_SplitDipole) {
799 <            BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
800 <            ri = 1.0 / BigR;
801 <            scale =  *(idat.rij)  * ri;
802 <          } else {
803 <            ri = riji;
804 <            scale = 1.0;
805 <          }
806 <          
807 <          sc2 = scale * scale;
808 <            
809 <          if (screeningMethod_ == DAMPED) {
810 <            // assemble the damping variables
811 <            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
812 <            //erfcVal = res.first;
813 <            //derfcVal = res.second;
814 <            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
815 <            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
816 <            c1 = erfcVal * ri;
817 <            c2 = (-derfcVal + c1) * ri;
818 <            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
819 <          } else {
820 <            c1 = ri;
821 <            c2 = c1 * ri;
822 <            c3 = 3.0 * c2 * ri;
823 <          }
824 <          
825 <          c2ri = c2 * ri;
826 <              
827 <          // calculate the potential
828 <          pot_term = c2 * scale;
829 <          vterm = pref * ct_i * pot_term;
830 <          vpair += vterm;
831 <          epot +=  *(idat.sw)  * vterm;
832 <
833 <          // calculate derivatives for the forces and torques
834 <          dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3);
835 <          duduz_i += preSw * pot_term * rhat;
836 <        }
1008 >        U  += pref * ((trQa*rdDb + 2.0*DbdQar)*v31 + rdDb*rdQar*v32);
1009 >        F  += pref * (trQa*D_b + 2.0*DbdQa) * v33;
1010 >        F  += pref * (trQa*rdDb*rhat + 2.0*DbdQar*rhat + D_b*rdQar
1011 >                      + 2.0*rdDb*rQa)*v34;
1012 >        F  += pref * (rdDb * rdQar * rhat * v35);
1013 >        Ta += pref * ((-2.0*cross(DbdQa, rhat) + 2.0*DbxQar)*v31
1014 >                      + 2.0*rdDb*rxQar*v32);
1015 >        Tb += pref * ((trQa*rxDb - 2.0 * DbxQar)*v31 + rxDb*rdQar*v32);
1016        }
1017 +      if (b_is_Quadrupole) {
1018 +        pref = pre44_ * *(idat.electroMult);  // yes
1019 +        QaQb = Q_a * Q_b;
1020 +        trQaQb = QaQb.trace();
1021 +        rQaQb = rhat * QaQb;
1022 +        QaQbr = QaQb * rhat;
1023 +        QaxQb = cross(Q_a, Q_b);
1024 +        rQaQbr = dot(rQa, Qbr);
1025 +        rQaxQbr = cross(rQa, Qbr);
1026 +        
1027 +        U  += pref * (trQa * trQb + 2.0 * trQaQb) * v41;
1028 +        U  += pref * (trQa * rdQbr + trQb * rdQar  + 4.0 * rQaQbr) * v42;
1029 +        U  += pref * (rdQar * rdQbr) * v43;
1030  
1031 <      if (j_is_Dipole) {
1032 <        // variables used by all methods
1033 <        ct_ij = dot(uz_i, uz_j);
1031 >        F  += pref * rhat * (trQa * trQb + 2.0 * trQaQb)*v44;
1032 >        F  += pref * rhat * (trQa * rdQbr + trQb * rdQar + 4.0 * rQaQbr)*v45;
1033 >        F  += pref * rhat * (rdQar * rdQbr)*v46;
1034  
1035 <        pref =  *(idat.electroMult) * pre22_ * mu_i * mu_j;
1036 <        preSw =  *(idat.sw)  * pref;
1035 >        F  += pref * 2.0 * (trQb*rQa + trQa*rQb)*v44;
1036 >        F  += pref * 4.0 * (rQaQb + QaQbr)*v44;
1037 >        F  += pref * 2.0 * (rQa*rdQbr + rdQar*rQb)*v45;
1038  
1039 <        if (summationMethod_ == esm_REACTION_FIELD) {
1040 <          ri2 = riji * riji;
1041 <          ri3 = ri2 * riji;
1042 <          ri4 = ri2 * ri2;
1039 >        Ta += pref * (- 4.0 * QaxQb * v41);
1040 >        Ta += pref * (- 2.0 * trQb * cross(rQa, rhat)
1041 >                      + 4.0 * cross(rhat, QaQbr)
1042 >                      - 4.0 * rQaxQbr) * v42;
1043 >        Ta += pref * 2.0 * cross(rhat,Qar) * rdQbr * v43;
1044  
851          vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
852                           preRF2_ * ct_ij );
