ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Electrostatic.cpp
(Generate patch)

Comparing branches/development/src/nonbonded/Electrostatic.cpp (file contents):
Revision 1586 by gezelter, Tue Jun 21 06:34:35 2011 UTC vs.
Revision 1720 by gezelter, Thu May 24 01:48:29 2012 UTC

# Line 34 | Line 34
34   * work.  Good starting points are:
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 < * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   #include <stdio.h>
# Line 46 | Line 47
47   #include "nonbonded/Electrostatic.hpp"
48   #include "utils/simError.h"
49   #include "types/NonBondedInteractionType.hpp"
50 < #include "types/DirectionalAtomType.hpp"
50 > #include "types/FixedChargeAdapter.hpp"
51 > #include "types/FluctuatingChargeAdapter.hpp"
52 > #include "types/MultipoleAdapter.hpp"
53   #include "io/Globals.hpp"
54 + #include "nonbonded/SlaterIntegrals.hpp"
55 + #include "utils/PhysicalConstants.hpp"
56  
57 +
58   namespace OpenMD {
59    
60    Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
61 <                                  forceField_(NULL), info_(NULL), haveCutoffRadius_(false),
62 <                                  haveDampingAlpha_(false), haveDielectric_(false),
61 >                                  forceField_(NULL), info_(NULL),
62 >                                  haveCutoffRadius_(false),
63 >                                  haveDampingAlpha_(false),
64 >                                  haveDielectric_(false),
65                                    haveElectroSpline_(false)
66 < {}
66 >  {}
67    
68    void Electrostatic::initialize() {
69 <
69 >    
70      Globals* simParams_ = info_->getSimParams();
71  
72      summationMap_["HARD"]               = esm_HARD;
73 +    summationMap_["NONE"]               = esm_HARD;
74      summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
75      summationMap_["SHIFTED_POTENTIAL"]  = esm_SHIFTED_POTENTIAL;
76      summationMap_["SHIFTED_FORCE"]      = esm_SHIFTED_FORCE;    
# Line 114 | Line 123 | namespace OpenMD {
123          sprintf( painCave.errMsg,
124                   "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
125                   "\t(Input file specified %s .)\n"
126 <                 "\telectrostaticSummationMethod must be one of: \"none\",\n"
126 >                 "\telectrostaticSummationMethod must be one of: \"hard\",\n"
127                   "\t\"shifted_potential\", \"shifted_force\", or \n"
128                   "\t\"reaction_field\".\n", myMethod.c_str() );
129          painCave.isFatal = 1;
# Line 247 | Line 256 | namespace OpenMD {
256        preRF2_ = 2.0 * preRF_;
257      }
258      
259 <    RealType dx = cutoffRadius_ / RealType(np_ - 1);
259 >    // Add a 2 angstrom safety window to deal with cutoffGroups that
260 >    // have charged atoms longer than the cutoffRadius away from each
261 >    // other.  Splining may not be the best choice here.  Direct calls
262 >    // to erfc might be preferrable.
