34 |
|
* work. Good starting points are: |
35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
< |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
37 |
> |
* [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
|
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
52 |
|
namespace OpenMD { |
53 |
|
|
54 |
|
Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false), |
55 |
< |
forceField_(NULL) {} |
55 |
> |
forceField_(NULL), info_(NULL), |
56 |
> |
haveCutoffRadius_(false), |
57 |
> |
haveDampingAlpha_(false), |
58 |
> |
haveDielectric_(false), |
59 |
> |
haveElectroSpline_(false) |
60 |
> |
{} |
61 |
|
|
62 |
|
void Electrostatic::initialize() { |
63 |
+ |
|
64 |
+ |
Globals* simParams_ = info_->getSimParams(); |
65 |
|
|
59 |
– |
Globals* simParams_; |
60 |
– |
|
66 |
|
summationMap_["HARD"] = esm_HARD; |
67 |
+ |
summationMap_["NONE"] = esm_HARD; |
68 |
|
summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION; |
69 |
|
summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL; |
70 |
|
summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE; |
103 |
|
screeningMethod_ = UNDAMPED; |
104 |
|
dielectric_ = 1.0; |
105 |
|
one_third_ = 1.0 / 3.0; |
100 |
– |
haveCutoffRadius_ = false; |
101 |
– |
haveDampingAlpha_ = false; |
102 |
– |
haveDielectric_ = false; |
103 |
– |
haveElectroSpline_ = false; |
106 |
|
|
107 |
|
// check the summation method: |
108 |
|
if (simParams_->haveElectrostaticSummationMethod()) { |
117 |
|
sprintf( painCave.errMsg, |
118 |
|
"Electrostatic::initialize: Unknown electrostaticSummationMethod.\n" |
119 |
|
"\t(Input file specified %s .)\n" |
120 |
< |
"\telectrostaticSummationMethod must be one of: \"none\",\n" |
120 |
> |
"\telectrostaticSummationMethod must be one of: \"hard\",\n" |
121 |
|
"\t\"shifted_potential\", \"shifted_force\", or \n" |
122 |
|
"\t\"reaction_field\".\n", myMethod.c_str() ); |
123 |
|
painCave.isFatal = 1; |
250 |
|
preRF2_ = 2.0 * preRF_; |
251 |
|
} |
252 |
|
|
253 |
< |
RealType dx = cutoffRadius_ / RealType(np_ - 1); |
253 |
> |
// Add a 2 angstrom safety window to deal with cutoffGroups that |
254 |
> |
// have charged atoms longer than the cutoffRadius away from each |
255 |
> |
// other. Splining may not be the best choice here. Direct calls |
256 |
> |
// to erfc might be preferrable. |
257 |
> |
|
258 |
> |
RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1); |
259 |
|
RealType rval; |
260 |
|
vector<RealType> rvals; |
261 |
|
vector<RealType> yvals; |
414 |
|
return; |
415 |
|
} |
416 |
|
|
417 |
< |
void Electrostatic::setElectrostaticCutoffRadius( RealType theECR, |
418 |
< |
RealType theRSW ) { |
412 |
< |
cutoffRadius_ = theECR; |
417 |
> |
void Electrostatic::setCutoffRadius( RealType rCut ) { |
418 |
> |
cutoffRadius_ = rCut; |
419 |
|
rrf_ = cutoffRadius_; |
414 |
– |
rt_ = theRSW; |
420 |
|
haveCutoffRadius_ = true; |
421 |
|
} |
422 |
+ |
|
423 |
+ |
void Electrostatic::setSwitchingRadius( RealType rSwitch ) { |
424 |
+ |
rt_ = rSwitch; |
425 |
+ |
} |
426 |
|
void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) { |
427 |
|
summationMethod_ = esm; |
428 |
|
} |
452 |
|
RealType ct_i, ct_j, ct_ij, a1; |
453 |
|
RealType riji, ri, ri2, ri3, ri4; |
454 |
|
RealType pref, vterm, epot, dudr; |
455 |
+ |
RealType vpair(0.0); |
456 |
|
RealType scale, sc2; |
457 |
|
RealType pot_term, preVal, rfVal; |
458 |
|
RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj; |
459 |
|
RealType preSw, preSwSc; |
460 |
|
RealType c1, c2, c3, c4; |
461 |
< |
RealType erfcVal, derfcVal; |
461 |
> |
RealType erfcVal(1.0), derfcVal(0.0); |
462 |
|
RealType BigR; |
463 |
|
|
464 |
|
Vector3d Q_i, Q_j; |
468 |
|
Vector3d dudux_j, duduy_j, duduz_j; |
469 |
|
Vector3d rhatdot2, rhatc4; |
470 |
|
Vector3d dVdr; |
471 |
+ |
|
472 |
+ |
// variables for indirect (reaction field) interactions for excluded pairs: |
473 |
+ |
RealType indirect_Pot(0.0); |
474 |
+ |
RealType indirect_vpair(0.0); |
475 |
+ |
Vector3d indirect_dVdr(V3Zero); |
476 |
+ |
Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero); |
477 |
|
|
478 |
|
pair<RealType, RealType> res; |
479 |
|
|
499 |
|
bool j_is_SplitDipole = data2.is_SplitDipole; |
500 |
|
bool j_is_Quadrupole = data2.is_Quadrupole; |
501 |
|
|
502 |
< |
if (i_is_Charge) |
502 |
> |
if (i_is_Charge) { |
503 |
|
q_i = data1.charge; |
504 |
+ |
if (idat.excluded) { |
505 |
+ |
*(idat.skippedCharge2) += q_i; |
506 |
+ |
} |
507 |
+ |
} |
508 |
|
|
509 |
|
if (i_is_Dipole) { |
510 |
|
mu_i = data1.dipole_moment; |
537 |
|
duduz_i = V3Zero; |
538 |
|
} |
539 |
|
|
540 |
< |
if (j_is_Charge) |
540 |
> |
if (j_is_Charge) { |
541 |
|
q_j = data2.charge; |
542 |
+ |
if (idat.excluded) { |
543 |
+ |
*(idat.skippedCharge1) += q_j; |
544 |
+ |
} |
545 |
+ |
} |
546 |
|
|
547 |
+ |
|
548 |
|
if (j_is_Dipole) { |
549 |
|
mu_j = data2.dipole_moment; |
550 |
|
uz_j = idat.eFrame2->getColumn(2); |
584 |
|
if (j_is_Charge) { |
585 |
|
if (screeningMethod_ == DAMPED) { |
586 |
|
// assemble the damping variables |
587 |
< |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
588 |
< |
erfcVal = res.first; |
589 |
< |
derfcVal = res.second; |
587 |
> |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
588 |
> |
//erfcVal = res.first; |
589 |
> |
//derfcVal = res.second; |
590 |
> |
|
591 |
> |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
592 |
> |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
593 |
> |
|
594 |
|
c1 = erfcVal * riji; |
595 |
|
c2 = (-derfcVal + c1) * riji; |
596 |
|
} else { |
609 |
|
dudr = *(idat.sw) * preVal * (c2c_ - c2); |
610 |
|
|
611 |
|
} else if (summationMethod_ == esm_REACTION_FIELD) { |
612 |
< |
rfVal = *(idat.electroMult) * preRF_ * *(idat.rij) * *(idat.rij) ; |
612 |
> |
rfVal = preRF_ * *(idat.rij) * *(idat.rij); |
613 |
> |
|
614 |
|
vterm = preVal * ( riji + rfVal ); |
615 |
|
dudr = *(idat.sw) * preVal * ( 2.0 * rfVal - riji ) * riji; |
616 |
+ |
|
617 |
+ |
// if this is an excluded pair, there are still indirect |
618 |
+ |
// interactions via the reaction field we must worry about: |
619 |
|
|
620 |
+ |
if (idat.excluded) { |
621 |
+ |
indirect_vpair += preVal * rfVal; |
622 |
+ |
indirect_Pot += *(idat.sw) * preVal * rfVal; |
623 |
+ |
indirect_dVdr += *(idat.sw) * preVal * 2.0 * rfVal * riji * rhat; |
624 |
+ |
} |
625 |
+ |
|
626 |
|
} else { |
588 |
– |
vterm = preVal * riji * erfcVal; |
627 |
|
|
628 |
+ |
vterm = preVal * riji * erfcVal; |
629 |
|
dudr = - *(idat.sw) * preVal * c2; |
630 |
|
|
631 |
|
} |
632 |
< |
|
633 |
< |
*(idat.vpair) += vterm; |
632 |
> |
|
633 |
> |
vpair += vterm; |
634 |
|
epot += *(idat.sw) * vterm; |
635 |
< |
|
597 |
< |
dVdr += dudr * rhat; |
635 |
> |
dVdr += dudr * rhat; |
636 |
|
} |
637 |
|
|
638 |
|
if (j_is_Dipole) { |
645 |
|
ri3 = ri2 * riji; |
646 |
|
|
647 |
|
vterm = - pref * ct_j * ( ri2 - preRF2_ * *(idat.rij) ); |
648 |
< |
*(idat.vpair) += vterm; |
648 |
> |
vpair += vterm; |
649 |
|
epot += *(idat.sw) * vterm; |
650 |
|
|
651 |
|
dVdr += -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j); |
652 |
|
duduz_j += -preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
653 |
|
|
654 |
+ |
// Even if we excluded this pair from direct interactions, |
655 |
+ |
// we still have the reaction-field-mediated charge-dipole |
656 |
+ |
// interaction: |
657 |
+ |
|
658 |
+ |
if (idat.excluded) { |
659 |
+ |
indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij); |
660 |
+ |
indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij); |
661 |
+ |
indirect_dVdr += preSw * preRF2_ * uz_j; |
662 |
+ |
indirect_duduz_j += preSw * rhat * preRF2_ * *(idat.rij); |
663 |
+ |
} |
664 |
+ |
|
665 |
|
} else { |
666 |
|
// determine the inverse r used if we have split dipoles |
667 |
|
if (j_is_SplitDipole) { |
677 |
|
|
678 |
|
if (screeningMethod_ == DAMPED) { |
679 |
|
// assemble the damping variables |
680 |
< |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
681 |
< |
erfcVal = res.first; |
682 |
< |
derfcVal = res.second; |
680 |
> |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
681 |
> |
//erfcVal = res.first; |
682 |
> |
//derfcVal = res.second; |
683 |
> |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
684 |
> |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
685 |
|
c1 = erfcVal * ri; |
686 |
|
c2 = (-derfcVal + c1) * ri; |
687 |
|
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
696 |
|
// calculate the potential |
697 |
|
pot_term = scale * c2; |
698 |
|
vterm = -pref * ct_j * pot_term; |
699 |
< |
*(idat.vpair) += vterm; |
699 |
> |
vpair += vterm; |
700 |
|
epot += *(idat.sw) * vterm; |
701 |
|
|
702 |
|
// calculate derivatives for forces and torques |
716 |
|
|
717 |
|
if (screeningMethod_ == DAMPED) { |
718 |
|
// assemble the damping variables |
719 |
< |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
720 |
< |
erfcVal = res.first; |
721 |
< |
derfcVal = res.second; |
719 |
> |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
720 |
> |
//erfcVal = res.first; |
721 |
> |
//derfcVal = res.second; |
722 |
> |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
723 |
> |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
724 |
|
c1 = erfcVal * riji; |
725 |
|
c2 = (-derfcVal + c1) * riji; |
726 |
|
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji; |
745 |
|
qyy_j * (cy2*c3 - c2ri) + |
746 |
|
qzz_j * (cz2*c3 - c2ri) ); |
747 |
|
vterm = pref * pot_term; |
748 |
< |
*(idat.vpair) += vterm; |
748 |
> |
vpair += vterm; |
749 |
|
epot += *(idat.sw) * vterm; |
750 |
|
|
751 |
|
// calculate derivatives for the forces and torques |
773 |
|
ri3 = ri2 * riji; |
774 |
|
|
775 |
|
vterm = pref * ct_i * ( ri2 - preRF2_ * *(idat.rij) ); |
776 |
< |
*(idat.vpair) += vterm; |
776 |
> |
vpair += vterm; |
777 |
|
epot += *(idat.sw) * vterm; |
778 |
|
|
779 |
|
dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i); |
780 |
|
|
781 |
|
duduz_i += preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
782 |
+ |
|
783 |
+ |
// Even if we excluded this pair from direct interactions, |
784 |
+ |
// we still have the reaction-field-mediated charge-dipole |
785 |
+ |
// interaction: |
786 |
+ |
|
787 |
+ |
if (idat.excluded) { |
788 |
+ |
indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij); |
789 |
+ |
indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij); |
790 |
+ |
indirect_dVdr += -preSw * preRF2_ * uz_i; |
791 |
+ |
indirect_duduz_i += -preSw * rhat * preRF2_ * *(idat.rij); |
792 |
+ |
} |
793 |
|
|
794 |
|
} else { |
795 |
|
|
807 |
|
|
808 |
|
if (screeningMethod_ == DAMPED) { |
809 |
|
// assemble the damping variables |
810 |
< |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
811 |
< |
erfcVal = res.first; |
812 |
< |
derfcVal = res.second; |
810 |
> |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
811 |
> |
//erfcVal = res.first; |
812 |
> |
//derfcVal = res.second; |
813 |
> |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
814 |
> |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
815 |
|
c1 = erfcVal * ri; |
816 |
|
c2 = (-derfcVal + c1) * ri; |
817 |
|
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
826 |
|
// calculate the potential |
827 |
|
pot_term = c2 * scale; |
828 |
|
vterm = pref * ct_i * pot_term; |
829 |
< |
*(idat.vpair) += vterm; |
829 |
> |
vpair += vterm; |
830 |
|
epot += *(idat.sw) * vterm; |
831 |
|
|
832 |
|
// calculate derivatives for the forces and torques |
849 |
|
|
850 |
|
vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) - |
851 |
|
preRF2_ * ct_ij ); |
852 |
< |
*(idat.vpair) += vterm; |
852 |
> |
vpair += vterm; |
853 |
|
epot += *(idat.sw) * vterm; |
854 |
|
|
855 |
|
a1 = 5.0 * ct_i * ct_j - ct_ij; |
859 |
|
duduz_i += preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j); |
860 |
|
duduz_j += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_*uz_i); |
861 |
|
|
862 |
+ |
if (idat.excluded) { |
863 |
+ |
indirect_vpair += - pref * preRF2_ * ct_ij; |
864 |
+ |
indirect_Pot += - preSw * preRF2_ * ct_ij; |
865 |
+ |
indirect_duduz_i += -preSw * preRF2_ * uz_j; |
866 |
+ |
indirect_duduz_j += -preSw * preRF2_ * uz_i; |
867 |
+ |
} |
868 |
+ |
|
869 |
|
} else { |
870 |
|
|
871 |
|
if (i_is_SplitDipole) { |
888 |
|
} |
889 |
|
if (screeningMethod_ == DAMPED) { |
890 |
|
// assemble damping variables |
891 |
< |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
892 |
< |
erfcVal = res.first; |
893 |
< |
derfcVal = res.second; |
891 |
> |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
892 |
> |
//erfcVal = res.first; |
893 |
> |
//derfcVal = res.second; |
894 |
> |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
895 |
> |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
896 |
|
c1 = erfcVal * ri; |
897 |
|
c2 = (-derfcVal + c1) * ri; |
898 |
|
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
917 |
|
// calculate the potential |
918 |
|
pot_term = (ct_ij * c2ri - ctidotj * c3); |
919 |
|
vterm = pref * pot_term; |
920 |
< |
*(idat.vpair) += vterm; |
920 |
> |
vpair += vterm; |
921 |
|
epot += *(idat.sw) * vterm; |
922 |
|
|
923 |
|
// calculate derivatives for the forces and torques |
941 |
|
|
942 |
|
if (screeningMethod_ == DAMPED) { |
943 |
|
// assemble the damping variables |
944 |
< |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
945 |
< |
erfcVal = res.first; |
946 |
< |
derfcVal = res.second; |
944 |
> |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
945 |
> |
//erfcVal = res.first; |
946 |
> |
//derfcVal = res.second; |
947 |
> |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
948 |
> |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
949 |
|
c1 = erfcVal * riji; |
950 |
|
c2 = (-derfcVal + c1) * riji; |
951 |
|
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji; |
971 |
|
qzz_i * (cz2 * c3 - c2ri) ); |
972 |
|
|
973 |
|
vterm = pref * pot_term; |
974 |
< |
*(idat.vpair) += vterm; |
974 |
> |
vpair += vterm; |
975 |
|
epot += *(idat.sw) * vterm; |
976 |
|
|
977 |
|
// calculate the derivatives for the forces and torques |
986 |
|
} |
987 |
|
} |
988 |
|
|
912 |
– |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += epot; |
913 |
– |
*(idat.f1) += dVdr; |
989 |
|
|
990 |
< |
if (i_is_Dipole || i_is_Quadrupole) |
991 |
< |
*(idat.t1) -= cross(uz_i, duduz_i); |
992 |
< |
if (i_is_Quadrupole) { |
993 |
< |
*(idat.t1) -= cross(ux_i, dudux_i); |
994 |
< |
*(idat.t1) -= cross(uy_i, duduy_i); |
995 |
< |
} |
996 |
< |
|
997 |
< |
if (j_is_Dipole || j_is_Quadrupole) |
998 |
< |
*(idat.t2) -= cross(uz_j, duduz_j); |
999 |
< |
if (j_is_Quadrupole) { |
1000 |
< |
*(idat.t2) -= cross(uz_j, dudux_j); |
1001 |
< |
*(idat.t2) -= cross(uz_j, duduy_j); |
1002 |
< |
} |
990 |
> |
if (!idat.excluded) { |
991 |
> |
*(idat.vpair) += vpair; |
992 |
> |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += epot; |
993 |
> |
*(idat.f1) += dVdr; |
994 |
> |
|
995 |
> |
if (i_is_Dipole || i_is_Quadrupole) |
996 |
> |
*(idat.t1) -= cross(uz_i, duduz_i); |
997 |
> |
if (i_is_Quadrupole) { |
998 |
> |
*(idat.t1) -= cross(ux_i, dudux_i); |
999 |
> |
*(idat.t1) -= cross(uy_i, duduy_i); |
1000 |
> |
} |
1001 |
> |
|
1002 |
> |
if (j_is_Dipole || j_is_Quadrupole) |
1003 |
> |
*(idat.t2) -= cross(uz_j, duduz_j); |
1004 |
> |
if (j_is_Quadrupole) { |
1005 |
> |
*(idat.t2) -= cross(uz_j, dudux_j); |
1006 |
> |
*(idat.t2) -= cross(uz_j, duduy_j); |
1007 |
> |
} |
1008 |
|
|
1009 |
< |
return; |
930 |
< |
} |
1009 |
> |
} else { |
1010 |
|
|
1011 |
< |
void Electrostatic::calcSkipCorrection(InteractionData &idat) { |
1011 |
> |
// only accumulate the forces and torques resulting from the |
1012 |
> |
// indirect reaction field terms. |
1013 |
|
|
1014 |
< |
if (!initialized_) initialize(); |
1015 |
< |
|
1016 |
< |
ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first]; |
937 |
< |
ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second]; |
938 |
< |
|
939 |
< |
// logicals |
940 |
< |
|
941 |
< |
bool i_is_Charge = data1.is_Charge; |
942 |
< |
bool i_is_Dipole = data1.is_Dipole; |
943 |
< |
|
944 |
< |
bool j_is_Charge = data2.is_Charge; |
945 |
< |
bool j_is_Dipole = data2.is_Dipole; |
946 |
< |
|
947 |
< |
RealType q_i, q_j; |
948 |
< |
|
949 |
< |
// The skippedCharge computation is needed by the real-space cutoff methods |
950 |
< |
// (i.e. shifted force and shifted potential) |
951 |
< |
|
952 |
< |
if (i_is_Charge) { |
953 |
< |
q_i = data1.charge; |
954 |
< |
*(idat.skippedCharge2) += q_i; |
955 |
< |
} |
956 |
< |
|
957 |
< |
if (j_is_Charge) { |
958 |
< |
q_j = data2.charge; |
959 |
< |
*(idat.skippedCharge1) += q_j; |
960 |
< |
} |
961 |
< |
|
962 |
< |
// the rest of this function should only be necessary for reaction field. |
963 |
< |
|
964 |
< |
if (summationMethod_ == esm_REACTION_FIELD) { |
965 |
< |
RealType riji, ri2, ri3; |
966 |
< |
RealType mu_i, ct_i; |
967 |
< |
RealType mu_j, ct_j; |
968 |
< |
RealType preVal, rfVal, vterm, dudr, pref, myPot(0.0); |
969 |
< |
Vector3d dVdr, uz_i, uz_j, duduz_i, duduz_j, rhat; |
970 |
< |
|
971 |
< |
// some variables we'll need independent of electrostatic type: |
1014 |
> |
*(idat.vpair) += indirect_vpair; |
1015 |
> |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot; |
1016 |
> |
*(idat.f1) += indirect_dVdr; |
1017 |
|
|
973 |
– |
riji = 1.0 / *(idat.rij) ; |
974 |
– |
rhat = *(idat.d) * riji; |
975 |
– |
|
976 |
– |
if (i_is_Dipole) { |
977 |
– |
mu_i = data1.dipole_moment; |
978 |
– |
uz_i = idat.eFrame1->getColumn(2); |
979 |
– |
ct_i = dot(uz_i, rhat); |
980 |
– |
duduz_i = V3Zero; |
981 |
– |
} |
982 |
– |
|
983 |
– |
if (j_is_Dipole) { |
984 |
– |
mu_j = data2.dipole_moment; |
985 |
– |
uz_j = idat.eFrame2->getColumn(2); |
986 |
– |
ct_j = dot(uz_j, rhat); |
987 |
– |
duduz_j = V3Zero; |
988 |
– |
} |
989 |
– |
|
990 |
– |
if (i_is_Charge) { |
991 |
– |
if (j_is_Charge) { |
992 |
– |
preVal = *(idat.electroMult) * pre11_ * q_i * q_j; |
993 |
– |
rfVal = preRF_ * *(idat.rij) * *(idat.rij) ; |
994 |
– |
vterm = preVal * rfVal; |
995 |
– |
myPot += *(idat.sw) * vterm; |
996 |
– |
dudr = *(idat.sw) * preVal * 2.0 * rfVal * riji; |
997 |
– |
dVdr += dudr * rhat; |
998 |
– |
} |
999 |
– |
|
1000 |
– |
if (j_is_Dipole) { |
1001 |
– |
ri2 = riji * riji; |
1002 |
– |
ri3 = ri2 * riji; |
1003 |
– |
pref = *(idat.electroMult) * pre12_ * q_i * mu_j; |
1004 |
– |
vterm = - pref * ct_j * ( ri2 - preRF2_ * *(idat.rij) ); |
1005 |
– |
myPot += *(idat.sw) * vterm; |
1006 |
– |
dVdr += - *(idat.sw) * pref * ( ri3 * ( uz_j - 3.0 * ct_j * rhat) - preRF2_ * uz_j); |
1007 |
– |
duduz_j += - *(idat.sw) * pref * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
1008 |
– |
} |
1009 |
– |
} |
1010 |
– |
if (i_is_Dipole) { |
1011 |
– |
if (j_is_Charge) { |
1012 |
– |
ri2 = riji * riji; |
1013 |
– |
ri3 = ri2 * riji; |
1014 |
– |
pref = *(idat.electroMult) * pre12_ * q_j * mu_i; |
1015 |
– |
vterm = - pref * ct_i * ( ri2 - preRF2_ * *(idat.rij) ); |
1016 |
– |
myPot += *(idat.sw) * vterm; |
1017 |
– |
dVdr += *(idat.sw) * pref * ( ri3 * ( uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i); |
1018 |
– |
duduz_i += *(idat.sw) * pref * rhat * (ri2 - preRF2_ * *(idat.rij)); |
1019 |
– |
} |
1020 |
– |
} |
1021 |
– |
|
1022 |
– |
// accumulate the forces and torques resulting from the self term |
1023 |
– |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += myPot; |
1024 |
– |
*(idat.f1) += dVdr; |
1025 |
– |
|
1018 |
|
if (i_is_Dipole) |
1019 |
< |
*(idat.t1) -= cross(uz_i, duduz_i); |
1019 |
> |
*(idat.t1) -= cross(uz_i, indirect_duduz_i); |
1020 |
|
if (j_is_Dipole) |
1021 |
< |
*(idat.t2) -= cross(uz_j, duduz_j); |
1021 |
> |
*(idat.t2) -= cross(uz_j, indirect_duduz_j); |
1022 |
|
} |
1023 |
< |
} |
1023 |
> |
|
1024 |
> |
|
1025 |
> |
return; |
1026 |
> |
} |
1027 |
|
|
1028 |
|
void Electrostatic::calcSelfCorrection(SelfData &sdat) { |
1029 |
|
RealType mu1, preVal, chg1, self; |
1030 |
|
|
1031 |
|
if (!initialized_) initialize(); |
1032 |
< |
|
1032 |
> |
|
1033 |
|
ElectrostaticAtomData data = ElectrostaticMap[sdat.atype]; |
1034 |
|
|
1035 |
|
// logicals |
1041 |
– |
|
1036 |
|
bool i_is_Charge = data.is_Charge; |
1037 |
|
bool i_is_Dipole = data.is_Dipole; |
1038 |
|
|
1040 |
|
if (i_is_Dipole) { |
1041 |
|
mu1 = data.dipole_moment; |
1042 |
|
preVal = pre22_ * preRF2_ * mu1 * mu1; |
1043 |
< |
sdat.pot[2] -= 0.5 * preVal; |
1043 |
> |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal; |
1044 |
|
|
1045 |
|
// The self-correction term adds into the reaction field vector |
1046 |
|
Vector3d uz_i = sdat.eFrame->getColumn(2); |
1057 |
|
} else { |
1058 |
|
self = - 0.5 * rcuti_ * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_; |
1059 |
|
} |
1060 |
< |
sdat.pot[ELECTROSTATIC_FAMILY] += self; |
1060 |
> |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] += self; |
1061 |
|
} |
1062 |
|
} |
1063 |
|
} |