853          vpair += vterm;
854          epot +=  *(idat.sw)  * vterm;
855            
856          a1 = 5.0 * ct_i * ct_j - ct_ij;
857            
858          dVdr += preSw * 3.0 * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
1045  
1046 <          duduz_i += preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
1047 <          duduz_j += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_*uz_i);
1046 >        Tb += pref * (+ 4.0 * QaxQb * v41);
1047 >        Tb += pref * (- 2.0 * trQa * cross(rQb, rhat)
1048 >                      - 4.0 * cross(rQaQb, rhat)
1049 >                      + 4.0 * rQaxQbr) * v42;
1050 >        // Possible replacement for line 2 above:
1051 >        //             + 4.0 * cross(rhat, QbQar)
1052  
1053 <          if (idat.excluded) {
864 <            indirect_vpair +=  - pref * preRF2_ * ct_ij;
865 <            indirect_Pot +=    - preSw * preRF2_ * ct_ij;
866 <            indirect_duduz_i += -preSw * preRF2_ * uz_j;
867 <            indirect_duduz_j += -preSw * preRF2_ * uz_i;
868 <          }
1053 >        Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43;
1054  
1055 <        } else {
871 <          
872 <          if (i_is_SplitDipole) {
873 <            if (j_is_SplitDipole) {
874 <              BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
875 <            } else {
876 <              BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
877 <            }
878 <            ri = 1.0 / BigR;
879 <            scale =  *(idat.rij)  * ri;
880 <          } else {
881 <            if (j_is_SplitDipole) {
882 <              BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
883 <              ri = 1.0 / BigR;
884 <              scale =  *(idat.rij)  * ri;
885 <            } else {
886 <              ri = riji;
887 <              scale = 1.0;
888 <            }
889 <          }
890 <          if (screeningMethod_ == DAMPED) {
891 <            // assemble damping variables
892 <            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
893 <            //erfcVal = res.first;
894 <            //derfcVal = res.second;
895 <            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
896 <            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
897 <            c1 = erfcVal * ri;
898 <            c2 = (-derfcVal + c1) * ri;
899 <            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
900 <            c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri;
901 <          } else {
902 <            c1 = ri;
903 <            c2 = c1 * ri;
904 <            c3 = 3.0 * c2 * ri;
905 <            c4 = 5.0 * c3 * ri * ri;
906 <          }
907 <
908 <          // precompute variables for convenience
909 <          sc2 = scale * scale;
910 <          cti3 = ct_i * sc2 * c3;
911 <          ctj3 = ct_j * sc2 * c3;
912 <          ctidotj = ct_i * ct_j * sc2;
913 <          preSwSc = preSw * scale;
914 <          c2ri = c2 * ri;
915 <          c3ri = c3 * ri;
916 <          c4rij = c4 *  *(idat.rij) ;
917 <
918 <          // calculate the potential
919 <          pot_term = (ct_ij * c2ri - ctidotj * c3);
920 <          vterm = pref * pot_term;
921 <          vpair += vterm;
922 <          epot +=  *(idat.sw)  * vterm;
923 <
924 <          // calculate derivatives for the forces and torques
925 <          dVdr += preSwSc * ( ctidotj * rhat * c4rij  -
926 <                              (ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri);
927 <          
928 <          duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat);
929 <          duduz_j += preSw * (uz_i * c2ri - cti3 * rhat);
930 <        }
1055 >        //  cerr << " tsum = " << Ta + Tb - cross(  *(idat.d) , F ) << "\n";
1056        }
