| 47 |
|
#include "utils/simError.h" |
| 48 |
|
#include "types/NonBondedInteractionType.hpp" |
| 49 |
|
#include "types/DirectionalAtomType.hpp" |
| 50 |
+ |
#include "io/Globals.hpp" |
| 51 |
|
|
| 51 |
– |
|
| 52 |
|
namespace OpenMD { |
| 53 |
|
|
| 54 |
|
Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false), |
| 55 |
< |
forceField_(NULL) {} |
| 55 |
> |
forceField_(NULL), info_(NULL) {} |
| 56 |
|
|
| 57 |
|
void Electrostatic::initialize() { |
| 58 |
+ |
|
| 59 |
+ |
Globals* simParams_ = info_->getSimParams(); |
| 60 |
+ |
|
| 61 |
+ |
summationMap_["HARD"] = esm_HARD; |
| 62 |
+ |
summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION; |
| 63 |
+ |
summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL; |
| 64 |
+ |
summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE; |
| 65 |
+ |
summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD; |
| 66 |
+ |
summationMap_["EWALD_FULL"] = esm_EWALD_FULL; |
| 67 |
+ |
summationMap_["EWALD_PME"] = esm_EWALD_PME; |
| 68 |
+ |
summationMap_["EWALD_SPME"] = esm_EWALD_SPME; |
| 69 |
+ |
screeningMap_["DAMPED"] = DAMPED; |
| 70 |
+ |
screeningMap_["UNDAMPED"] = UNDAMPED; |
| 71 |
+ |
|
| 72 |
|
// these prefactors convert the multipole interactions into kcal / mol |
| 73 |
|
// all were computed assuming distances are measured in angstroms |
| 74 |
|
// Charge-Charge, assuming charges are measured in electrons |
| 93 |
|
|
| 94 |
|
// variables to handle different summation methods for long-range |
| 95 |
|
// electrostatics: |
| 96 |
< |
summationMethod_ = NONE; |
| 96 |
> |
summationMethod_ = esm_HARD; |
| 97 |
|
screeningMethod_ = UNDAMPED; |
| 98 |
|
dielectric_ = 1.0; |
| 99 |
|
one_third_ = 1.0 / 3.0; |
| 100 |
< |
haveDefaultCutoff_ = false; |
| 100 |
> |
haveCutoffRadius_ = false; |
| 101 |
|
haveDampingAlpha_ = false; |
| 102 |
|
haveDielectric_ = false; |
| 103 |
|
haveElectroSpline_ = false; |
| 104 |
|
|
| 105 |
+ |
// check the summation method: |
| 106 |
+ |
if (simParams_->haveElectrostaticSummationMethod()) { |
| 107 |
+ |
string myMethod = simParams_->getElectrostaticSummationMethod(); |
| 108 |
+ |
toUpper(myMethod); |
| 109 |
+ |
map<string, ElectrostaticSummationMethod>::iterator i; |
| 110 |
+ |
i = summationMap_.find(myMethod); |
| 111 |
+ |
if ( i != summationMap_.end() ) { |
| 112 |
+ |
summationMethod_ = (*i).second; |
| 113 |
+ |
} else { |
| 114 |
+ |
// throw error |
| 115 |
+ |
sprintf( painCave.errMsg, |
| 116 |
+ |
"Electrostatic::initialize: Unknown electrostaticSummationMethod.\n" |
| 117 |
+ |
"\t(Input file specified %s .)\n" |
| 118 |
+ |
"\telectrostaticSummationMethod must be one of: \"none\",\n" |
| 119 |
+ |
"\t\"shifted_potential\", \"shifted_force\", or \n" |
| 120 |
+ |
"\t\"reaction_field\".\n", myMethod.c_str() ); |
| 121 |
+ |
painCave.isFatal = 1; |
| 122 |
+ |
simError(); |
| 123 |
+ |
} |
| 124 |
+ |
} else { |
| 125 |
+ |
// set ElectrostaticSummationMethod to the cutoffMethod: |
| 126 |
+ |
if (simParams_->haveCutoffMethod()){ |
| 127 |
+ |
string myMethod = simParams_->getCutoffMethod(); |
| 128 |
+ |
toUpper(myMethod); |
| 129 |
+ |
map<string, ElectrostaticSummationMethod>::iterator i; |
| 130 |
+ |
i = summationMap_.find(myMethod); |
| 131 |
+ |
if ( i != summationMap_.end() ) { |
| 132 |
+ |
summationMethod_ = (*i).second; |
| 133 |
+ |
} |
| 134 |
+ |
} |
| 135 |
+ |
} |
| 136 |
+ |
|
| 137 |
+ |
if (summationMethod_ == esm_REACTION_FIELD) { |
| 138 |
+ |
if (!simParams_->haveDielectric()) { |
| 139 |
+ |
// throw warning |
| 140 |
+ |
sprintf( painCave.errMsg, |
| 141 |
+ |
"SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" |
| 142 |
+ |
"\tA default value of %f will be used for the dielectric.\n", dielectric_); |
| 143 |
+ |
painCave.isFatal = 0; |
| 144 |
+ |
painCave.severity = OPENMD_INFO; |
| 145 |
+ |
simError(); |
| 146 |
+ |
} else { |
| 147 |
+ |
dielectric_ = simParams_->getDielectric(); |
| 148 |
+ |
} |
| 149 |
+ |
haveDielectric_ = true; |
| 150 |
+ |
} |
| 151 |
+ |
|
| 152 |
+ |
if (simParams_->haveElectrostaticScreeningMethod()) { |
| 153 |
+ |
string myScreen = simParams_->getElectrostaticScreeningMethod(); |
| 154 |
+ |
toUpper(myScreen); |
| 155 |
+ |
map<string, ElectrostaticScreeningMethod>::iterator i; |
| 156 |
+ |
i = screeningMap_.find(myScreen); |
| 157 |
+ |
if ( i != screeningMap_.end()) { |
| 158 |
+ |
screeningMethod_ = (*i).second; |
| 159 |
+ |
} else { |
| 160 |
+ |
sprintf( painCave.errMsg, |
| 161 |
+ |
"SimInfo error: Unknown electrostaticScreeningMethod.\n" |
| 162 |
+ |
"\t(Input file specified %s .)\n" |
| 163 |
+ |
"\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
| 164 |
+ |
"or \"damped\".\n", myScreen.c_str() ); |
| 165 |
+ |
painCave.isFatal = 1; |
| 166 |
+ |
simError(); |
| 167 |
+ |
} |
| 168 |
+ |
} |
| 169 |
+ |
|
| 170 |
+ |
// check to make sure a cutoff value has been set: |
| 171 |
+ |
if (!haveCutoffRadius_) { |
| 172 |
+ |
sprintf( painCave.errMsg, "Electrostatic::initialize has no Default " |
| 173 |
+ |
"Cutoff value!\n"); |
| 174 |
+ |
painCave.severity = OPENMD_ERROR; |
| 175 |
+ |
painCave.isFatal = 1; |
| 176 |
+ |
simError(); |
| 177 |
+ |
} |
| 178 |
+ |
|
| 179 |
+ |
if (screeningMethod_ == DAMPED) { |
| 180 |
+ |
if (!simParams_->haveDampingAlpha()) { |
| 181 |
+ |
// first set a cutoff dependent alpha value |
| 182 |
+ |
// we assume alpha depends linearly with rcut from 0 to 20.5 ang |
| 183 |
+ |
dampingAlpha_ = 0.425 - cutoffRadius_* 0.02; |
| 184 |
+ |
if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0; |
| 185 |
+ |
|
| 186 |
+ |
// throw warning |
| 187 |
+ |
sprintf( painCave.errMsg, |
| 188 |
+ |
"Electrostatic::initialize: dampingAlpha was not specified in the input file.\n" |
| 189 |
+ |
"\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n", |
| 190 |
+ |
dampingAlpha_, cutoffRadius_); |
| 191 |
+ |
painCave.severity = OPENMD_INFO; |
| 192 |
+ |
painCave.isFatal = 0; |
| 193 |
+ |
simError(); |
| 194 |
+ |
} else { |
| 195 |
+ |
dampingAlpha_ = simParams_->getDampingAlpha(); |
| 196 |
+ |
} |
| 197 |
+ |
haveDampingAlpha_ = true; |
| 198 |
+ |
} |
| 199 |
+ |
|
| 200 |
|
// find all of the Electrostatic atom Types: |
| 201 |
|
ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes(); |
| 202 |
|
ForceField::AtomTypeContainer::MapTypeIterator i; |
| 203 |
|
AtomType* at; |
| 204 |
< |
|
| 204 |
> |
|
| 205 |
|
for (at = atomTypes->beginType(i); at != NULL; |
| 206 |
|
at = atomTypes->nextType(i)) { |
| 207 |
|
|
| 208 |
|
if (at->isElectrostatic()) |
| 209 |
|
addType(at); |
| 101 |
– |
} |
| 102 |
– |
|
| 103 |
– |
// check to make sure a cutoff value has been set: |
| 104 |
– |
if (!haveDefaultCutoff_) { |
| 105 |
– |
sprintf( painCave.errMsg, "Electrostatic::initialize has no Default " |
| 106 |
– |
"Cutoff value!\n"); |
| 107 |
– |
painCave.severity = OPENMD_ERROR; |
| 108 |
– |
painCave.isFatal = 1; |
| 109 |
– |
simError(); |
| 210 |
|
} |
| 211 |
+ |
|
| 212 |
|
|
| 213 |
< |
defaultCutoff2_ = defaultCutoff_ * defaultCutoff_; |
| 214 |
< |
rcuti_ = 1.0 / defaultCutoff_; |
| 213 |
> |
cutoffRadius2_ = cutoffRadius_ * cutoffRadius_; |
| 214 |
> |
rcuti_ = 1.0 / cutoffRadius_; |
| 215 |
|
rcuti2_ = rcuti_ * rcuti_; |
| 216 |
|
rcuti3_ = rcuti2_ * rcuti_; |
| 217 |
|
rcuti4_ = rcuti2_ * rcuti2_; |
| 218 |
|
|
| 219 |
|
if (screeningMethod_ == DAMPED) { |
| 220 |
< |
if (!haveDampingAlpha_) { |
| 120 |
< |
sprintf( painCave.errMsg, "Electrostatic::initialize has no " |
| 121 |
< |
"DampingAlpha value!\n"); |
| 122 |
< |
painCave.severity = OPENMD_ERROR; |
| 123 |
< |
painCave.isFatal = 1; |
| 124 |
< |
simError(); |
| 125 |
< |
} |
| 126 |
< |
|
| 220 |
> |
|
| 221 |
|
alpha2_ = dampingAlpha_ * dampingAlpha_; |
| 222 |
|
alpha4_ = alpha2_ * alpha2_; |
| 223 |
|
alpha6_ = alpha4_ * alpha2_; |
| 224 |
|
alpha8_ = alpha4_ * alpha4_; |
| 225 |
|
|
| 226 |
< |
constEXP_ = exp(-alpha2_ * defaultCutoff2_); |
| 226 |
> |
constEXP_ = exp(-alpha2_ * cutoffRadius2_); |
| 227 |
|
invRootPi_ = 0.56418958354775628695; |
| 228 |
|
alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_; |
| 229 |
|
|
| 230 |
< |
c1c_ = erfc(dampingAlpha_ * defaultCutoff_) * rcuti_; |
| 230 |
> |
c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_; |
| 231 |
|
c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_; |
| 232 |
|
c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_; |
| 233 |
|
c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_; |
| 242 |
|
c6c_ = 9.0 * c5c_ * rcuti2_; |
| 243 |
|
} |
| 244 |
|
|
| 245 |
< |
if (summationMethod_ == REACTION_FIELD) { |
| 246 |
< |
if (haveDielectric_) { |
| 247 |
< |
preRF_ = (dielectric_ - 1.0) / |
| 248 |
< |
((2.0 * dielectric_ + 1.0) * defaultCutoff2_ * defaultCutoff_); |
| 155 |
< |
preRF2_ = 2.0 * preRF_; |
| 156 |
< |
} else { |
| 157 |
< |
sprintf( painCave.errMsg, "Electrostatic::initialize has no Dielectric" |
| 158 |
< |
" value!\n"); |
| 159 |
< |
painCave.severity = OPENMD_ERROR; |
| 160 |
< |
painCave.isFatal = 1; |
| 161 |
< |
simError(); |
| 162 |
< |
} |
| 245 |
> |
if (summationMethod_ == esm_REACTION_FIELD) { |
| 246 |
> |
preRF_ = (dielectric_ - 1.0) / |
| 247 |
> |
((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_); |
| 248 |
> |
preRF2_ = 2.0 * preRF_; |
| 249 |
|
} |
| 250 |
< |
|
| 251 |
< |
RealType dx = defaultCutoff_ / RealType(np_ - 1); |
| 250 |
> |
|
| 251 |
> |
RealType dx = cutoffRadius_ / RealType(np_ - 1); |
| 252 |
|
RealType rval; |
| 253 |
|
vector<RealType> rvals; |
| 254 |
|
vector<RealType> yvals; |
| 369 |
|
simError(); |
| 370 |
|
} |
| 371 |
|
|
| 372 |
+ |
// Quadrupoles in OpenMD are set as the diagonal elements |
| 373 |
+ |
// of the diagonalized traceless quadrupole moment tensor. |
| 374 |
+ |
// The column vectors of the unitary matrix that diagonalizes |
| 375 |
+ |
// the quadrupole moment tensor become the eFrame (or the |
| 376 |
+ |
// electrostatic version of the body-fixed frame. |
| 377 |
+ |
|
| 378 |
|
Vector3dGenericData* v3dData = dynamic_cast<Vector3dGenericData*>(data); |
| 379 |
|
if (v3dData == NULL) { |
| 380 |
|
sprintf( painCave.errMsg, |
| 407 |
|
return; |
| 408 |
|
} |
| 409 |
|
|
| 410 |
< |
void Electrostatic::setElectrostaticCutoffRadius( RealType theECR, |
| 411 |
< |
RealType theRSW ) { |
| 412 |
< |
defaultCutoff_ = theECR; |
| 413 |
< |
rrf_ = defaultCutoff_; |
| 322 |
< |
rt_ = theRSW; |
| 323 |
< |
haveDefaultCutoff_ = true; |
| 410 |
> |
void Electrostatic::setCutoffRadius( RealType rCut ) { |
| 411 |
> |
cutoffRadius_ = rCut; |
| 412 |
> |
rrf_ = cutoffRadius_; |
| 413 |
> |
haveCutoffRadius_ = true; |
| 414 |
|
} |
| 415 |
+ |
|
| 416 |
+ |
void Electrostatic::setSwitchingRadius( RealType rSwitch ) { |
| 417 |
+ |
rt_ = rSwitch; |
| 418 |
+ |
} |
| 419 |
|
void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) { |
| 420 |
|
summationMethod_ = esm; |
| 421 |
|
} |
| 431 |
|
haveDielectric_ = true; |
| 432 |
|
} |
| 433 |
|
|
| 434 |
< |
void Electrostatic::calcForce(InteractionData idat) { |
| 434 |
> |
void Electrostatic::calcForce(InteractionData &idat) { |
| 435 |
|
|
| 436 |
|
// utility variables. Should clean these up and use the Vector3d and |
| 437 |
|
// Mat3x3d to replace as many as we can in future versions: |
| 465 |
|
|
| 466 |
|
if (!initialized_) initialize(); |
| 467 |
|
|
| 468 |
< |
ElectrostaticAtomData data1 = ElectrostaticMap[idat.atype1]; |
| 469 |
< |
ElectrostaticAtomData data2 = ElectrostaticMap[idat.atype2]; |
| 468 |
> |
ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first]; |
| 469 |
> |
ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second]; |
| 470 |
|
|
| 471 |
|
// some variables we'll need independent of electrostatic type: |
| 472 |
|
|
| 473 |
< |
riji = 1.0 / idat.rij; |
| 474 |
< |
Vector3d rhat = idat.d * riji; |
| 473 |
> |
riji = 1.0 / *(idat.rij) ; |
| 474 |
> |
Vector3d rhat = *(idat.d) * riji; |
| 475 |
|
|
| 476 |
|
// logicals |
| 477 |
|
|
| 490 |
|
|
| 491 |
|
if (i_is_Dipole) { |
| 492 |
|
mu_i = data1.dipole_moment; |
| 493 |
< |
uz_i = idat.eFrame1.getColumn(2); |
| 493 |
> |
uz_i = idat.eFrame1->getColumn(2); |
| 494 |
|
|
| 495 |
|
ct_i = dot(uz_i, rhat); |
| 496 |
|
|
| 506 |
|
qyy_i = Q_i.y(); |
| 507 |
|
qzz_i = Q_i.z(); |
| 508 |
|
|
| 509 |
< |
ux_i = idat.eFrame1.getColumn(0); |
| 510 |
< |
uy_i = idat.eFrame1.getColumn(1); |
| 511 |
< |
uz_i = idat.eFrame1.getColumn(2); |
| 509 |
> |
ux_i = idat.eFrame1->getColumn(0); |
| 510 |
> |
uy_i = idat.eFrame1->getColumn(1); |
| 511 |
> |
uz_i = idat.eFrame1->getColumn(2); |
| 512 |
|
|
| 513 |
|
cx_i = dot(ux_i, rhat); |
| 514 |
|
cy_i = dot(uy_i, rhat); |
| 524 |
|
|
| 525 |
|
if (j_is_Dipole) { |
| 526 |
|
mu_j = data2.dipole_moment; |
| 527 |
< |
uz_j = idat.eFrame2.getColumn(2); |
| 527 |
> |
uz_j = idat.eFrame2->getColumn(2); |
| 528 |
|
|
| 529 |
|
ct_j = dot(uz_j, rhat); |
| 530 |
|
|
| 540 |
|
qyy_j = Q_j.y(); |
| 541 |
|
qzz_j = Q_j.z(); |
| 542 |
|
|
| 543 |
< |
ux_j = idat.eFrame2.getColumn(0); |
| 544 |
< |
uy_j = idat.eFrame2.getColumn(1); |
| 545 |
< |
uz_j = idat.eFrame2.getColumn(2); |
| 543 |
> |
ux_j = idat.eFrame2->getColumn(0); |
| 544 |
> |
uy_j = idat.eFrame2->getColumn(1); |
| 545 |
> |
uz_j = idat.eFrame2->getColumn(2); |
| 546 |
|
|
| 547 |
|
cx_j = dot(ux_j, rhat); |
| 548 |
|
cy_j = dot(uy_j, rhat); |
| 561 |
|
if (j_is_Charge) { |
| 562 |
|
if (screeningMethod_ == DAMPED) { |
| 563 |
|
// assemble the damping variables |
| 564 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
| 564 |
> |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
| 565 |
|
erfcVal = res.first; |
| 566 |
|
derfcVal = res.second; |
| 567 |
|
c1 = erfcVal * riji; |
| 571 |
|
c2 = c1 * riji; |
| 572 |
|
} |
| 573 |
|
|
| 574 |
< |
preVal = idat.electroMult * pre11_ * q_i * q_j; |
| 574 |
> |
preVal = *(idat.electroMult) * pre11_ * q_i * q_j; |
| 575 |
|
|
| 576 |
< |
if (summationMethod_ == SHIFTED_POTENTIAL) { |
| 576 |
> |
if (summationMethod_ == esm_SHIFTED_POTENTIAL) { |
| 577 |
|
vterm = preVal * (c1 - c1c_); |
| 578 |
< |
dudr = -idat.sw * preVal * c2; |
| 578 |
> |
dudr = - *(idat.sw) * preVal * c2; |
| 579 |
|
|
| 580 |
< |
} else if (summationMethod_ == SHIFTED_FORCE) { |
| 581 |
< |
vterm = preVal * ( c1 - c1c_ + c2c_*(idat.rij - defaultCutoff_) ); |
| 582 |
< |
dudr = idat.sw * preVal * (c2c_ - c2); |
| 580 |
> |
} else if (summationMethod_ == esm_SHIFTED_FORCE) { |
| 581 |
> |
vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij) - cutoffRadius_) ); |
| 582 |
> |
dudr = *(idat.sw) * preVal * (c2c_ - c2); |
| 583 |
|
|
| 584 |
< |
} else if (summationMethod_ == REACTION_FIELD) { |
| 585 |
< |
rfVal = idat.electroMult * preRF_ * idat.rij * idat.rij; |
| 584 |
> |
} else if (summationMethod_ == esm_REACTION_FIELD) { |
| 585 |
> |
rfVal = *(idat.electroMult) * preRF_ * *(idat.rij) * *(idat.rij) ; |
| 586 |
|
vterm = preVal * ( riji + rfVal ); |
| 587 |
< |
dudr = idat.sw * preVal * ( 2.0 * rfVal - riji ) * riji; |
| 587 |
> |
dudr = *(idat.sw) * preVal * ( 2.0 * rfVal - riji ) * riji; |
| 588 |
|
|
| 589 |
|
} else { |
| 590 |
|
vterm = preVal * riji * erfcVal; |
| 591 |
|
|
| 592 |
< |
dudr = - idat.sw * preVal * c2; |
| 592 |
> |
dudr = - *(idat.sw) * preVal * c2; |
| 593 |
|
|
| 594 |
|
} |
| 595 |
|
|
| 596 |
< |
idat.vpair += vterm; |
| 597 |
< |
epot += idat.sw * vterm; |
| 596 |
> |
*(idat.vpair) += vterm; |
| 597 |
> |
epot += *(idat.sw) * vterm; |
| 598 |
|
|
| 599 |
|
dVdr += dudr * rhat; |
| 600 |
|
} |
| 601 |
|
|
| 602 |
|
if (j_is_Dipole) { |
| 603 |
|
// pref is used by all the possible methods |
| 604 |
< |
pref = idat.electroMult * pre12_ * q_i * mu_j; |
| 605 |
< |
preSw = idat.sw * pref; |
| 604 |
> |
pref = *(idat.electroMult) * pre12_ * q_i * mu_j; |
| 605 |
> |
preSw = *(idat.sw) * pref; |
| 606 |
|
|
| 607 |
< |
if (summationMethod_ == REACTION_FIELD) { |
| 607 |
> |
if (summationMethod_ == esm_REACTION_FIELD) { |
| 608 |
|
ri2 = riji * riji; |
| 609 |
|
ri3 = ri2 * riji; |
| 610 |
|
|
| 611 |
< |
vterm = - pref * ct_j * ( ri2 - preRF2_ * idat.rij ); |
| 612 |
< |
idat.vpair += vterm; |
| 613 |
< |
epot += idat.sw * vterm; |
| 611 |
> |
vterm = - pref * ct_j * ( ri2 - preRF2_ * *(idat.rij) ); |
| 612 |
> |
*(idat.vpair) += vterm; |
| 613 |
> |
epot += *(idat.sw) * vterm; |
| 614 |
|
|
| 615 |
|
dVdr += -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j); |
| 616 |
< |
duduz_j += -preSw * rhat * (ri2 - preRF2_ * idat.rij); |
| 616 |
> |
duduz_j += -preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
| 617 |
|
|
| 618 |
|
} else { |
| 619 |
|
// determine the inverse r used if we have split dipoles |
| 620 |
|
if (j_is_SplitDipole) { |
| 621 |
< |
BigR = sqrt(idat.r2 + 0.25 * d_j * d_j); |
| 621 |
> |
BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j); |
| 622 |
|
ri = 1.0 / BigR; |
| 623 |
< |
scale = idat.rij * ri; |
| 623 |
> |
scale = *(idat.rij) * ri; |
| 624 |
|
} else { |
| 625 |
|
ri = riji; |
| 626 |
|
scale = 1.0; |
| 630 |
|
|
| 631 |
|
if (screeningMethod_ == DAMPED) { |
| 632 |
|
// assemble the damping variables |
| 633 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
| 633 |
> |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
| 634 |
|
erfcVal = res.first; |
| 635 |
|
derfcVal = res.second; |
| 636 |
|
c1 = erfcVal * ri; |
| 647 |
|
// calculate the potential |
| 648 |
|
pot_term = scale * c2; |
| 649 |
|
vterm = -pref * ct_j * pot_term; |
| 650 |
< |
idat.vpair += vterm; |
| 651 |
< |
epot += idat.sw * vterm; |
| 650 |
> |
*(idat.vpair) += vterm; |
| 651 |
> |
epot += *(idat.sw) * vterm; |
| 652 |
|
|
| 653 |
|
// calculate derivatives for forces and torques |
| 654 |
|
|
| 663 |
|
cx2 = cx_j * cx_j; |
| 664 |
|
cy2 = cy_j * cy_j; |
| 665 |
|
cz2 = cz_j * cz_j; |
| 666 |
< |
pref = idat.electroMult * pre14_ * q_i * one_third_; |
| 666 |
> |
pref = *(idat.electroMult) * pre14_ * q_i * one_third_; |
| 667 |
|
|
| 668 |
|
if (screeningMethod_ == DAMPED) { |
| 669 |
|
// assemble the damping variables |
| 670 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
| 670 |
> |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
| 671 |
|
erfcVal = res.first; |
| 672 |
|
derfcVal = res.second; |
| 673 |
|
c1 = erfcVal * riji; |
| 682 |
|
} |
| 683 |
|
|
| 684 |
|
// precompute variables for convenience |
| 685 |
< |
preSw = idat.sw * pref; |
| 685 |
> |
preSw = *(idat.sw) * pref; |
| 686 |
|
c2ri = c2 * riji; |
| 687 |
|
c3ri = c3 * riji; |
| 688 |
< |
c4rij = c4 * idat.rij; |
| 688 |
> |
c4rij = c4 * *(idat.rij) ; |
| 689 |
|
rhatdot2 = 2.0 * rhat * c3; |
| 690 |
|
rhatc4 = rhat * c4rij; |
| 691 |
|
|
| 694 |
|
qyy_j * (cy2*c3 - c2ri) + |
| 695 |
|
qzz_j * (cz2*c3 - c2ri) ); |
| 696 |
|
vterm = pref * pot_term; |
| 697 |
< |
idat.vpair += vterm; |
| 698 |
< |
epot += idat.sw * vterm; |
| 697 |
> |
*(idat.vpair) += vterm; |
| 698 |
> |
epot += *(idat.sw) * vterm; |
| 699 |
|
|
| 700 |
|
// calculate derivatives for the forces and torques |
| 701 |
|
|
| 713 |
|
|
| 714 |
|
if (j_is_Charge) { |
| 715 |
|
// variables used by all the methods |
| 716 |
< |
pref = idat.electroMult * pre12_ * q_j * mu_i; |
| 717 |
< |
preSw = idat.sw * pref; |
| 716 |
> |
pref = *(idat.electroMult) * pre12_ * q_j * mu_i; |
| 717 |
> |
preSw = *(idat.sw) * pref; |
| 718 |
|
|
| 719 |
< |
if (summationMethod_ == REACTION_FIELD) { |
| 719 |
> |
if (summationMethod_ == esm_REACTION_FIELD) { |
| 720 |
|
|
| 721 |
|
ri2 = riji * riji; |
| 722 |
|
ri3 = ri2 * riji; |
| 723 |
|
|
| 724 |
< |
vterm = pref * ct_i * ( ri2 - preRF2_ * idat.rij ); |
| 725 |
< |
idat.vpair += vterm; |
| 726 |
< |
epot += idat.sw * vterm; |
| 724 |
> |
vterm = pref * ct_i * ( ri2 - preRF2_ * *(idat.rij) ); |
| 725 |
> |
*(idat.vpair) += vterm; |
| 726 |
> |
epot += *(idat.sw) * vterm; |
| 727 |
|
|
| 728 |
|
dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i); |
| 729 |
|
|
| 730 |
< |
duduz_i += preSw * rhat * (ri2 - preRF2_ * idat.rij); |
| 730 |
> |
duduz_i += preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
| 731 |
|
|
| 732 |
|
} else { |
| 733 |
|
|
| 734 |
|
// determine inverse r if we are using split dipoles |
| 735 |
|
if (i_is_SplitDipole) { |
| 736 |
< |
BigR = sqrt(idat.r2 + 0.25 * d_i * d_i); |
| 736 |
> |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i); |
| 737 |
|
ri = 1.0 / BigR; |
| 738 |
< |
scale = idat.rij * ri; |
| 738 |
> |
scale = *(idat.rij) * ri; |
| 739 |
|
} else { |
| 740 |
|
ri = riji; |
| 741 |
|
scale = 1.0; |
| 745 |
|
|
| 746 |
|
if (screeningMethod_ == DAMPED) { |
| 747 |
|
// assemble the damping variables |
| 748 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
| 748 |
> |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
| 749 |
|
erfcVal = res.first; |
| 750 |
|
derfcVal = res.second; |
| 751 |
|
c1 = erfcVal * ri; |
| 762 |
|
// calculate the potential |
| 763 |
|
pot_term = c2 * scale; |
| 764 |
|
vterm = pref * ct_i * pot_term; |
| 765 |
< |
idat.vpair += vterm; |
| 766 |
< |
epot += idat.sw * vterm; |
| 765 |
> |
*(idat.vpair) += vterm; |
| 766 |
> |
epot += *(idat.sw) * vterm; |
| 767 |
|
|
| 768 |
|
// calculate derivatives for the forces and torques |
| 769 |
|
dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3); |
| 775 |
|
// variables used by all methods |
| 776 |
|
ct_ij = dot(uz_i, uz_j); |
| 777 |
|
|
| 778 |
< |
pref = idat.electroMult * pre22_ * mu_i * mu_j; |
| 779 |
< |
preSw = idat.sw * pref; |
| 778 |
> |
pref = *(idat.electroMult) * pre22_ * mu_i * mu_j; |
| 779 |
> |
preSw = *(idat.sw) * pref; |
| 780 |
|
|
| 781 |
< |
if (summationMethod_ == REACTION_FIELD) { |
| 781 |
> |
if (summationMethod_ == esm_REACTION_FIELD) { |
| 782 |
|
ri2 = riji * riji; |
| 783 |
|
ri3 = ri2 * riji; |
| 784 |
|
ri4 = ri2 * ri2; |
| 785 |
|
|
| 786 |
|
vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) - |
| 787 |
|
preRF2_ * ct_ij ); |
| 788 |
< |
idat.vpair += vterm; |
| 789 |
< |
epot += idat.sw * vterm; |
| 788 |
> |
*(idat.vpair) += vterm; |
| 789 |
> |
epot += *(idat.sw) * vterm; |
| 790 |
|
|
| 791 |
|
a1 = 5.0 * ct_i * ct_j - ct_ij; |
| 792 |
|
|
| 799 |
|
|
| 800 |
|
if (i_is_SplitDipole) { |
| 801 |
|
if (j_is_SplitDipole) { |
| 802 |
< |
BigR = sqrt(idat.r2 + 0.25 * d_i * d_i + 0.25 * d_j * d_j); |
| 802 |
> |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j); |
| 803 |
|
} else { |
| 804 |
< |
BigR = sqrt(idat.r2 + 0.25 * d_i * d_i); |
| 804 |
> |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i); |
| 805 |
|
} |
| 806 |
|
ri = 1.0 / BigR; |
| 807 |
< |
scale = idat.rij * ri; |
| 807 |
> |
scale = *(idat.rij) * ri; |
| 808 |
|
} else { |
| 809 |
|
if (j_is_SplitDipole) { |
| 810 |
< |
BigR = sqrt(idat.r2 + 0.25 * d_j * d_j); |
| 810 |
> |
BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j); |
| 811 |
|
ri = 1.0 / BigR; |
| 812 |
< |
scale = idat.rij * ri; |
| 812 |
> |
scale = *(idat.rij) * ri; |
| 813 |
|
} else { |
| 814 |
|
ri = riji; |
| 815 |
|
scale = 1.0; |
| 817 |
|
} |
| 818 |
|
if (screeningMethod_ == DAMPED) { |
| 819 |
|
// assemble damping variables |
| 820 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
| 820 |
> |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
| 821 |
|
erfcVal = res.first; |
| 822 |
|
derfcVal = res.second; |
| 823 |
|
c1 = erfcVal * ri; |
| 839 |
|
preSwSc = preSw * scale; |
| 840 |
|
c2ri = c2 * ri; |
| 841 |
|
c3ri = c3 * ri; |
| 842 |
< |
c4rij = c4 * idat.rij; |
| 842 |
> |
c4rij = c4 * *(idat.rij) ; |
| 843 |
|
|
| 844 |
|
// calculate the potential |
| 845 |
|
pot_term = (ct_ij * c2ri - ctidotj * c3); |
| 846 |
|
vterm = pref * pot_term; |
| 847 |
< |
idat.vpair += vterm; |
| 848 |
< |
epot += idat.sw * vterm; |
| 847 |
> |
*(idat.vpair) += vterm; |
| 848 |
> |
epot += *(idat.sw) * vterm; |
| 849 |
|
|
| 850 |
|
// calculate derivatives for the forces and torques |
| 851 |
|
dVdr += preSwSc * ( ctidotj * rhat * c4rij - |
| 864 |
|
cy2 = cy_i * cy_i; |
| 865 |
|
cz2 = cz_i * cz_i; |
| 866 |
|
|
| 867 |
< |
pref = idat.electroMult * pre14_ * q_j * one_third_; |
| 867 |
> |
pref = *(idat.electroMult) * pre14_ * q_j * one_third_; |
| 868 |
|
|
| 869 |
|
if (screeningMethod_ == DAMPED) { |
| 870 |
|
// assemble the damping variables |
| 871 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
| 871 |
> |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
| 872 |
|
erfcVal = res.first; |
| 873 |
|
derfcVal = res.second; |
| 874 |
|
c1 = erfcVal * riji; |
| 883 |
|
} |
| 884 |
|
|
| 885 |
|
// precompute some variables for convenience |
| 886 |
< |
preSw = idat.sw * pref; |
| 886 |
> |
preSw = *(idat.sw) * pref; |
| 887 |
|
c2ri = c2 * riji; |
| 888 |
|
c3ri = c3 * riji; |
| 889 |
< |
c4rij = c4 * idat.rij; |
| 889 |
> |
c4rij = c4 * *(idat.rij) ; |
| 890 |
|
rhatdot2 = 2.0 * rhat * c3; |
| 891 |
|
rhatc4 = rhat * c4rij; |
| 892 |
|
|
| 896 |
|
qzz_i * (cz2 * c3 - c2ri) ); |
| 897 |
|
|
| 898 |
|
vterm = pref * pot_term; |
| 899 |
< |
idat.vpair += vterm; |
| 900 |
< |
epot += idat.sw * vterm; |
| 899 |
> |
*(idat.vpair) += vterm; |
| 900 |
> |
epot += *(idat.sw) * vterm; |
| 901 |
|
|
| 902 |
|
// calculate the derivatives for the forces and torques |
| 903 |
|
|
| 911 |
|
} |
| 912 |
|
} |
| 913 |
|
|
| 914 |
< |
idat.pot += epot; |
| 915 |
< |
idat.f1 += dVdr; |
| 914 |
> |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += epot; |
| 915 |
> |
*(idat.f1) += dVdr; |
| 916 |
|
|
| 917 |
|
if (i_is_Dipole || i_is_Quadrupole) |
| 918 |
< |
idat.t1 -= cross(uz_i, duduz_i); |
| 918 |
> |
*(idat.t1) -= cross(uz_i, duduz_i); |
| 919 |
|
if (i_is_Quadrupole) { |
| 920 |
< |
idat.t1 -= cross(ux_i, dudux_i); |
| 921 |
< |
idat.t1 -= cross(uy_i, duduy_i); |
| 920 |
> |
*(idat.t1) -= cross(ux_i, dudux_i); |
| 921 |
> |
*(idat.t1) -= cross(uy_i, duduy_i); |
| 922 |
|
} |
| 923 |
< |
|
| 924 |
< |
if (j_is_Dipole || j_is_Quadrupole) |
| 925 |
< |
idat.t2 -= cross(uz_j, duduz_j); |
| 923 |
> |
|
| 924 |
> |
if (j_is_Dipole || j_is_Quadrupole) |
| 925 |
> |
*(idat.t2) -= cross(uz_j, duduz_j); |
| 926 |
|
if (j_is_Quadrupole) { |
| 927 |
< |
idat.t2 -= cross(uz_j, dudux_j); |
| 928 |
< |
idat.t2 -= cross(uz_j, duduy_j); |
| 927 |
> |
*(idat.t2) -= cross(uz_j, dudux_j); |
| 928 |
> |
*(idat.t2) -= cross(uz_j, duduy_j); |
| 929 |
|
} |
| 930 |
|
|
| 931 |
|
return; |
| 932 |
|
} |
| 933 |
|
|
| 934 |
< |
void Electrostatic::calcSkipCorrection(SkipCorrectionData skdat) { |
| 934 |
> |
void Electrostatic::calcSkipCorrection(InteractionData &idat) { |
| 935 |
|
|
| 936 |
|
if (!initialized_) initialize(); |
| 937 |
|
|
| 938 |
< |
ElectrostaticAtomData data1 = ElectrostaticMap[skdat.atype1]; |
| 939 |
< |
ElectrostaticAtomData data2 = ElectrostaticMap[skdat.atype2]; |
| 938 |
> |
ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first]; |
| 939 |
> |
ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second]; |
| 940 |
|
|
| 941 |
|
// logicals |
| 942 |
|
|
| 953 |
|
|
| 954 |
|
if (i_is_Charge) { |
| 955 |
|
q_i = data1.charge; |
| 956 |
< |
skdat.skippedCharge2 += q_i; |
| 956 |
> |
*(idat.skippedCharge2) += q_i; |
| 957 |
|
} |
| 958 |
|
|
| 959 |
|
if (j_is_Charge) { |
| 960 |
|
q_j = data2.charge; |
| 961 |
< |
skdat.skippedCharge1 += q_j; |
| 961 |
> |
*(idat.skippedCharge1) += q_j; |
| 962 |
|
} |
| 963 |
|
|
| 964 |
|
// the rest of this function should only be necessary for reaction field. |
| 965 |
|
|
| 966 |
< |
if (summationMethod_ == REACTION_FIELD) { |
| 966 |
> |
if (summationMethod_ == esm_REACTION_FIELD) { |
| 967 |
|
RealType riji, ri2, ri3; |
| 968 |
< |
RealType q_i, mu_i, ct_i; |
| 969 |
< |
RealType q_j, mu_j, ct_j; |
| 970 |
< |
RealType preVal, rfVal, vterm, dudr, pref, myPot; |
| 968 |
> |
RealType mu_i, ct_i; |
| 969 |
> |
RealType mu_j, ct_j; |
| 970 |
> |
RealType preVal, rfVal, vterm, dudr, pref, myPot(0.0); |
| 971 |
|
Vector3d dVdr, uz_i, uz_j, duduz_i, duduz_j, rhat; |
| 972 |
|
|
| 973 |
|
// some variables we'll need independent of electrostatic type: |
| 974 |
|
|
| 975 |
< |
riji = 1.0 / skdat.rij; |
| 976 |
< |
rhat = skdat.d * riji; |
| 975 |
> |
riji = 1.0 / *(idat.rij) ; |
| 976 |
> |
rhat = *(idat.d) * riji; |
| 977 |
|
|
| 978 |
|
if (i_is_Dipole) { |
| 979 |
|
mu_i = data1.dipole_moment; |
| 980 |
< |
uz_i = skdat.eFrame1.getColumn(2); |
| 980 |
> |
uz_i = idat.eFrame1->getColumn(2); |
| 981 |
|
ct_i = dot(uz_i, rhat); |
| 982 |
|
duduz_i = V3Zero; |
| 983 |
|
} |
| 984 |
|
|
| 985 |
|
if (j_is_Dipole) { |
| 986 |
|
mu_j = data2.dipole_moment; |
| 987 |
< |
uz_j = skdat.eFrame2.getColumn(2); |
| 987 |
> |
uz_j = idat.eFrame2->getColumn(2); |
| 988 |
|
ct_j = dot(uz_j, rhat); |
| 989 |
|
duduz_j = V3Zero; |
| 990 |
|
} |
| 991 |
|
|
| 992 |
|
if (i_is_Charge) { |
| 993 |
|
if (j_is_Charge) { |
| 994 |
< |
preVal = skdat.electroMult * pre11_ * q_i * q_j; |
| 995 |
< |
rfVal = preRF_ * skdat.rij * skdat.rij; |
| 994 |
> |
preVal = *(idat.electroMult) * pre11_ * q_i * q_j; |
| 995 |
> |
rfVal = preRF_ * *(idat.rij) * *(idat.rij) ; |
| 996 |
|
vterm = preVal * rfVal; |
| 997 |
< |
myPot += skdat.sw * vterm; |
| 998 |
< |
dudr = skdat.sw * preVal * 2.0 * rfVal * riji; |
| 997 |
> |
myPot += *(idat.sw) * vterm; |
| 998 |
> |
dudr = *(idat.sw) * preVal * 2.0 * rfVal * riji; |
| 999 |
|
dVdr += dudr * rhat; |
| 1000 |
|
} |
| 1001 |
|
|
| 1002 |
|
if (j_is_Dipole) { |
| 1003 |
|
ri2 = riji * riji; |
| 1004 |
|
ri3 = ri2 * riji; |
| 1005 |
< |
pref = skdat.electroMult * pre12_ * q_i * mu_j; |
| 1006 |
< |
vterm = - pref * ct_j * ( ri2 - preRF2_ * skdat.rij ); |
| 1007 |
< |
myPot += skdat.sw * vterm; |
| 1008 |
< |
dVdr += -skdat.sw * pref * ( ri3 * ( uz_j - 3.0 * ct_j * rhat) - preRF2_ * uz_j); |
| 1009 |
< |
duduz_j += -skdat.sw * pref * rhat * (ri2 - preRF2_ * skdat.rij); |
| 1005 |
> |
pref = *(idat.electroMult) * pre12_ * q_i * mu_j; |
| 1006 |
> |
vterm = - pref * ct_j * ( ri2 - preRF2_ * *(idat.rij) ); |
| 1007 |
> |
myPot += *(idat.sw) * vterm; |
| 1008 |
> |
dVdr += - *(idat.sw) * pref * ( ri3 * ( uz_j - 3.0 * ct_j * rhat) - preRF2_ * uz_j); |
| 1009 |
> |
duduz_j += - *(idat.sw) * pref * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
| 1010 |
|
} |
| 1011 |
|
} |
| 1012 |
|
if (i_is_Dipole) { |
| 1013 |
|
if (j_is_Charge) { |
| 1014 |
|
ri2 = riji * riji; |
| 1015 |
|
ri3 = ri2 * riji; |
| 1016 |
< |
pref = skdat.electroMult * pre12_ * q_j * mu_i; |
| 1017 |
< |
vterm = - pref * ct_i * ( ri2 - preRF2_ * skdat.rij ); |
| 1018 |
< |
myPot += skdat.sw * vterm; |
| 1019 |
< |
dVdr += skdat.sw * pref * ( ri3 * ( uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i); |
| 1020 |
< |
duduz_i += skdat.sw * pref * rhat * (ri2 - preRF2_ * skdat.rij); |
| 1016 |
> |
pref = *(idat.electroMult) * pre12_ * q_j * mu_i; |
| 1017 |
> |
vterm = - pref * ct_i * ( ri2 - preRF2_ * *(idat.rij) ); |
| 1018 |
> |
myPot += *(idat.sw) * vterm; |
| 1019 |
> |
dVdr += *(idat.sw) * pref * ( ri3 * ( uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i); |
| 1020 |
> |
duduz_i += *(idat.sw) * pref * rhat * (ri2 - preRF2_ * *(idat.rij)); |
| 1021 |
|
} |
| 1022 |
|
} |
| 1023 |
|
|
| 1024 |
|
// accumulate the forces and torques resulting from the self term |
| 1025 |
< |
skdat.pot += myPot; |
| 1026 |
< |
skdat.f1 += dVdr; |
| 1025 |
> |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += myPot; |
| 1026 |
> |
*(idat.f1) += dVdr; |
| 1027 |
|
|
| 1028 |
|
if (i_is_Dipole) |
| 1029 |
< |
skdat.t1 -= cross(uz_i, duduz_i); |
| 1029 |
> |
*(idat.t1) -= cross(uz_i, duduz_i); |
| 1030 |
|
if (j_is_Dipole) |
| 1031 |
< |
skdat.t2 -= cross(uz_j, duduz_j); |
| 1031 |
> |
*(idat.t2) -= cross(uz_j, duduz_j); |
| 1032 |
|
} |
| 1033 |
|
} |
| 1034 |
|
|
| 1035 |
< |
void Electrostatic::calcSelfCorrection(SelfCorrectionData scdat) { |
| 1035 |
> |
void Electrostatic::calcSelfCorrection(SelfData &sdat) { |
| 1036 |
|
RealType mu1, preVal, chg1, self; |
| 1037 |
|
|
| 1038 |
|
if (!initialized_) initialize(); |
| 1039 |
|
|
| 1040 |
< |
ElectrostaticAtomData data = ElectrostaticMap[scdat.atype]; |
| 1040 |
> |
ElectrostaticAtomData data = ElectrostaticMap[sdat.atype]; |
| 1041 |
|
|
| 1042 |
|
// logicals |
| 1043 |
|
|
| 1044 |
|
bool i_is_Charge = data.is_Charge; |
| 1045 |
|
bool i_is_Dipole = data.is_Dipole; |
| 1046 |
|
|
| 1047 |
< |
if (summationMethod_ == REACTION_FIELD) { |
| 1047 |
> |
if (summationMethod_ == esm_REACTION_FIELD) { |
| 1048 |
|
if (i_is_Dipole) { |
| 1049 |
|
mu1 = data.dipole_moment; |
| 1050 |
|
preVal = pre22_ * preRF2_ * mu1 * mu1; |
| 1051 |
< |
scdat.pot -= 0.5 * preVal; |
| 1051 |
> |
sdat.pot[2] -= 0.5 * preVal; |
| 1052 |
|
|
| 1053 |
|
// The self-correction term adds into the reaction field vector |
| 1054 |
< |
Vector3d uz_i = scdat.eFrame.getColumn(2); |
| 1054 |
> |
Vector3d uz_i = sdat.eFrame->getColumn(2); |
| 1055 |
|
Vector3d ei = preVal * uz_i; |
| 1056 |
|
|
| 1057 |
|
// This looks very wrong. A vector crossed with itself is zero. |
| 1058 |
< |
scdat.t -= cross(uz_i, ei); |
| 1058 |
> |
*(sdat.t) -= cross(uz_i, ei); |
| 1059 |
|
} |
| 1060 |
< |
} else if (summationMethod_ == SHIFTED_FORCE || summationMethod_ == SHIFTED_POTENTIAL) { |
| 1060 |
> |
} else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) { |
| 1061 |
|
if (i_is_Charge) { |
| 1062 |
|
chg1 = data.charge; |
| 1063 |
|
if (screeningMethod_ == DAMPED) { |
| 1064 |
< |
self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + scdat.skippedCharge) * pre11_; |
| 1064 |
> |
self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_; |
| 1065 |
|
} else { |
| 1066 |
< |
self = - 0.5 * rcuti_ * chg1 * (chg1 + scdat.skippedCharge) * pre11_; |
| 1066 |
> |
self = - 0.5 * rcuti_ * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_; |
| 1067 |
|
} |
| 1068 |
< |
scdat.pot += self; |
| 1068 |
> |
sdat.pot[ELECTROSTATIC_FAMILY] += self; |
| 1069 |
|
} |
| 1070 |
|
} |
| 1071 |
|
} |
| 1072 |
+ |
|
| 1073 |
+ |
RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
| 1074 |
+ |
// This seems to work moderately well as a default. There's no |
| 1075 |
+ |
// inherent scale for 1/r interactions that we can standardize. |
| 1076 |
+ |
// 12 angstroms seems to be a reasonably good guess for most |
| 1077 |
+ |
// cases. |
| 1078 |
+ |
return 12.0; |
| 1079 |
+ |
} |
| 1080 |
|
} |