263 >
264 >    RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
265      RealType rval;
266      vector<RealType> rvals;
267      vector<RealType> yvals;
# Line 271 | Line 285 | namespace OpenMD {
285      electrostaticAtomData.is_SplitDipole = false;
286      electrostaticAtomData.is_Quadrupole = false;
287  
288 <    if (atomType->isCharge()) {
275 <      GenericData* data = atomType->getPropertyByName("Charge");
288 >    FixedChargeAdapter fca = FixedChargeAdapter(atomType);
289  
290 <      if (data == NULL) {
278 <        sprintf( painCave.errMsg, "Electrostatic::addType could not find "
279 <                 "Charge\n"
280 <                 "\tparameters for atomType %s.\n",
281 <                 atomType->getName().c_str());
282 <        painCave.severity = OPENMD_ERROR;
283 <        painCave.isFatal = 1;
284 <        simError();                  
285 <      }
286 <      
287 <      DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
288 <      if (doubleData == NULL) {
289 <        sprintf( painCave.errMsg,
290 <                 "Electrostatic::addType could not convert GenericData to "
291 <                 "Charge for\n"
292 <                 "\tatom type %s\n", atomType->getName().c_str());
293 <        painCave.severity = OPENMD_ERROR;
294 <        painCave.isFatal = 1;
295 <        simError();          
296 <      }
290 >    if (fca.isFixedCharge()) {
291        electrostaticAtomData.is_Charge = true;
292 <      electrostaticAtomData.charge = doubleData->getData();          
292 >      electrostaticAtomData.fixedCharge = fca.getCharge();
293      }
294  
295 <    if (atomType->isDirectional()) {
296 <      DirectionalAtomType* daType = dynamic_cast<DirectionalAtomType*>(atomType);
297 <      
304 <      if (daType->isDipole()) {
305 <        GenericData* data = daType->getPropertyByName("Dipole");
306 <        
307 <        if (data == NULL) {
308 <          sprintf( painCave.errMsg,
309 <                   "Electrostatic::addType could not find Dipole\n"
310 <                   "\tparameters for atomType %s.\n",
311 <                   daType->getName().c_str());
312 <          painCave.severity = OPENMD_ERROR;
313 <          painCave.isFatal = 1;
314 <          simError();                  
315 <        }
316 <      
317 <        DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
318 <        if (doubleData == NULL) {
319 <          sprintf( painCave.errMsg,
320 <                   "Electrostatic::addType could not convert GenericData to "
321 <                   "Dipole Moment\n"
322 <                   "\tfor atom type %s\n", daType->getName().c_str());
323 <          painCave.severity = OPENMD_ERROR;
324 <          painCave.isFatal = 1;
325 <          simError();          
326 <        }
295 >    MultipoleAdapter ma = MultipoleAdapter(atomType);
296 >    if (ma.isMultipole()) {
297 >      if (ma.isDipole()) {
298          electrostaticAtomData.is_Dipole = true;
299 <        electrostaticAtomData.dipole_moment = doubleData->getData();
299 >        electrostaticAtomData.dipole_moment = ma.getDipoleMoment();
300        }
301 <
331 <      if (daType->isSplitDipole()) {
332 <        GenericData* data = daType->getPropertyByName("SplitDipoleDistance");
333 <        
334 <        if (data == NULL) {
335 <          sprintf(painCave.errMsg,
336 <                  "Electrostatic::addType could not find SplitDipoleDistance\n"
337 <                  "\tparameter for atomType %s.\n",
338 <                  daType->getName().c_str());
339 <          painCave.severity = OPENMD_ERROR;
340 <          painCave.isFatal = 1;
341 <          simError();                  
342 <        }
343 <      
344 <        DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
345 <        if (doubleData == NULL) {
346 <          sprintf( painCave.errMsg,
347 <                   "Electrostatic::addType could not convert GenericData to "
348 <                   "SplitDipoleDistance for\n"
349 <                   "\tatom type %s\n", daType->getName().c_str());
350 <          painCave.severity = OPENMD_ERROR;
351 <          painCave.isFatal = 1;
352 <          simError();          
353 <        }
301 >      if (ma.isSplitDipole()) {
302          electrostaticAtomData.is_SplitDipole = true;
303 <        electrostaticAtomData.split_dipole_distance = doubleData->getData();
303 >        electrostaticAtomData.split_dipole_distance = ma.getSplitDipoleDistance();
304        }
305 <
358 <      if (daType->isQuadrupole()) {
359 <        GenericData* data = daType->getPropertyByName("QuadrupoleMoments");
360 <        
361 <        if (data == NULL) {
362 <          sprintf( painCave.errMsg,
363 <                   "Electrostatic::addType could not find QuadrupoleMoments\n"
364 <                   "\tparameter for atomType %s.\n",
365 <                   daType->getName().c_str());
366 <          painCave.severity = OPENMD_ERROR;
367 <          painCave.isFatal = 1;
368 <          simError();                  
369 <        }
370 <        
305 >      if (ma.isQuadrupole()) {
306          // Quadrupoles in OpenMD are set as the diagonal elements
307          // of the diagonalized traceless quadrupole moment tensor.
308          // The column vectors of the unitary matrix that diagonalizes
309          // the quadrupole moment tensor become the eFrame (or the
310          // electrostatic version of the body-fixed frame.