1057      }
1058  
1059 <    if (i_is_Quadrupole) {
1060 <      if (j_is_Charge) {
1061 <        // precompute some necessary variables
937 <        cx2 = cx_i * cx_i;
938 <        cy2 = cy_i * cy_i;
939 <        cz2 = cz_i * cz_i;
940 <
941 <        pref =  *(idat.electroMult) * pre14_ * q_j * one_third_;
942 <
943 <        if (screeningMethod_ == DAMPED) {
944 <          // assemble the damping variables
945 <          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
946 <          //erfcVal = res.first;
947 <          //derfcVal = res.second;
948 <          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
949 <          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
950 <          c1 = erfcVal * riji;
951 <          c2 = (-derfcVal + c1) * riji;
952 <          c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
953 <          c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
954 <        } else {
955 <          c1 = riji;
956 <          c2 = c1 * riji;
957 <          c3 = 3.0 * c2 * riji;
958 <          c4 = 5.0 * c3 * riji * riji;
959 <        }
960 <          
961 <        // precompute some variables for convenience
962 <        preSw =  *(idat.sw)  * pref;
963 <        c2ri = c2 * riji;
964 <        c3ri = c3 * riji;
965 <        c4rij = c4 *  *(idat.rij) ;
966 <        rhatdot2 = 2.0 * rhat * c3;
967 <        rhatc4 = rhat * c4rij;
968 <
969 <        // calculate the potential
970 <        pot_term = ( qxx_i * (cx2 * c3 - c2ri) +
971 <                     qyy_i * (cy2 * c3 - c2ri) +
972 <                     qzz_i * (cz2 * c3 - c2ri) );
973 <        
974 <        vterm = pref * pot_term;
975 <        vpair += vterm;
976 <        epot +=  *(idat.sw)  * vterm;
977 <
978 <        // calculate the derivatives for the forces and torques
979 <
980 <        dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (2.0*cx_i*ux_i + rhat)*c3ri) +
981 <                          qyy_i* (cy2*rhatc4 - (2.0*cy_i*uy_i + rhat)*c3ri) +
982 <                          qzz_i* (cz2*rhatc4 - (2.0*cz_i*uz_i + rhat)*c3ri));
983 <
984 <        dudux_i += preSw * qxx_i * cx_i *  rhatdot2;
985 <        duduy_i += preSw * qyy_i * cy_i *  rhatdot2;
986 <        duduz_i += preSw * qzz_i * cz_i *  rhatdot2;
987 <      }
1059 >    if (idat.doElectricField) {
1060 >      *(idat.eField1) += Ea * *(idat.electroMult);
1061 >      *(idat.eField2) += Eb * *(idat.electroMult);
1062      }
1063  
1064 +    if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw);
1065 +    if (b_is_Fluctuating) *(idat.dVdFQ2) += dUdCb * *(idat.sw);
1066  
1067      if (!idat.excluded) {
992      *(idat.vpair) += vpair;
993      (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
994      *(idat.f1) += dVdr;
1068        
1069 <      if (i_is_Dipole || i_is_Quadrupole)
1070 <        *(idat.t1) -= cross(uz_i, duduz_i);
1071 <      if (i_is_Quadrupole) {
999 <        *(idat.t1) -= cross(ux_i, dudux_i);
1000 <        *(idat.t1) -= cross(uy_i, duduy_i);
1001 <      }
1069 >      *(idat.vpair) += U;
1070 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += U * *(idat.sw);
1071 >      *(idat.f1) += F * *(idat.sw);
1072        
1073 <      if (j_is_Dipole || j_is_Quadrupole)
1074 <        *(idat.t2) -= cross(uz_j, duduz_j);
1005 <      if (j_is_Quadrupole) {
1006 <        *(idat.t2) -= cross(uz_j, dudux_j);
1007 <        *(idat.t2) -= cross(uz_j, duduy_j);
1008 <      }
1073 >      if (a_is_Dipole || a_is_Quadrupole)
1074 >        *(idat.t1) += Ta * *(idat.sw);
1075  
1076 +      if (b_is_Dipole || b_is_Quadrupole)
1077 +        *(idat.t2) += Tb * *(idat.sw);
1078 +      
1079      } else {
1080  
1081        // only accumulate the forces and torques resulting from the
1082        // indirect reaction field terms.
1083  
1084 <      *(idat.vpair) += indirect_vpair;
1085 <      (*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot;
1086 <      *(idat.f1) += indirect_dVdr;
1084 >      *(idat.vpair) += indirect_Pot;      
1085 >      (*(idat.excludedPot))[ELECTROSTATIC_FAMILY] +=  excluded_Pot;
1086 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += *(idat.sw) * indirect_Pot;
1087 >      *(idat.f1) += *(idat.sw) * indirect_F;
1088        
1089 <      if (i_is_Dipole)
1090 <        *(idat.t1) -= cross(uz_i, indirect_duduz_i);
1091 <      if (j_is_Dipole)
1092 <        *(idat.t2) -= cross(uz_j, indirect_duduz_j);
1089 >      if (a_is_Dipole || a_is_Quadrupole)
1090 >        *(idat.t1) += *(idat.sw) * indirect_Ta;
1091 >            
1092 >      if (b_is_Dipole || b_is_Quadrupole)
1093 >        *(idat.t2) += *(idat.sw) * indirect_Tb;
1094      }
1024
1025
1095      return;
1096 <  }  
1096 >  }
1097      
1098    void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1099 <    RealType mu1, preVal, chg1, self;
1031 <    
1099 >
1100      if (!initialized_) initialize();
1101  
1102      ElectrostaticAtomData data = ElectrostaticMap[sdat.atype];
1103 <  
1103 >    
1104      // logicals
1105      bool i_is_Charge = data.is_Charge;
1106      bool i_is_Dipole = data.is_Dipole;
1107 +    bool i_is_Fluctuating = data.is_Fluctuating;
1108 +    RealType C_a = data.fixedCharge;  
1109 +    RealType self, preVal, DadDa;
1110 +    
1111 +    if (i_is_Fluctuating) {
1112 +      C_a += *(sdat.flucQ);
1113 +      // dVdFQ is really a force, so this is negative the derivative
1114 +      *(sdat.dVdFQ) -=  *(sdat.flucQ) * data.hardness + data.electronegativity;
1115 +      (*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) *
1116 +        (*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity);
1117 +    }
1118  
1119 <    if (summationMethod_ == esm_REACTION_FIELD) {
1120 <      if (i_is_Dipole) {
1121 <        mu1 = data.dipole_moment;          
1122 <        preVal = pre22_ * preRF2_ * mu1 * mu1;
1123 <        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal;
1124 <        
1125 <        // The self-correction term adds into the reaction field vector
1126 <        Vector3d uz_i = sdat.eFrame->getColumn(2);
1127 <        Vector3d ei = preVal * uz_i;
1119 >    switch (summationMethod_) {
1120 >    case esm_REACTION_FIELD:
1121 >      
1122 >      if (i_is_Charge) {
1123 >        // Self potential [see Wang and Hermans, "Reaction Field
1124 >        // Molecular Dynamics Simulation with Friedman’s Image Charge
1125 >        // Method," J. Phys. Chem. 99, 12001-12007 (1995).]
1126 >        preVal = pre11_ * preRF_ * C_a * C_a;
1127 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal / cutoffRadius_;
1128 >      }
1129  
1130 <        // This looks very wrong.  A vector crossed with itself is zero.
1131 <        *(sdat.t) -= cross(uz_i, ei);
1130 >      if (i_is_Dipole) {
1131 >        DadDa = data.dipole.lengthSquare();
1132 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= pre22_ * preRF_ * DadDa;
1133        }
1134 <    } else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) {
1135 <      if (i_is_Charge) {        
1136 <        chg1 = data.charge;
1137 <        if (screeningMethod_ == DAMPED) {
1138 <          self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1139 <        } else {        
1140 <          self = - 0.5 * rcuti_ * chg1 * (chg1 +  *(sdat.skippedCharge)) * pre11_;
1060 <        }
1134 >      
1135 >      break;
1136 >      
1137 >    case esm_SHIFTED_FORCE:
1138 >    case esm_SHIFTED_POTENTIAL:
1139 >      if (i_is_Charge) {
1140 >        self = - selfMult_ * C_a * (C_a + *(sdat.skippedCharge)) * pre11_;
1141          (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1142        }
1143 +      break;
1144 +    default:
1145 +      break;
1146      }
1147    }
1148 <
1148 >  
1149    RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1150      // This seems to work moderately well as a default.  There's no
1151      // inherent scale for 1/r interactions that we can standardize.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines