34 |
|
* work. Good starting points are: |
35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
< |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
37 |
> |
* [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
|
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
52 |
|
namespace OpenMD { |
53 |
|
|
54 |
|
Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false), |
55 |
< |
forceField_(NULL) {} |
55 |
> |
forceField_(NULL), info_(NULL), |
56 |
> |
haveCutoffRadius_(false), |
57 |
> |
haveDampingAlpha_(false), |
58 |
> |
haveDielectric_(false), |
59 |
> |
haveElectroSpline_(false) |
60 |
> |
{} |
61 |
|
|
62 |
|
void Electrostatic::initialize() { |
63 |
+ |
|
64 |
+ |
Globals* simParams_ = info_->getSimParams(); |
65 |
|
|
59 |
– |
Globals* simParams_; |
60 |
– |
|
66 |
|
summationMap_["HARD"] = esm_HARD; |
67 |
|
summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION; |
68 |
|
summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL; |
102 |
|
screeningMethod_ = UNDAMPED; |
103 |
|
dielectric_ = 1.0; |
104 |
|
one_third_ = 1.0 / 3.0; |
100 |
– |
haveCutoffRadius_ = false; |
101 |
– |
haveDampingAlpha_ = false; |
102 |
– |
haveDielectric_ = false; |
103 |
– |
haveElectroSpline_ = false; |
105 |
|
|
106 |
|
// check the summation method: |
107 |
|
if (simParams_->haveElectrostaticSummationMethod()) { |
114 |
|
} else { |
115 |
|
// throw error |
116 |
|
sprintf( painCave.errMsg, |
117 |
< |
"SimInfo error: Unknown electrostaticSummationMethod.\n" |
117 |
> |
"Electrostatic::initialize: Unknown electrostaticSummationMethod.\n" |
118 |
|
"\t(Input file specified %s .)\n" |
119 |
|
"\telectrostaticSummationMethod must be one of: \"none\",\n" |
120 |
|
"\t\"shifted_potential\", \"shifted_force\", or \n" |
249 |
|
preRF2_ = 2.0 * preRF_; |
250 |
|
} |
251 |
|
|
252 |
< |
RealType dx = cutoffRadius_ / RealType(np_ - 1); |
252 |
> |
// Add a 2 angstrom safety window to deal with cutoffGroups that |
253 |
> |
// have charged atoms longer than the cutoffRadius away from each |
254 |
> |
// other. Splining may not be the best choice here. Direct calls |
255 |
> |
// to erfc might be preferrable. |
256 |
> |
|
257 |
> |
RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1); |
258 |
|
RealType rval; |
259 |
|
vector<RealType> rvals; |
260 |
|
vector<RealType> yvals; |
413 |
|
return; |
414 |
|
} |
415 |
|
|
416 |
< |
void Electrostatic::setElectrostaticCutoffRadius( RealType theECR, |
417 |
< |
RealType theRSW ) { |
412 |
< |
cutoffRadius_ = theECR; |
416 |
> |
void Electrostatic::setCutoffRadius( RealType rCut ) { |
417 |
> |
cutoffRadius_ = rCut; |
418 |
|
rrf_ = cutoffRadius_; |
414 |
– |
rt_ = theRSW; |
419 |
|
haveCutoffRadius_ = true; |
420 |
+ |
} |
421 |
+ |
|
422 |
+ |
void Electrostatic::setSwitchingRadius( RealType rSwitch ) { |
423 |
+ |
rt_ = rSwitch; |
424 |
|
} |
425 |
|
void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) { |
426 |
|
summationMethod_ = esm; |
437 |
|
haveDielectric_ = true; |
438 |
|
} |
439 |
|
|
440 |
< |
void Electrostatic::calcForce(InteractionData idat) { |
440 |
> |
void Electrostatic::calcForce(InteractionData &idat) { |
441 |
|
|
442 |
|
// utility variables. Should clean these up and use the Vector3d and |
443 |
|
// Mat3x3d to replace as many as we can in future versions: |
451 |
|
RealType ct_i, ct_j, ct_ij, a1; |
452 |
|
RealType riji, ri, ri2, ri3, ri4; |
453 |
|
RealType pref, vterm, epot, dudr; |
454 |
+ |
RealType vpair(0.0); |
455 |
|
RealType scale, sc2; |
456 |
|
RealType pot_term, preVal, rfVal; |
457 |
|
RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj; |
458 |
|
RealType preSw, preSwSc; |
459 |
|
RealType c1, c2, c3, c4; |
460 |
< |
RealType erfcVal, derfcVal; |
460 |
> |
RealType erfcVal(1.0), derfcVal(0.0); |
461 |
|
RealType BigR; |
462 |
|
|
463 |
|
Vector3d Q_i, Q_j; |
468 |
|
Vector3d rhatdot2, rhatc4; |
469 |
|
Vector3d dVdr; |
470 |
|
|
471 |
+ |
// variables for indirect (reaction field) interactions for excluded pairs: |
472 |
+ |
RealType indirect_Pot(0.0); |
473 |
+ |
RealType indirect_vpair(0.0); |
474 |
+ |
Vector3d indirect_dVdr(V3Zero); |
475 |
+ |
Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero); |
476 |
+ |
|
477 |
|
pair<RealType, RealType> res; |
478 |
|
|
479 |
|
if (!initialized_) initialize(); |
480 |
|
|
481 |
< |
ElectrostaticAtomData data1 = ElectrostaticMap[idat.atype1]; |
482 |
< |
ElectrostaticAtomData data2 = ElectrostaticMap[idat.atype2]; |
481 |
> |
ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first]; |
482 |
> |
ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second]; |
483 |
|
|
484 |
|
// some variables we'll need independent of electrostatic type: |
485 |
|
|
486 |
< |
riji = 1.0 / idat.rij; |
487 |
< |
Vector3d rhat = idat.d * riji; |
486 |
> |
riji = 1.0 / *(idat.rij) ; |
487 |
> |
Vector3d rhat = *(idat.d) * riji; |
488 |
|
|
489 |
|
// logicals |
490 |
|
|
498 |
|
bool j_is_SplitDipole = data2.is_SplitDipole; |
499 |
|
bool j_is_Quadrupole = data2.is_Quadrupole; |
500 |
|
|
501 |
< |
if (i_is_Charge) |
501 |
> |
if (i_is_Charge) { |
502 |
|
q_i = data1.charge; |
503 |
+ |
if (idat.excluded) { |
504 |
+ |
*(idat.skippedCharge2) += q_i; |
505 |
+ |
} |
506 |
+ |
} |
507 |
|
|
508 |
|
if (i_is_Dipole) { |
509 |
|
mu_i = data1.dipole_moment; |
510 |
< |
uz_i = idat.eFrame1.getColumn(2); |
510 |
> |
uz_i = idat.eFrame1->getColumn(2); |
511 |
|
|
512 |
|
ct_i = dot(uz_i, rhat); |
513 |
|
|
523 |
|
qyy_i = Q_i.y(); |
524 |
|
qzz_i = Q_i.z(); |
525 |
|
|
526 |
< |
ux_i = idat.eFrame1.getColumn(0); |
527 |
< |
uy_i = idat.eFrame1.getColumn(1); |
528 |
< |
uz_i = idat.eFrame1.getColumn(2); |
526 |
> |
ux_i = idat.eFrame1->getColumn(0); |
527 |
> |
uy_i = idat.eFrame1->getColumn(1); |
528 |
> |
uz_i = idat.eFrame1->getColumn(2); |
529 |
|
|
530 |
|
cx_i = dot(ux_i, rhat); |
531 |
|
cy_i = dot(uy_i, rhat); |
536 |
|
duduz_i = V3Zero; |
537 |
|
} |
538 |
|
|
539 |
< |
if (j_is_Charge) |
539 |
> |
if (j_is_Charge) { |
540 |
|
q_j = data2.charge; |
541 |
+ |
if (idat.excluded) { |
542 |
+ |
*(idat.skippedCharge1) += q_j; |
543 |
+ |
} |
544 |
+ |
} |
545 |
|
|
546 |
+ |
|
547 |
|
if (j_is_Dipole) { |
548 |
|
mu_j = data2.dipole_moment; |
549 |
< |
uz_j = idat.eFrame2.getColumn(2); |
549 |
> |
uz_j = idat.eFrame2->getColumn(2); |
550 |
|
|
551 |
|
ct_j = dot(uz_j, rhat); |
552 |
|
|
562 |
|
qyy_j = Q_j.y(); |
563 |
|
qzz_j = Q_j.z(); |
564 |
|
|
565 |
< |
ux_j = idat.eFrame2.getColumn(0); |
566 |
< |
uy_j = idat.eFrame2.getColumn(1); |
567 |
< |
uz_j = idat.eFrame2.getColumn(2); |
565 |
> |
ux_j = idat.eFrame2->getColumn(0); |
566 |
> |
uy_j = idat.eFrame2->getColumn(1); |
567 |
> |
uz_j = idat.eFrame2->getColumn(2); |
568 |
|
|
569 |
|
cx_j = dot(ux_j, rhat); |
570 |
|
cy_j = dot(uy_j, rhat); |
583 |
|
if (j_is_Charge) { |
584 |
|
if (screeningMethod_ == DAMPED) { |
585 |
|
// assemble the damping variables |
586 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
586 |
> |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
587 |
|
erfcVal = res.first; |
588 |
|
derfcVal = res.second; |
589 |
|
c1 = erfcVal * riji; |
593 |
|
c2 = c1 * riji; |
594 |
|
} |
595 |
|
|
596 |
< |
preVal = idat.electroMult * pre11_ * q_i * q_j; |
596 |
> |
preVal = *(idat.electroMult) * pre11_ * q_i * q_j; |
597 |
|
|
598 |
|
if (summationMethod_ == esm_SHIFTED_POTENTIAL) { |
599 |
|
vterm = preVal * (c1 - c1c_); |
600 |
< |
dudr = -idat.sw * preVal * c2; |
600 |
> |
dudr = - *(idat.sw) * preVal * c2; |
601 |
|
|
602 |
|
} else if (summationMethod_ == esm_SHIFTED_FORCE) { |
603 |
< |
vterm = preVal * ( c1 - c1c_ + c2c_*(idat.rij - cutoffRadius_) ); |
604 |
< |
dudr = idat.sw * preVal * (c2c_ - c2); |
603 |
> |
vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij) - cutoffRadius_) ); |
604 |
> |
dudr = *(idat.sw) * preVal * (c2c_ - c2); |
605 |
|
|
606 |
|
} else if (summationMethod_ == esm_REACTION_FIELD) { |
607 |
< |
rfVal = idat.electroMult * preRF_ * idat.rij * idat.rij; |
607 |
> |
rfVal = preRF_ * *(idat.rij) * *(idat.rij); |
608 |
> |
|
609 |
|
vterm = preVal * ( riji + rfVal ); |
610 |
< |
dudr = idat.sw * preVal * ( 2.0 * rfVal - riji ) * riji; |
610 |
> |
dudr = *(idat.sw) * preVal * ( 2.0 * rfVal - riji ) * riji; |
611 |
> |
|
612 |
> |
// if this is an excluded pair, there are still indirect |
613 |
> |
// interactions via the reaction field we must worry about: |
614 |
|
|
615 |
+ |
if (idat.excluded) { |
616 |
+ |
indirect_vpair += preVal * rfVal; |
617 |
+ |
indirect_Pot += *(idat.sw) * preVal * rfVal; |
618 |
+ |
indirect_dVdr += *(idat.sw) * preVal * 2.0 * rfVal * riji * rhat; |
619 |
+ |
} |
620 |
+ |
|
621 |
|
} else { |
588 |
– |
vterm = preVal * riji * erfcVal; |
622 |
|
|
623 |
< |
dudr = - idat.sw * preVal * c2; |
623 |
> |
vterm = preVal * riji * erfcVal; |
624 |
> |
dudr = - *(idat.sw) * preVal * c2; |
625 |
|
|
626 |
|
} |
593 |
– |
|
594 |
– |
idat.vpair += vterm; |
595 |
– |
epot += idat.sw * vterm; |
627 |
|
|
628 |
< |
dVdr += dudr * rhat; |
628 |
> |
vpair += vterm; |
629 |
> |
epot += *(idat.sw) * vterm; |
630 |
> |
dVdr += dudr * rhat; |
631 |
|
} |
632 |
|
|
633 |
|
if (j_is_Dipole) { |
634 |
|
// pref is used by all the possible methods |
635 |
< |
pref = idat.electroMult * pre12_ * q_i * mu_j; |
636 |
< |
preSw = idat.sw * pref; |
635 |
> |
pref = *(idat.electroMult) * pre12_ * q_i * mu_j; |
636 |
> |
preSw = *(idat.sw) * pref; |
637 |
|
|
638 |
|
if (summationMethod_ == esm_REACTION_FIELD) { |
639 |
|
ri2 = riji * riji; |
640 |
|
ri3 = ri2 * riji; |
641 |
|
|
642 |
< |
vterm = - pref * ct_j * ( ri2 - preRF2_ * idat.rij ); |
643 |
< |
idat.vpair += vterm; |
644 |
< |
epot += idat.sw * vterm; |
642 |
> |
vterm = - pref * ct_j * ( ri2 - preRF2_ * *(idat.rij) ); |
643 |
> |
vpair += vterm; |
644 |
> |
epot += *(idat.sw) * vterm; |
645 |
|
|
646 |
|
dVdr += -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j); |
647 |
< |
duduz_j += -preSw * rhat * (ri2 - preRF2_ * idat.rij); |
647 |
> |
duduz_j += -preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
648 |
|
|
649 |
+ |
// Even if we excluded this pair from direct interactions, |
650 |
+ |
// we still have the reaction-field-mediated charge-dipole |
651 |
+ |
// interaction: |
652 |
+ |
|
653 |
+ |
if (idat.excluded) { |
654 |
+ |
indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij); |
655 |
+ |
indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij); |
656 |
+ |
indirect_dVdr += preSw * preRF2_ * uz_j; |
657 |
+ |
indirect_duduz_j += preSw * rhat * preRF2_ * *(idat.rij); |
658 |
+ |
} |
659 |
+ |
|
660 |
|
} else { |
661 |
|
// determine the inverse r used if we have split dipoles |
662 |
|
if (j_is_SplitDipole) { |
663 |
< |
BigR = sqrt(idat.r2 + 0.25 * d_j * d_j); |
663 |
> |
BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j); |
664 |
|
ri = 1.0 / BigR; |
665 |
< |
scale = idat.rij * ri; |
665 |
> |
scale = *(idat.rij) * ri; |
666 |
|
} else { |
667 |
|
ri = riji; |
668 |
|
scale = 1.0; |
672 |
|
|
673 |
|
if (screeningMethod_ == DAMPED) { |
674 |
|
// assemble the damping variables |
675 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
675 |
> |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
676 |
|
erfcVal = res.first; |
677 |
|
derfcVal = res.second; |
678 |
|
c1 = erfcVal * ri; |
689 |
|
// calculate the potential |
690 |
|
pot_term = scale * c2; |
691 |
|
vterm = -pref * ct_j * pot_term; |
692 |
< |
idat.vpair += vterm; |
693 |
< |
epot += idat.sw * vterm; |
692 |
> |
vpair += vterm; |
693 |
> |
epot += *(idat.sw) * vterm; |
694 |
|
|
695 |
|
// calculate derivatives for forces and torques |
696 |
|
|
705 |
|
cx2 = cx_j * cx_j; |
706 |
|
cy2 = cy_j * cy_j; |
707 |
|
cz2 = cz_j * cz_j; |
708 |
< |
pref = idat.electroMult * pre14_ * q_i * one_third_; |
708 |
> |
pref = *(idat.electroMult) * pre14_ * q_i * one_third_; |
709 |
|
|
710 |
|
if (screeningMethod_ == DAMPED) { |
711 |
|
// assemble the damping variables |
712 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
712 |
> |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
713 |
|
erfcVal = res.first; |
714 |
|
derfcVal = res.second; |
715 |
|
c1 = erfcVal * riji; |
724 |
|
} |
725 |
|
|
726 |
|
// precompute variables for convenience |
727 |
< |
preSw = idat.sw * pref; |
727 |
> |
preSw = *(idat.sw) * pref; |
728 |
|
c2ri = c2 * riji; |
729 |
|
c3ri = c3 * riji; |
730 |
< |
c4rij = c4 * idat.rij; |
730 |
> |
c4rij = c4 * *(idat.rij) ; |
731 |
|
rhatdot2 = 2.0 * rhat * c3; |
732 |
|
rhatc4 = rhat * c4rij; |
733 |
|
|
736 |
|
qyy_j * (cy2*c3 - c2ri) + |
737 |
|
qzz_j * (cz2*c3 - c2ri) ); |
738 |
|
vterm = pref * pot_term; |
739 |
< |
idat.vpair += vterm; |
740 |
< |
epot += idat.sw * vterm; |
739 |
> |
vpair += vterm; |
740 |
> |
epot += *(idat.sw) * vterm; |
741 |
|
|
742 |
|
// calculate derivatives for the forces and torques |
743 |
|
|
755 |
|
|
756 |
|
if (j_is_Charge) { |
757 |
|
// variables used by all the methods |
758 |
< |
pref = idat.electroMult * pre12_ * q_j * mu_i; |
759 |
< |
preSw = idat.sw * pref; |
758 |
> |
pref = *(idat.electroMult) * pre12_ * q_j * mu_i; |
759 |
> |
preSw = *(idat.sw) * pref; |
760 |
|
|
761 |
|
if (summationMethod_ == esm_REACTION_FIELD) { |
762 |
|
|
763 |
|
ri2 = riji * riji; |
764 |
|
ri3 = ri2 * riji; |
765 |
|
|
766 |
< |
vterm = pref * ct_i * ( ri2 - preRF2_ * idat.rij ); |
767 |
< |
idat.vpair += vterm; |
768 |
< |
epot += idat.sw * vterm; |
766 |
> |
vterm = pref * ct_i * ( ri2 - preRF2_ * *(idat.rij) ); |
767 |
> |
vpair += vterm; |
768 |
> |
epot += *(idat.sw) * vterm; |
769 |
|
|
770 |
|
dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i); |
771 |
|
|
772 |
< |
duduz_i += preSw * rhat * (ri2 - preRF2_ * idat.rij); |
772 |
> |
duduz_i += preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
773 |
> |
|
774 |
> |
// Even if we excluded this pair from direct interactions, |
775 |
> |
// we still have the reaction-field-mediated charge-dipole |
776 |
> |
// interaction: |
777 |
> |
|
778 |
> |
if (idat.excluded) { |
779 |
> |
indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij); |
780 |
> |
indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij); |
781 |
> |
indirect_dVdr += -preSw * preRF2_ * uz_i; |
782 |
> |
indirect_duduz_i += -preSw * rhat * preRF2_ * *(idat.rij); |
783 |
> |
} |
784 |
|
|
785 |
|
} else { |
786 |
|
|
787 |
|
// determine inverse r if we are using split dipoles |
788 |
|
if (i_is_SplitDipole) { |
789 |
< |
BigR = sqrt(idat.r2 + 0.25 * d_i * d_i); |
789 |
> |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i); |
790 |
|
ri = 1.0 / BigR; |
791 |
< |
scale = idat.rij * ri; |
791 |
> |
scale = *(idat.rij) * ri; |
792 |
|
} else { |
793 |
|
ri = riji; |
794 |
|
scale = 1.0; |
798 |
|
|
799 |
|
if (screeningMethod_ == DAMPED) { |
800 |
|
// assemble the damping variables |
801 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
801 |
> |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
802 |
|
erfcVal = res.first; |
803 |
|
derfcVal = res.second; |
804 |
|
c1 = erfcVal * ri; |
815 |
|
// calculate the potential |
816 |
|
pot_term = c2 * scale; |
817 |
|
vterm = pref * ct_i * pot_term; |
818 |
< |
idat.vpair += vterm; |
819 |
< |
epot += idat.sw * vterm; |
818 |
> |
vpair += vterm; |
819 |
> |
epot += *(idat.sw) * vterm; |
820 |
|
|
821 |
|
// calculate derivatives for the forces and torques |
822 |
|
dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3); |
828 |
|
// variables used by all methods |
829 |
|
ct_ij = dot(uz_i, uz_j); |
830 |
|
|
831 |
< |
pref = idat.electroMult * pre22_ * mu_i * mu_j; |
832 |
< |
preSw = idat.sw * pref; |
831 |
> |
pref = *(idat.electroMult) * pre22_ * mu_i * mu_j; |
832 |
> |
preSw = *(idat.sw) * pref; |
833 |
|
|
834 |
|
if (summationMethod_ == esm_REACTION_FIELD) { |
835 |
|
ri2 = riji * riji; |
838 |
|
|
839 |
|
vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) - |
840 |
|
preRF2_ * ct_ij ); |
841 |
< |
idat.vpair += vterm; |
842 |
< |
epot += idat.sw * vterm; |
841 |
> |
vpair += vterm; |
842 |
> |
epot += *(idat.sw) * vterm; |
843 |
|
|
844 |
|
a1 = 5.0 * ct_i * ct_j - ct_ij; |
845 |
|
|
847 |
|
|
848 |
|
duduz_i += preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j); |
849 |
|
duduz_j += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_*uz_i); |
850 |
+ |
|
851 |
+ |
if (idat.excluded) { |
852 |
+ |
indirect_vpair += - pref * preRF2_ * ct_ij; |
853 |
+ |
indirect_Pot += - preSw * preRF2_ * ct_ij; |
854 |
+ |
indirect_duduz_i += -preSw * preRF2_ * uz_j; |
855 |
+ |
indirect_duduz_j += -preSw * preRF2_ * uz_i; |
856 |
+ |
} |
857 |
|
|
858 |
|
} else { |
859 |
|
|
860 |
|
if (i_is_SplitDipole) { |
861 |
|
if (j_is_SplitDipole) { |
862 |
< |
BigR = sqrt(idat.r2 + 0.25 * d_i * d_i + 0.25 * d_j * d_j); |
862 |
> |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j); |
863 |
|
} else { |
864 |
< |
BigR = sqrt(idat.r2 + 0.25 * d_i * d_i); |
864 |
> |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i); |
865 |
|
} |
866 |
|
ri = 1.0 / BigR; |
867 |
< |
scale = idat.rij * ri; |
867 |
> |
scale = *(idat.rij) * ri; |
868 |
|
} else { |
869 |
|
if (j_is_SplitDipole) { |
870 |
< |
BigR = sqrt(idat.r2 + 0.25 * d_j * d_j); |
870 |
> |
BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j); |
871 |
|
ri = 1.0 / BigR; |
872 |
< |
scale = idat.rij * ri; |
872 |
> |
scale = *(idat.rij) * ri; |
873 |
|
} else { |
874 |
|
ri = riji; |
875 |
|
scale = 1.0; |
877 |
|
} |
878 |
|
if (screeningMethod_ == DAMPED) { |
879 |
|
// assemble damping variables |
880 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
880 |
> |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
881 |
|
erfcVal = res.first; |
882 |
|
derfcVal = res.second; |
883 |
|
c1 = erfcVal * ri; |
899 |
|
preSwSc = preSw * scale; |
900 |
|
c2ri = c2 * ri; |
901 |
|
c3ri = c3 * ri; |
902 |
< |
c4rij = c4 * idat.rij; |
902 |
> |
c4rij = c4 * *(idat.rij) ; |
903 |
|
|
904 |
|
// calculate the potential |
905 |
|
pot_term = (ct_ij * c2ri - ctidotj * c3); |
906 |
|
vterm = pref * pot_term; |
907 |
< |
idat.vpair += vterm; |
908 |
< |
epot += idat.sw * vterm; |
907 |
> |
vpair += vterm; |
908 |
> |
epot += *(idat.sw) * vterm; |
909 |
|
|
910 |
|
// calculate derivatives for the forces and torques |
911 |
|
dVdr += preSwSc * ( ctidotj * rhat * c4rij - |
924 |
|
cy2 = cy_i * cy_i; |
925 |
|
cz2 = cz_i * cz_i; |
926 |
|
|
927 |
< |
pref = idat.electroMult * pre14_ * q_j * one_third_; |
927 |
> |
pref = *(idat.electroMult) * pre14_ * q_j * one_third_; |
928 |
|
|
929 |
|
if (screeningMethod_ == DAMPED) { |
930 |
|
// assemble the damping variables |
931 |
< |
res = erfcSpline_->getValueAndDerivativeAt(idat.rij); |
931 |
> |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
932 |
|
erfcVal = res.first; |
933 |
|
derfcVal = res.second; |
934 |
|
c1 = erfcVal * riji; |
943 |
|
} |
944 |
|
|
945 |
|
// precompute some variables for convenience |
946 |
< |
preSw = idat.sw * pref; |
946 |
> |
preSw = *(idat.sw) * pref; |
947 |
|
c2ri = c2 * riji; |
948 |
|
c3ri = c3 * riji; |
949 |
< |
c4rij = c4 * idat.rij; |
949 |
> |
c4rij = c4 * *(idat.rij) ; |
950 |
|
rhatdot2 = 2.0 * rhat * c3; |
951 |
|
rhatc4 = rhat * c4rij; |
952 |
|
|
956 |
|
qzz_i * (cz2 * c3 - c2ri) ); |
957 |
|
|
958 |
|
vterm = pref * pot_term; |
959 |
< |
idat.vpair += vterm; |
960 |
< |
epot += idat.sw * vterm; |
959 |
> |
vpair += vterm; |
960 |
> |
epot += *(idat.sw) * vterm; |
961 |
|
|
962 |
|
// calculate the derivatives for the forces and torques |
963 |
|
|
971 |
|
} |
972 |
|
} |
973 |
|
|
912 |
– |
idat.pot += epot; |
913 |
– |
idat.f1 += dVdr; |
974 |
|
|
975 |
< |
if (i_is_Dipole || i_is_Quadrupole) |
976 |
< |
idat.t1 -= cross(uz_i, duduz_i); |
977 |
< |
if (i_is_Quadrupole) { |
978 |
< |
idat.t1 -= cross(ux_i, dudux_i); |
919 |
< |
idat.t1 -= cross(uy_i, duduy_i); |
920 |
< |
} |
921 |
< |
|
922 |
< |
if (j_is_Dipole || j_is_Quadrupole) |
923 |
< |
idat.t2 -= cross(uz_j, duduz_j); |
924 |
< |
if (j_is_Quadrupole) { |
925 |
< |
idat.t2 -= cross(uz_j, dudux_j); |
926 |
< |
idat.t2 -= cross(uz_j, duduy_j); |
927 |
< |
} |
928 |
< |
|
929 |
< |
return; |
930 |
< |
} |
931 |
< |
|
932 |
< |
void Electrostatic::calcSkipCorrection(SkipCorrectionData skdat) { |
933 |
< |
|
934 |
< |
if (!initialized_) initialize(); |
935 |
< |
|
936 |
< |
ElectrostaticAtomData data1 = ElectrostaticMap[skdat.atype1]; |
937 |
< |
ElectrostaticAtomData data2 = ElectrostaticMap[skdat.atype2]; |
938 |
< |
|
939 |
< |
// logicals |
940 |
< |
|
941 |
< |
bool i_is_Charge = data1.is_Charge; |
942 |
< |
bool i_is_Dipole = data1.is_Dipole; |
943 |
< |
|
944 |
< |
bool j_is_Charge = data2.is_Charge; |
945 |
< |
bool j_is_Dipole = data2.is_Dipole; |
946 |
< |
|
947 |
< |
RealType q_i, q_j; |
948 |
< |
|
949 |
< |
// The skippedCharge computation is needed by the real-space cutoff methods |
950 |
< |
// (i.e. shifted force and shifted potential) |
951 |
< |
|
952 |
< |
if (i_is_Charge) { |
953 |
< |
q_i = data1.charge; |
954 |
< |
skdat.skippedCharge2 += q_i; |
955 |
< |
} |
956 |
< |
|
957 |
< |
if (j_is_Charge) { |
958 |
< |
q_j = data2.charge; |
959 |
< |
skdat.skippedCharge1 += q_j; |
960 |
< |
} |
961 |
< |
|
962 |
< |
// the rest of this function should only be necessary for reaction field. |
963 |
< |
|
964 |
< |
if (summationMethod_ == esm_REACTION_FIELD) { |
965 |
< |
RealType riji, ri2, ri3; |
966 |
< |
RealType q_i, mu_i, ct_i; |
967 |
< |
RealType q_j, mu_j, ct_j; |
968 |
< |
RealType preVal, rfVal, vterm, dudr, pref, myPot; |
969 |
< |
Vector3d dVdr, uz_i, uz_j, duduz_i, duduz_j, rhat; |
970 |
< |
|
971 |
< |
// some variables we'll need independent of electrostatic type: |
975 |
> |
if (!idat.excluded) { |
976 |
> |
*(idat.vpair) += vpair; |
977 |
> |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += epot; |
978 |
> |
*(idat.f1) += dVdr; |
979 |
|
|
980 |
< |
riji = 1.0 / skdat.rij; |
981 |
< |
rhat = skdat.d * riji; |
982 |
< |
|
983 |
< |
if (i_is_Dipole) { |
984 |
< |
mu_i = data1.dipole_moment; |
978 |
< |
uz_i = skdat.eFrame1.getColumn(2); |
979 |
< |
ct_i = dot(uz_i, rhat); |
980 |
< |
duduz_i = V3Zero; |
980 |
> |
if (i_is_Dipole || i_is_Quadrupole) |
981 |
> |
*(idat.t1) -= cross(uz_i, duduz_i); |
982 |
> |
if (i_is_Quadrupole) { |
983 |
> |
*(idat.t1) -= cross(ux_i, dudux_i); |
984 |
> |
*(idat.t1) -= cross(uy_i, duduy_i); |
985 |
|
} |
986 |
< |
|
987 |
< |
if (j_is_Dipole) { |
988 |
< |
mu_j = data2.dipole_moment; |
989 |
< |
uz_j = skdat.eFrame2.getColumn(2); |
990 |
< |
ct_j = dot(uz_j, rhat); |
991 |
< |
duduz_j = V3Zero; |
986 |
> |
|
987 |
> |
if (j_is_Dipole || j_is_Quadrupole) |
988 |
> |
*(idat.t2) -= cross(uz_j, duduz_j); |
989 |
> |
if (j_is_Quadrupole) { |
990 |
> |
*(idat.t2) -= cross(uz_j, dudux_j); |
991 |
> |
*(idat.t2) -= cross(uz_j, duduy_j); |
992 |
|
} |
993 |
< |
|
994 |
< |
if (i_is_Charge) { |
995 |
< |
if (j_is_Charge) { |
996 |
< |
preVal = skdat.electroMult * pre11_ * q_i * q_j; |
997 |
< |
rfVal = preRF_ * skdat.rij * skdat.rij; |
998 |
< |
vterm = preVal * rfVal; |
999 |
< |
myPot += skdat.sw * vterm; |
1000 |
< |
dudr = skdat.sw * preVal * 2.0 * rfVal * riji; |
997 |
< |
dVdr += dudr * rhat; |
998 |
< |
} |
999 |
< |
|
1000 |
< |
if (j_is_Dipole) { |
1001 |
< |
ri2 = riji * riji; |
1002 |
< |
ri3 = ri2 * riji; |
1003 |
< |
pref = skdat.electroMult * pre12_ * q_i * mu_j; |
1004 |
< |
vterm = - pref * ct_j * ( ri2 - preRF2_ * skdat.rij ); |
1005 |
< |
myPot += skdat.sw * vterm; |
1006 |
< |
dVdr += -skdat.sw * pref * ( ri3 * ( uz_j - 3.0 * ct_j * rhat) - preRF2_ * uz_j); |
1007 |
< |
duduz_j += -skdat.sw * pref * rhat * (ri2 - preRF2_ * skdat.rij); |
1008 |
< |
} |
1009 |
< |
} |
1010 |
< |
if (i_is_Dipole) { |
1011 |
< |
if (j_is_Charge) { |
1012 |
< |
ri2 = riji * riji; |
1013 |
< |
ri3 = ri2 * riji; |
1014 |
< |
pref = skdat.electroMult * pre12_ * q_j * mu_i; |
1015 |
< |
vterm = - pref * ct_i * ( ri2 - preRF2_ * skdat.rij ); |
1016 |
< |
myPot += skdat.sw * vterm; |
1017 |
< |
dVdr += skdat.sw * pref * ( ri3 * ( uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i); |
1018 |
< |
duduz_i += skdat.sw * pref * rhat * (ri2 - preRF2_ * skdat.rij); |
1019 |
< |
} |
1020 |
< |
} |
993 |
> |
|
994 |
> |
} else { |
995 |
> |
|
996 |
> |
// only accumulate the forces and torques resulting from the |
997 |
> |
// indirect reaction field terms. |
998 |
> |
*(idat.vpair) += indirect_vpair; |
999 |
> |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot; |
1000 |
> |
*(idat.f1) += indirect_dVdr; |
1001 |
|
|
1022 |
– |
// accumulate the forces and torques resulting from the self term |
1023 |
– |
skdat.pot += myPot; |
1024 |
– |
skdat.f1 += dVdr; |
1025 |
– |
|
1002 |
|
if (i_is_Dipole) |
1003 |
< |
skdat.t1 -= cross(uz_i, duduz_i); |
1003 |
> |
*(idat.t1) -= cross(uz_i, indirect_duduz_i); |
1004 |
|
if (j_is_Dipole) |
1005 |
< |
skdat.t2 -= cross(uz_j, duduz_j); |
1005 |
> |
*(idat.t2) -= cross(uz_j, indirect_duduz_j); |
1006 |
|
} |
1007 |
< |
} |
1007 |
> |
|
1008 |
> |
|
1009 |
> |
return; |
1010 |
> |
} |
1011 |
|
|
1012 |
< |
void Electrostatic::calcSelfCorrection(SelfCorrectionData scdat) { |
1012 |
> |
void Electrostatic::calcSelfCorrection(SelfData &sdat) { |
1013 |
|
RealType mu1, preVal, chg1, self; |
1014 |
|
|
1015 |
|
if (!initialized_) initialize(); |
1016 |
< |
|
1017 |
< |
ElectrostaticAtomData data = ElectrostaticMap[scdat.atype]; |
1016 |
> |
|
1017 |
> |
ElectrostaticAtomData data = ElectrostaticMap[sdat.atype]; |
1018 |
|
|
1019 |
|
// logicals |
1041 |
– |
|
1020 |
|
bool i_is_Charge = data.is_Charge; |
1021 |
|
bool i_is_Dipole = data.is_Dipole; |
1022 |
|
|
1024 |
|
if (i_is_Dipole) { |
1025 |
|
mu1 = data.dipole_moment; |
1026 |
|
preVal = pre22_ * preRF2_ * mu1 * mu1; |
1027 |
< |
scdat.pot -= 0.5 * preVal; |
1027 |
> |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal; |
1028 |
|
|
1029 |
|
// The self-correction term adds into the reaction field vector |
1030 |
< |
Vector3d uz_i = scdat.eFrame.getColumn(2); |
1030 |
> |
Vector3d uz_i = sdat.eFrame->getColumn(2); |
1031 |
|
Vector3d ei = preVal * uz_i; |
1032 |
|
|
1033 |
|
// This looks very wrong. A vector crossed with itself is zero. |
1034 |
< |
scdat.t -= cross(uz_i, ei); |
1034 |
> |
*(sdat.t) -= cross(uz_i, ei); |
1035 |
|
} |
1036 |
|
} else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) { |
1037 |
|
if (i_is_Charge) { |
1038 |
|
chg1 = data.charge; |
1039 |
|
if (screeningMethod_ == DAMPED) { |
1040 |
< |
self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + scdat.skippedCharge) * pre11_; |
1040 |
> |
self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_; |
1041 |
|
} else { |
1042 |
< |
self = - 0.5 * rcuti_ * chg1 * (chg1 + scdat.skippedCharge) * pre11_; |
1042 |
> |
self = - 0.5 * rcuti_ * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_; |
1043 |
|
} |
1044 |
< |
scdat.pot += self; |
1044 |
> |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] += self; |
1045 |
|
} |
1046 |
|
} |
1047 |
|
} |
1048 |
|
|
1049 |
< |
RealType Electrostatic::getSuggestedCutoffRadius(AtomType* at1, AtomType* at2) { |
1049 |
> |
RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
1050 |
|
// This seems to work moderately well as a default. There's no |
1051 |
|
// inherent scale for 1/r interactions that we can standardize. |
1052 |
|
// 12 angstroms seems to be a reasonably good guess for most |