311 <
312 <        Vector3dGenericData* v3dData = dynamic_cast<Vector3dGenericData*>(data);
378 <        if (v3dData == NULL) {
379 <          sprintf( painCave.errMsg,
380 <                   "Electrostatic::addType could not convert GenericData to "
381 <                   "Quadrupole Moments for\n"
382 <                   "\tatom type %s\n", daType->getName().c_str());
383 <          painCave.severity = OPENMD_ERROR;
384 <          painCave.isFatal = 1;
385 <          simError();          
386 <        }
387 <        electrostaticAtomData.is_Quadrupole = true;
388 <        electrostaticAtomData.quadrupole_moments = v3dData->getData();
311 >        electrostaticAtomData.is_Quadrupole = true;
312 >        electrostaticAtomData.quadrupole_moments = ma.getQuadrupoleMoments();
313        }
314      }
315      
316 <    AtomTypeProperties atp = atomType->getATP();    
316 >    FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType);
317  
318 +    if (fqa.isFluctuatingCharge()) {
319 +      electrostaticAtomData.is_Fluctuating = true;
320 +      electrostaticAtomData.electronegativity = fqa.getElectronegativity();
321 +      electrostaticAtomData.hardness = fqa.getHardness();
322 +      electrostaticAtomData.slaterN = fqa.getSlaterN();
323 +      electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
324 +    }
325 +
326      pair<map<int,AtomType*>::iterator,bool> ret;    
327 <    ret = ElectrostaticList.insert( pair<int,AtomType*>(atp.ident, atomType) );
327 >    ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(),
328 >                                                        atomType) );
329      if (ret.second == false) {
330        sprintf( painCave.errMsg,
331                 "Electrostatic already had a previous entry with ident %d\n",
332 <               atp.ident);
332 >               atomType->getIdent() );
333        painCave.severity = OPENMD_INFO;
334        painCave.isFatal = 0;
335        simError();        
336      }
337      
338 <    ElectrostaticMap[atomType] = electrostaticAtomData;    
338 >    ElectrostaticMap[atomType] = electrostaticAtomData;  
339 >
340 >    // Now, iterate over all known types and add to the mixing map:
341 >    
342 >    map<AtomType*, ElectrostaticAtomData>::iterator it;
343 >    for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) {
344 >      AtomType* atype2 = (*it).first;
345 >      ElectrostaticAtomData eaData2 = (*it).second;
346 >      if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) {
347 >        
348 >        RealType a = electrostaticAtomData.slaterZeta;
349 >        RealType b = eaData2.slaterZeta;
350 >        int m = electrostaticAtomData.slaterN;
351 >        int n = eaData2.slaterN;
352 >
353 >        // Create the spline of the coulombic integral for s-type
354 >        // Slater orbitals.  Add a 2 angstrom safety window to deal
355 >        // with cutoffGroups that have charged atoms longer than the
356 >        // cutoffRadius away from each other.
357 >
358 >        RealType rval;
359 >        RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
360 >        vector<RealType> rvals;
361 >        vector<RealType> J1vals;
362 >        vector<RealType> J2vals;
363 >        for (int i = 0; i < np_; i++) {
364 >          rval = RealType(i) * dr;
365 >          rvals.push_back(rval);
366 >          J1vals.push_back( sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromsToBohr ) );
367 >          J2vals.push_back( sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromsToBohr ) );
368 >        }
369 >
370 >        CubicSpline* J1 = new CubicSpline();
371 >        J1->addPoints(rvals, J1vals);
372 >        CubicSpline* J2 = new CubicSpline();
373 >        J2->addPoints(rvals, J2vals);
374 >        
375 >        pair<AtomType*, AtomType*> key1, key2;
376 >        key1 = make_pair(atomType, atype2);
377 >        key2 = make_pair(atype2, atomType);
378 >        
379 >        Jij[key1] = J1;
380 >        Jij[key2] = J2;
381 >      }
382 >    }
383 >
384      return;
385    }
386    
# Line 444 | Line 422 | namespace OpenMD {
422      RealType ct_i, ct_j, ct_ij, a1;
423      RealType riji, ri, ri2, ri3, ri4;
424      RealType pref, vterm, epot, dudr;
425 +    RealType vpair(0.0);
426      RealType scale, sc2;
427      RealType pot_term, preVal, rfVal;
428      RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
429      RealType preSw, preSwSc;
430      RealType c1, c2, c3, c4;
431 <    RealType erfcVal, derfcVal;
431 >    RealType erfcVal(1.0), derfcVal(0.0);
432      RealType BigR;
433 +    RealType two(2.0), three(3.0);
434  
435      Vector3d Q_i, Q_j;
436      Vector3d ux_i, uy_i, uz_i;
# Line 460 | Line 440 | namespace OpenMD {
440      Vector3d rhatdot2, rhatc4;
441      Vector3d dVdr;
442  
443 +    // variables for indirect (reaction field) interactions for excluded pairs:
444 +    RealType indirect_Pot(0.0);
445 +    RealType indirect_vpair(0.0);
446 +    Vector3d indirect_dVdr(V3Zero);
447 +    Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero);
448 +
449      pair<RealType, RealType> res;
450      
451      if (!initialized_) initialize();
# Line 484 | Line 470 | namespace OpenMD {
470      bool j_is_SplitDipole = data2.is_SplitDipole;
471      bool j_is_Quadrupole = data2.is_Quadrupole;
472      
473 <    if (i_is_Charge)
474 <      q_i = data1.charge;
473 >    if (i_is_Charge) {
474 >      q_i = data1.fixedCharge;
475 >      if (idat.excluded) {
476 >        *(idat.skippedCharge2) += q_i;
477 >      }
478 >    }
479  
480      if (i_is_Dipole) {
481        mu_i = data1.dipole_moment;
# Line 518 | Line 508 | namespace OpenMD {
508        duduz_i = V3Zero;
509      }
510  
511 <    if (j_is_Charge)
512 <      q_j = data2.charge;
511 >    if (j_is_Charge) {
512 >      q_j = data2.fixedCharge;
513 >      if (idat.excluded) {
514 >        *(idat.skippedCharge1) += q_j;
515 >      }
516 >    }
517  
518 +
519      if (j_is_Dipole) {
520        mu_j = data2.dipole_moment;
521        uz_j = idat.eFrame2->getColumn(2);
# Line 560 | Line 555 | namespace OpenMD {
555        if (j_is_Charge) {
556          if (screeningMethod_ == DAMPED) {
557            // assemble the damping variables
558 <          res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
559 <          erfcVal = res.first;
560 <          derfcVal = res.second;
558 >          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
559 >          //erfcVal = res.first;
560 >          //derfcVal = res.second;
561 >
562 >          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
563 >          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
564 >
565            c1 = erfcVal * riji;
566            c2 = (-derfcVal + c1) * riji;
567          } else {
# Line 581 | Line 580 | namespace OpenMD {
580            dudr  =  *(idat.sw)  * preVal * (c2c_ - c2);
581  
582          } else if (summationMethod_ == esm_REACTION_FIELD) {
583 <          rfVal =  *(idat.electroMult) * preRF_ *  *(idat.rij)  *  *(idat.rij) ;
583 >          rfVal = preRF_ *  *(idat.rij)  *  *(idat.rij);
584 >
585            vterm = preVal * ( riji + rfVal );            
586            dudr  =  *(idat.sw)  * preVal * ( 2.0 * rfVal - riji ) * riji;
587 +          
588 +          // if this is an excluded pair, there are still indirect
589 +          // interactions via the reaction field we must worry about:
590  
591 +          if (idat.excluded) {
592 +            indirect_vpair += preVal * rfVal;
593 +            indirect_Pot += *(idat.sw) * preVal * rfVal;
594 +            indirect_dVdr += *(idat.sw)  * preVal * two * rfVal  * riji * rhat;
595 +          }
596 +          
597          } else {
589          vterm = preVal * riji * erfcVal;            
598  
599 +          vterm = preVal * riji * erfcVal;          
600            dudr  = -  *(idat.sw)  * preVal * c2;
601  
602          }
594
595        *(idat.vpair) += vterm;
596        epot +=  *(idat.sw)  * vterm;
603  
604 <        dVdr += dudr * rhat;      
604 >        vpair += vterm;
605 >        epot +=  *(idat.sw)  * vterm;
606 >        dVdr += dudr * rhat;                
607        }
608  
609        if (j_is_Dipole) {
# Line 608 | Line 616 | namespace OpenMD {
616            ri3 = ri2 * riji;
617      
618            vterm = - pref * ct_j * ( ri2 - preRF2_ *  *(idat.rij)  );
619 <          *(idat.vpair) += vterm;
619 >          vpair += vterm;
620            epot +=  *(idat.sw)  * vterm;
621  
622 <          dVdr +=  -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
622 >          dVdr +=  -preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
623            duduz_j += -preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );  
624  
625 +          // Even if we excluded this pair from direct interactions,
626 +          // we still have the reaction-field-mediated charge-dipole
627 +          // interaction:
628 +
629 +          if (idat.excluded) {
630 +            indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij);
631 +            indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij);
632 +            indirect_dVdr += preSw * preRF2_ * uz_j;
633 +            indirect_duduz_j += preSw * rhat * preRF2_ *  *(idat.rij);
634 +          }
635 +                      
636          } else {
637            // determine the inverse r used if we have split dipoles
638            if (j_is_SplitDipole) {
# Line 629 | Line 648 | namespace OpenMD {
648  
649            if (screeningMethod_ == DAMPED) {
650              // assemble the damping variables
651 <            res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
652 <            erfcVal = res.first;
653 <            derfcVal = res.second;
651 >            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
652 >            //erfcVal = res.first;
653 >            //derfcVal = res.second;
654 >            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
655 >            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
656              c1 = erfcVal * ri;
657              c2 = (-derfcVal + c1) * ri;
658              c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
# Line 646 | Line 667 | namespace OpenMD {
667            // calculate the potential
668            pot_term =  scale * c2;
669            vterm = -pref * ct_j * pot_term;
670 <          *(idat.vpair) += vterm;
670 >          vpair += vterm;
671            epot +=  *(idat.sw)  * vterm;
672              
673            // calculate derivatives for forces and torques
# Line 666 | Line 687 | namespace OpenMD {
687            
688          if (screeningMethod_ == DAMPED) {
689            // assemble the damping variables
690 <          res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
691 <          erfcVal = res.first;
692 <          derfcVal = res.second;
690 >          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
691 >          //erfcVal = res.first;
692 >          //derfcVal = res.second;
693 >          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
694 >          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
695            c1 = erfcVal * riji;
696            c2 = (-derfcVal + c1) * riji;
697            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
# Line 685 | Line 708 | namespace OpenMD {
708          c2ri = c2 * riji;
709          c3ri = c3 * riji;
710          c4rij = c4 *  *(idat.rij) ;
711 <        rhatdot2 = 2.0 * rhat * c3;
711 >        rhatdot2 = two * rhat * c3;
712          rhatc4 = rhat * c4rij;
713  
714          // calculate the potential
# Line 693 | Line 716 | namespace OpenMD {
716                       qyy_j * (cy2*c3 - c2ri) +
717                       qzz_j * (cz2*c3 - c2ri) );
718          vterm = pref * pot_term;
719 <        *(idat.vpair) += vterm;
719 >        vpair += vterm;
720          epot +=  *(idat.sw)  * vterm;
721                  
722          // calculate derivatives for the forces and torques
723  
724 <        dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (2.0*cx_j*ux_j + rhat)*c3ri) +
725 <                           qyy_j* (cy2*rhatc4 - (2.0*cy_j*uy_j + rhat)*c3ri) +
726 <                           qzz_j* (cz2*rhatc4 - (2.0*cz_j*uz_j + rhat)*c3ri));
724 >        dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (two*cx_j*ux_j + rhat)*c3ri) +
725 >                           qyy_j* (cy2*rhatc4 - (two*cy_j*uy_j + rhat)*c3ri) +
726 >                           qzz_j* (cz2*rhatc4 - (two*cz_j*uz_j + rhat)*c3ri));
727                            
728          dudux_j += preSw * qxx_j * cx_j * rhatdot2;
729          duduy_j += preSw * qyy_j * cy_j * rhatdot2;
# Line 721 | Line 744 | namespace OpenMD {
744            ri3 = ri2 * riji;
745  
746            vterm = pref * ct_i * ( ri2 - preRF2_ *  *(idat.rij)  );
747 <          *(idat.vpair) += vterm;
747 >          vpair += vterm;
748            epot +=  *(idat.sw)  * vterm;
749            
750 <          dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);
750 >          dVdr += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_ * uz_i);
751            
752            duduz_i += preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );
753 +
754 +          // Even if we excluded this pair from direct interactions,
755 +          // we still have the reaction-field-mediated charge-dipole
756 +          // interaction:
757 +
758 +          if (idat.excluded) {
759 +            indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij);
760 +            indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij);
761 +            indirect_dVdr += -preSw * preRF2_ * uz_i;
762 +            indirect_duduz_i += -preSw * rhat * preRF2_ *  *(idat.rij);
763 +          }
764              
765          } else {
766            
# Line 744 | Line 778 | namespace OpenMD {
778              
779            if (screeningMethod_ == DAMPED) {
780              // assemble the damping variables
781 <            res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
782 <            erfcVal = res.first;
783 <            derfcVal = res.second;
781 >            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
782 >            //erfcVal = res.first;
783 >            //derfcVal = res.second;
784 >            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
785 >            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
786              c1 = erfcVal * ri;
787              c2 = (-derfcVal + c1) * ri;
788              c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
# Line 761 | Line 797 | namespace OpenMD {
797            // calculate the potential
798            pot_term = c2 * scale;
799            vterm = pref * ct_i * pot_term;
800 <          *(idat.vpair) += vterm;
800 >          vpair += vterm;
801            epot +=  *(idat.sw)  * vterm;
802  
803            // calculate derivatives for the forces and torques
# Line 784 | Line 820 | namespace OpenMD {
820  
821            vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
822                             preRF2_ * ct_ij );
823 <          *(idat.vpair) += vterm;
823 >          vpair += vterm;
824            epot +=  *(idat.sw)  * vterm;
825              
826            a1 = 5.0 * ct_i * ct_j - ct_ij;
827              
828 <          dVdr += preSw * 3.0 * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
828 >          dVdr += preSw * three * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
829  
830 <          duduz_i += preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
831 <          duduz_j += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_*uz_i);
830 >          duduz_i += preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
831 >          duduz_j += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_*uz_i);
832  
833 +          if (idat.excluded) {
834 +            indirect_vpair +=  - pref * preRF2_ * ct_ij;
835 +            indirect_Pot +=    - preSw * preRF2_ * ct_ij;
836 +            indirect_duduz_i += -preSw * preRF2_ * uz_j;
837 +            indirect_duduz_j += -preSw * preRF2_ * uz_i;
838 +          }
839 +
840          } else {
841            
842            if (i_is_SplitDipole) {
# Line 816 | Line 859 | namespace OpenMD {
859            }
860            if (screeningMethod_ == DAMPED) {
861              // assemble damping variables
862 <            res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
863 <            erfcVal = res.first;
864 <            derfcVal = res.second;
862 >            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
863 >            //erfcVal = res.first;
864 >            //derfcVal = res.second;
865 >            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
866 >            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
867              c1 = erfcVal * ri;
868              c2 = (-derfcVal + c1) * ri;
869              c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
# Line 843 | Line 888 | namespace OpenMD {
888            // calculate the potential
889            pot_term = (ct_ij * c2ri - ctidotj * c3);
890            vterm = pref * pot_term;
891 <          *(idat.vpair) += vterm;
891 >          vpair += vterm;
892            epot +=  *(idat.sw)  * vterm;
893  
894            // calculate derivatives for the forces and torques
# Line 867 | Line 912 | namespace OpenMD {
912  
913          if (screeningMethod_ == DAMPED) {
914            // assemble the damping variables
915 <          res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
916 <          erfcVal = res.first;
917 <          derfcVal = res.second;
915 >          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
916 >          //erfcVal = res.first;
917 >          //derfcVal = res.second;
918 >          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
919 >          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
920            c1 = erfcVal * riji;
921            c2 = (-derfcVal + c1) * riji;
922            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
# Line 886 | Line 933 | namespace OpenMD {
933          c2ri = c2 * riji;
934          c3ri = c3 * riji;
935          c4rij = c4 *  *(idat.rij) ;
936 <        rhatdot2 = 2.0 * rhat * c3;
936 >        rhatdot2 = two * rhat * c3;
937          rhatc4 = rhat * c4rij;
938  
939          // calculate the potential
# Line 895 | Line 942 | namespace OpenMD {
942                       qzz_i * (cz2 * c3 - c2ri) );
943          
944          vterm = pref * pot_term;
945 <        *(idat.vpair) += vterm;
945 >        vpair += vterm;
946          epot +=  *(idat.sw)  * vterm;
947  
948          // calculate the derivatives for the forces and torques
949  
950 <        dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (2.0*cx_i*ux_i + rhat)*c3ri) +
951 <                          qyy_i* (cy2*rhatc4 - (2.0*cy_i*uy_i + rhat)*c3ri) +
952 <                          qzz_i* (cz2*rhatc4 - (2.0*cz_i*uz_i + rhat)*c3ri));
950 >        dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (two*cx_i*ux_i + rhat)*c3ri) +
951 >                          qyy_i* (cy2*rhatc4 - (two*cy_i*uy_i + rhat)*c3ri) +
952 >                          qzz_i* (cz2*rhatc4 - (two*cz_i*uz_i + rhat)*c3ri));
953  
954          dudux_i += preSw * qxx_i * cx_i *  rhatdot2;
955          duduy_i += preSw * qyy_i * cy_i *  rhatdot2;
# Line 910 | Line 957 | namespace OpenMD {
957        }
958      }
959  
913    (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
914    *(idat.f1) += dVdr;
960  
961 <    if (i_is_Dipole || i_is_Quadrupole)
962 <      *(idat.t1) -= cross(uz_i, duduz_i);
963 <    if (i_is_Quadrupole) {
964 <      *(idat.t1) -= cross(ux_i, dudux_i);
965 <      *(idat.t1) -= cross(uy_i, duduy_i);
966 <    }
967 <    
968 <    if (j_is_Dipole || j_is_Quadrupole)
969 <      *(idat.t2) -= cross(uz_j, duduz_j);
970 <    if (j_is_Quadrupole) {
971 <      *(idat.t2) -= cross(uz_j, dudux_j);
972 <      *(idat.t2) -= cross(uz_j, duduy_j);
973 <    }
961 >    if (!idat.excluded) {
962 >      *(idat.vpair) += vpair;
963 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
964 >      *(idat.f1) += dVdr;
965 >      
966 >      if (i_is_Dipole || i_is_Quadrupole)
967 >        *(idat.t1) -= cross(uz_i, duduz_i);
968 >      if (i_is_Quadrupole) {
969 >        *(idat.t1) -= cross(ux_i, dudux_i);
970 >        *(idat.t1) -= cross(uy_i, duduy_i);
971 >      }
972 >      
973 >      if (j_is_Dipole || j_is_Quadrupole)
974 >        *(idat.t2) -= cross(uz_j, duduz_j);
975 >      if (j_is_Quadrupole) {
976 >        *(idat.t2) -= cross(uz_j, dudux_j);
977 >        *(idat.t2) -= cross(uz_j, duduy_j);
978 >      }
979  
980 <    return;
931 <  }  
980 >    } else {
981  
982 <  void Electrostatic::calcSkipCorrection(InteractionData &idat) {
982 >      // only accumulate the forces and torques resulting from the
983 >      // indirect reaction field terms.
984  
985 <    if (!initialized_) initialize();
986 <    
987 <    ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
938 <    ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
939 <    
940 <    // logicals
941 <
942 <    bool i_is_Charge = data1.is_Charge;
943 <    bool i_is_Dipole = data1.is_Dipole;
944 <
945 <    bool j_is_Charge = data2.is_Charge;
946 <    bool j_is_Dipole = data2.is_Dipole;
947 <
948 <    RealType q_i, q_j;
949 <    
950 <    // The skippedCharge computation is needed by the real-space cutoff methods
951 <    // (i.e. shifted force and shifted potential)
952 <
953 <    if (i_is_Charge) {
954 <      q_i = data1.charge;
955 <      *(idat.skippedCharge2) += q_i;
956 <    }
957 <
958 <    if (j_is_Charge) {
959 <      q_j = data2.charge;
960 <      *(idat.skippedCharge1) += q_j;
961 <    }
962 <
963 <    // the rest of this function should only be necessary for reaction field.
964 <
965 <    if (summationMethod_ == esm_REACTION_FIELD) {
966 <      RealType riji, ri2, ri3;
967 <      RealType mu_i, ct_i;
968 <      RealType mu_j, ct_j;
969 <      RealType preVal, rfVal, vterm, dudr, pref, myPot(0.0);
970 <      Vector3d dVdr, uz_i, uz_j, duduz_i, duduz_j, rhat;
971 <
972 <      // some variables we'll need independent of electrostatic type:
985 >      *(idat.vpair) += indirect_vpair;
986 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot;
987 >      *(idat.f1) += indirect_dVdr;
988        
974      riji = 1.0 /  *(idat.rij) ;
975      rhat =  *(idat.d)  * riji;
976
977      if (i_is_Dipole) {
978        mu_i = data1.dipole_moment;
979        uz_i = idat.eFrame1->getColumn(2);      
980        ct_i = dot(uz_i, rhat);
981        duduz_i = V3Zero;
982      }
983            
984      if (j_is_Dipole) {
985        mu_j = data2.dipole_moment;
986        uz_j = idat.eFrame2->getColumn(2);      
987        ct_j = dot(uz_j, rhat);
988        duduz_j = V3Zero;
989      }
990    
991      if (i_is_Charge) {
992        if (j_is_Charge) {
993          preVal =  *(idat.electroMult) * pre11_ * q_i * q_j;
994          rfVal = preRF_ *  *(idat.rij)  *  *(idat.rij) ;
995          vterm = preVal * rfVal;
996          myPot +=  *(idat.sw)  * vterm;        
997          dudr  =  *(idat.sw)  * preVal * 2.0 * rfVal * riji;        
998          dVdr += dudr * rhat;
999        }
1000        
1001        if (j_is_Dipole) {
1002          ri2 = riji * riji;
1003          ri3 = ri2 * riji;        
1004          pref =  *(idat.electroMult) * pre12_ * q_i * mu_j;
1005          vterm = - pref * ct_j * ( ri2 - preRF2_ *  *(idat.rij)  );
1006          myPot +=  *(idat.sw)  * vterm;        
1007          dVdr += - *(idat.sw)  * pref * ( ri3 * ( uz_j - 3.0 * ct_j * rhat) - preRF2_ * uz_j);
1008          duduz_j += - *(idat.sw)  * pref * rhat * (ri2 - preRF2_ *  *(idat.rij) );
1009        }
1010      }
1011      if (i_is_Dipole) {
1012        if (j_is_Charge) {
1013          ri2 = riji * riji;
1014          ri3 = ri2 * riji;        
1015          pref =  *(idat.electroMult) * pre12_ * q_j * mu_i;
1016          vterm = - pref * ct_i * ( ri2 - preRF2_ *  *(idat.rij)  );
1017          myPot +=  *(idat.sw)  * vterm;        
1018          dVdr +=  *(idat.sw)  * pref * ( ri3 * ( uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);      
1019          duduz_i +=  *(idat.sw)  * pref * rhat * (ri2 - preRF2_ *  *(idat.rij));
1020        }
1021      }
1022      
1023      // accumulate the forces and torques resulting from the self term
1024      (*(idat.pot))[ELECTROSTATIC_FAMILY] += myPot;
1025      *(idat.f1) += dVdr;
1026      
989        if (i_is_Dipole)
990 <        *(idat.t1) -= cross(uz_i, duduz_i);
990 >        *(idat.t1) -= cross(uz_i, indirect_duduz_i);
991        if (j_is_Dipole)
992 <        *(idat.t2) -= cross(uz_j, duduz_j);
992 >        *(idat.t2) -= cross(uz_j, indirect_duduz_j);
993      }
994 <  }
994 >
995 >
996 >    return;
997 >  }  
998      
999    void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1000      RealType mu1, preVal, chg1, self;
# Line 1057 | Line 1022 | namespace OpenMD {
1022        }
1023      } else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) {
1024        if (i_is_Charge) {        
1025 <        chg1 = data.charge;
1025 >        chg1 = data.fixedCharge;
1026          if (screeningMethod_ == DAMPED) {
1027            self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1028          } else {        

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines