ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Electrostatic.cpp
(Generate patch)

Comparing branches/development/src/nonbonded/Electrostatic.cpp (file contents):
Revision 1554 by gezelter, Sat Apr 30 02:54:02 2011 UTC vs.
Revision 1766 by gezelter, Thu Jul 5 17:08:25 2012 UTC

# Line 34 | Line 34
34   * work.  Good starting points are:
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 < * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   #include <stdio.h>
# Line 46 | Line 47
47   #include "nonbonded/Electrostatic.hpp"
48   #include "utils/simError.h"
49   #include "types/NonBondedInteractionType.hpp"
50 < #include "types/DirectionalAtomType.hpp"
50 > #include "types/FixedChargeAdapter.hpp"
51 > #include "types/FluctuatingChargeAdapter.hpp"
52 > #include "types/MultipoleAdapter.hpp"
53   #include "io/Globals.hpp"
54 + #include "nonbonded/SlaterIntegrals.hpp"
55 + #include "utils/PhysicalConstants.hpp"
56  
57 +
58   namespace OpenMD {
59    
60    Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
61 <                                  forceField_(NULL) {}
61 >                                  forceField_(NULL), info_(NULL),
62 >                                  haveCutoffRadius_(false),
63 >                                  haveDampingAlpha_(false),
64 >                                  haveDielectric_(false),
65 >                                  haveElectroSpline_(false)
66 >  {}
67    
68    void Electrostatic::initialize() {
69 +    
70 +    Globals* simParams_ = info_->getSimParams();
71  
59    Globals* simParams_;
60
72      summationMap_["HARD"]               = esm_HARD;
73 +    summationMap_["NONE"]               = esm_HARD;
74      summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
75      summationMap_["SHIFTED_POTENTIAL"]  = esm_SHIFTED_POTENTIAL;
76      summationMap_["SHIFTED_FORCE"]      = esm_SHIFTED_FORCE;    
# Line 97 | Line 109 | namespace OpenMD {
109      screeningMethod_ = UNDAMPED;
110      dielectric_ = 1.0;
111      one_third_ = 1.0 / 3.0;
100    haveCutoffRadius_ = false;
101    haveDampingAlpha_ = false;
102    haveDielectric_ = false;  
103    haveElectroSpline_ = false;
112    
113      // check the summation method:
114      if (simParams_->haveElectrostaticSummationMethod()) {
# Line 115 | Line 123 | namespace OpenMD {
123          sprintf( painCave.errMsg,
124                   "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
125                   "\t(Input file specified %s .)\n"
126 <                 "\telectrostaticSummationMethod must be one of: \"none\",\n"
126 >                 "\telectrostaticSummationMethod must be one of: \"hard\",\n"
127                   "\t\"shifted_potential\", \"shifted_force\", or \n"
128                   "\t\"reaction_field\".\n", myMethod.c_str() );
129          painCave.isFatal = 1;
# Line 185 | Line 193 | namespace OpenMD {
193          
194          // throw warning
195          sprintf( painCave.errMsg,
196 <                 "Electrostatic::initialize: dampingAlpha was not specified in the input file.\n"
197 <                 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n",
196 >                 "Electrostatic::initialize: dampingAlpha was not specified in the\n"
197 >                 "\tinput file.  A default value of %f (1/ang) will be used for the\n"
198 >                 "\tcutoff of %f (ang).\n",
199                   dampingAlpha_, cutoffRadius_);
200          painCave.severity = OPENMD_INFO;
201          painCave.isFatal = 0;
# Line 209 | Line 218 | namespace OpenMD {
218          addType(at);
219      }
220      
212
221      cutoffRadius2_ = cutoffRadius_ * cutoffRadius_;
222      rcuti_ = 1.0 / cutoffRadius_;
223      rcuti2_ = rcuti_ * rcuti_;
# Line 248 | Line 256 | namespace OpenMD {
256        preRF2_ = 2.0 * preRF_;
257      }
258      
259 <    RealType dx = cutoffRadius_ / RealType(np_ - 1);
259 >    // Add a 2 angstrom safety window to deal with cutoffGroups that
260 >    // have charged atoms longer than the cutoffRadius away from each
261 >    // other.  Splining may not be the best choice here.  Direct calls
262 >    // to erfc might be preferrable.
263 >
264 >    RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
265      RealType rval;
266      vector<RealType> rvals;
267      vector<RealType> yvals;
# Line 271 | Line 284 | namespace OpenMD {
284      electrostaticAtomData.is_Dipole = false;
285      electrostaticAtomData.is_SplitDipole = false;
286      electrostaticAtomData.is_Quadrupole = false;
287 <
275 <    if (atomType->isCharge()) {
276 <      GenericData* data = atomType->getPropertyByName("Charge");
287 >    electrostaticAtomData.is_Fluctuating = false;
288  
289 <      if (data == NULL) {
290 <        sprintf( painCave.errMsg, "Electrostatic::addType could not find "
291 <                 "Charge\n"
281 <                 "\tparameters for atomType %s.\n",
282 <                 atomType->getName().c_str());
283 <        painCave.severity = OPENMD_ERROR;
284 <        painCave.isFatal = 1;
285 <        simError();                  
286 <      }
287 <      
288 <      DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
289 <      if (doubleData == NULL) {
290 <        sprintf( painCave.errMsg,
291 <                 "Electrostatic::addType could not convert GenericData to "
292 <                 "Charge for\n"
293 <                 "\tatom type %s\n", atomType->getName().c_str());
294 <        painCave.severity = OPENMD_ERROR;
295 <        painCave.isFatal = 1;
296 <        simError();          
297 <      }
289 >    FixedChargeAdapter fca = FixedChargeAdapter(atomType);
290 >
291 >    if (fca.isFixedCharge()) {
292        electrostaticAtomData.is_Charge = true;
293 <      electrostaticAtomData.charge = doubleData->getData();          
293 >      electrostaticAtomData.fixedCharge = fca.getCharge();
294      }
295  
296 <    if (atomType->isDirectional()) {
297 <      DirectionalAtomType* daType = dynamic_cast<DirectionalAtomType*>(atomType);
298 <      
305 <      if (daType->isDipole()) {
306 <        GenericData* data = daType->getPropertyByName("Dipole");
307 <        
308 <        if (data == NULL) {
309 <          sprintf( painCave.errMsg,
310 <                   "Electrostatic::addType could not find Dipole\n"
311 <                   "\tparameters for atomType %s.\n",
312 <                   daType->getName().c_str());
313 <          painCave.severity = OPENMD_ERROR;
314 <          painCave.isFatal = 1;
315 <          simError();                  
316 <        }
317 <      
318 <        DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
319 <        if (doubleData == NULL) {
320 <          sprintf( painCave.errMsg,
321 <                   "Electrostatic::addType could not convert GenericData to "
322 <                   "Dipole Moment\n"
323 <                   "\tfor atom type %s\n", daType->getName().c_str());
324 <          painCave.severity = OPENMD_ERROR;
325 <          painCave.isFatal = 1;
326 <          simError();          
327 <        }
296 >    MultipoleAdapter ma = MultipoleAdapter(atomType);
297 >    if (ma.isMultipole()) {
298 >      if (ma.isDipole()) {
299          electrostaticAtomData.is_Dipole = true;
300 <        electrostaticAtomData.dipole_moment = doubleData->getData();
300 >        electrostaticAtomData.dipole_moment = ma.getDipoleMoment();
301        }
302 <
332 <      if (daType->isSplitDipole()) {
333 <        GenericData* data = daType->getPropertyByName("SplitDipoleDistance");
334 <        
335 <        if (data == NULL) {
336 <          sprintf(painCave.errMsg,
337 <                  "Electrostatic::addType could not find SplitDipoleDistance\n"
338 <                  "\tparameter for atomType %s.\n",
339 <                  daType->getName().c_str());
340 <          painCave.severity = OPENMD_ERROR;
341 <          painCave.isFatal = 1;
342 <          simError();                  
343 <        }
344 <      
345 <        DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
346 <        if (doubleData == NULL) {
347 <          sprintf( painCave.errMsg,
348 <                   "Electrostatic::addType could not convert GenericData to "
349 <                   "SplitDipoleDistance for\n"
350 <                   "\tatom type %s\n", daType->getName().c_str());
351 <          painCave.severity = OPENMD_ERROR;
352 <          painCave.isFatal = 1;
353 <          simError();          
354 <        }
302 >      if (ma.isSplitDipole()) {
303          electrostaticAtomData.is_SplitDipole = true;
304 <        electrostaticAtomData.split_dipole_distance = doubleData->getData();
304 >        electrostaticAtomData.split_dipole_distance = ma.getSplitDipoleDistance();
305        }
306 <
359 <      if (daType->isQuadrupole()) {
360 <        GenericData* data = daType->getPropertyByName("QuadrupoleMoments");
361 <        
362 <        if (data == NULL) {
363 <          sprintf( painCave.errMsg,
364 <                   "Electrostatic::addType could not find QuadrupoleMoments\n"
365 <                   "\tparameter for atomType %s.\n",
366 <                   daType->getName().c_str());
367 <          painCave.severity = OPENMD_ERROR;
368 <          painCave.isFatal = 1;
369 <          simError();                  
370 <        }
371 <        
306 >      if (ma.isQuadrupole()) {
307          // Quadrupoles in OpenMD are set as the diagonal elements
308          // of the diagonalized traceless quadrupole moment tensor.
309          // The column vectors of the unitary matrix that diagonalizes
310          // the quadrupole moment tensor become the eFrame (or the
311          // electrostatic version of the body-fixed frame.
377
378        Vector3dGenericData* v3dData = dynamic_cast<Vector3dGenericData*>(data);
379        if (v3dData == NULL) {
380          sprintf( painCave.errMsg,
381                   "Electrostatic::addType could not convert GenericData to "
382                   "Quadrupole Moments for\n"
383                   "\tatom type %s\n", daType->getName().c_str());
384          painCave.severity = OPENMD_ERROR;
385          painCave.isFatal = 1;
386          simError();          
387        }
312          electrostaticAtomData.is_Quadrupole = true;
313 <        electrostaticAtomData.quadrupole_moments = v3dData->getData();
313 >        electrostaticAtomData.quadrupole_moments = ma.getQuadrupoleMoments();
314        }
315      }
316      
317 <    AtomTypeProperties atp = atomType->getATP();    
317 >    FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType);
318 >
319 >    if (fqa.isFluctuatingCharge()) {
320 >      electrostaticAtomData.is_Fluctuating = true;
321 >      electrostaticAtomData.electronegativity = fqa.getElectronegativity();
322 >      electrostaticAtomData.hardness = fqa.getHardness();
323 >      electrostaticAtomData.slaterN = fqa.getSlaterN();
324 >      electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
325 >    }
326  
327      pair<map<int,AtomType*>::iterator,bool> ret;    
328 <    ret = ElectrostaticList.insert( pair<int,AtomType*>(atp.ident, atomType) );
328 >    ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(),
329 >                                                        atomType) );
330      if (ret.second == false) {
331        sprintf( painCave.errMsg,
332                 "Electrostatic already had a previous entry with ident %d\n",
333 <               atp.ident);
333 >               atomType->getIdent() );
334        painCave.severity = OPENMD_INFO;
335        painCave.isFatal = 0;
336        simError();        
337      }
338      
339 <    ElectrostaticMap[atomType] = electrostaticAtomData;    
339 >    ElectrostaticMap[atomType] = electrostaticAtomData;  
340 >
341 >    // Now, iterate over all known types and add to the mixing map:
342 >    
343 >    map<AtomType*, ElectrostaticAtomData>::iterator it;
344 >    for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) {
345 >      AtomType* atype2 = (*it).first;
346 >      ElectrostaticAtomData eaData2 = (*it).second;
347 >      if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) {
348 >        
349 >        RealType a = electrostaticAtomData.slaterZeta;
350 >        RealType b = eaData2.slaterZeta;
351 >        int m = electrostaticAtomData.slaterN;
352 >        int n = eaData2.slaterN;
353 >
354 >        // Create the spline of the coulombic integral for s-type
355 >        // Slater orbitals.  Add a 2 angstrom safety window to deal
356 >        // with cutoffGroups that have charged atoms longer than the
357 >        // cutoffRadius away from each other.
358 >
359 >        RealType rval;
360 >        RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
361 >        vector<RealType> rvals;
362 >        vector<RealType> J1vals;
363 >        vector<RealType> J2vals;
364 >        // don't start at i = 0, as rval = 0 is undefined for the slater overlap integrals.
365 >        for (int i = 1; i < np_+1; i++) {
366 >          rval = RealType(i) * dr;
367 >          rvals.push_back(rval);
368 >          J1vals.push_back(sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromToBohr ) * PhysicalConstants::hartreeToKcal );
369 >          // may not be necessary if Slater coulomb integral is symmetric
370 >          J2vals.push_back(sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromToBohr ) * PhysicalConstants::hartreeToKcal );
371 >        }
372 >
373 >        CubicSpline* J1 = new CubicSpline();
374 >        J1->addPoints(rvals, J1vals);
375 >        CubicSpline* J2 = new CubicSpline();
376 >        J2->addPoints(rvals, J2vals);
377 >        
378 >        pair<AtomType*, AtomType*> key1, key2;
379 >        key1 = make_pair(atomType, atype2);
380 >        key2 = make_pair(atype2, atomType);
381 >        
382 >        Jij[key1] = J1;
383 >        Jij[key2] = J2;
384 >      }
385 >    }
386 >
387      return;
388    }
389    
390 <  void Electrostatic::setElectrostaticCutoffRadius( RealType theECR,
391 <                                                    RealType theRSW ) {
412 <    cutoffRadius_ = theECR;
390 >  void Electrostatic::setCutoffRadius( RealType rCut ) {
391 >    cutoffRadius_ = rCut;
392      rrf_ = cutoffRadius_;
414    rt_ = theRSW;
393      haveCutoffRadius_ = true;
394    }
395 +
396 +  void Electrostatic::setSwitchingRadius( RealType rSwitch ) {
397 +    rt_ = rSwitch;
398 +  }
399    void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
400      summationMethod_ = esm;
401    }
# Line 443 | Line 425 | namespace OpenMD {
425      RealType ct_i, ct_j, ct_ij, a1;
426      RealType riji, ri, ri2, ri3, ri4;
427      RealType pref, vterm, epot, dudr;
428 +    RealType vpair(0.0);
429      RealType scale, sc2;
430      RealType pot_term, preVal, rfVal;
431      RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
432      RealType preSw, preSwSc;
433      RealType c1, c2, c3, c4;
434 <    RealType erfcVal, derfcVal;
434 >    RealType erfcVal(1.0), derfcVal(0.0);
435      RealType BigR;
436 +    RealType two(2.0), three(3.0);
437  
438      Vector3d Q_i, Q_j;
439      Vector3d ux_i, uy_i, uz_i;
# Line 459 | Line 443 | namespace OpenMD {
443      Vector3d rhatdot2, rhatc4;
444      Vector3d dVdr;
445  
446 +    // variables for indirect (reaction field) interactions for excluded pairs:
447 +    RealType indirect_Pot(0.0);
448 +    RealType indirect_vpair(0.0);
449 +    Vector3d indirect_dVdr(V3Zero);
450 +    Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero);
451 +
452 +    RealType coulInt, vFluc1(0.0), vFluc2(0.0);
453      pair<RealType, RealType> res;
454 +    
455 +    // splines for coulomb integrals
456 +    CubicSpline* J1;
457 +    CubicSpline* J2;
458      
459      if (!initialized_) initialize();
460      
461 <    ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes->first];
462 <    ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes->second];
461 >    ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
462 >    ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
463      
464      // some variables we'll need independent of electrostatic type:
465  
# Line 477 | Line 472 | namespace OpenMD {
472      bool i_is_Dipole = data1.is_Dipole;
473      bool i_is_SplitDipole = data1.is_SplitDipole;
474      bool i_is_Quadrupole = data1.is_Quadrupole;
475 +    bool i_is_Fluctuating = data1.is_Fluctuating;
476  
477      bool j_is_Charge = data2.is_Charge;
478      bool j_is_Dipole = data2.is_Dipole;
479      bool j_is_SplitDipole = data2.is_SplitDipole;
480      bool j_is_Quadrupole = data2.is_Quadrupole;
481 +    bool j_is_Fluctuating = data2.is_Fluctuating;
482      
483 <    if (i_is_Charge)
484 <      q_i = data1.charge;
483 >    if (i_is_Charge) {
484 >      q_i = data1.fixedCharge;
485  
486 +      if (i_is_Fluctuating) {
487 +        q_i += *(idat.flucQ1);
488 +      }
489 +      
490 +      if (idat.excluded) {
491 +        *(idat.skippedCharge2) += q_i;
492 +      }
493 +    }
494 +
495      if (i_is_Dipole) {
496        mu_i = data1.dipole_moment;
497        uz_i = idat.eFrame1->getColumn(2);
# Line 517 | Line 523 | namespace OpenMD {
523        duduz_i = V3Zero;
524      }
525  
526 <    if (j_is_Charge)
527 <      q_j = data2.charge;
526 >    if (j_is_Charge) {
527 >      q_j = data2.fixedCharge;
528  
529 +      if (j_is_Fluctuating)
530 +        q_j += *(idat.flucQ2);
531 +
532 +      if (idat.excluded) {
533 +        *(idat.skippedCharge1) += q_j;
534 +      }
535 +    }
536 +
537 +
538      if (j_is_Dipole) {
539        mu_j = data2.dipole_moment;
540        uz_j = idat.eFrame2->getColumn(2);
# Line 551 | Line 566 | namespace OpenMD {
566        duduz_j = V3Zero;
567      }
568      
569 +    if (i_is_Fluctuating && j_is_Fluctuating) {
570 +      J1 = Jij[idat.atypes];
571 +      J2 = Jij[make_pair(idat.atypes.second, idat.atypes.first)];
572 +    }
573 +
574      epot = 0.0;
575      dVdr = V3Zero;
576      
# Line 562 | Line 582 | namespace OpenMD {
582            res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
583            erfcVal = res.first;
584            derfcVal = res.second;
585 +
586 +          //erfcVal = erfc(dampingAlpha_ * *(idat.rij));
587 +          //derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
588 +
589            c1 = erfcVal * riji;
590            c2 = (-derfcVal + c1) * riji;
591          } else {
# Line 569 | Line 593 | namespace OpenMD {
593            c2 = c1 * riji;
594          }
595  
596 <        preVal =  *(idat.electroMult) * pre11_ * q_i * q_j;
596 >        preVal =  *(idat.electroMult) * pre11_;
597          
598          if (summationMethod_ == esm_SHIFTED_POTENTIAL) {
599            vterm = preVal * (c1 - c1c_);
# Line 580 | Line 604 | namespace OpenMD {
604            dudr  =  *(idat.sw)  * preVal * (c2c_ - c2);
605  
606          } else if (summationMethod_ == esm_REACTION_FIELD) {
607 <          rfVal =  *(idat.electroMult) * preRF_ *  *(idat.rij)  *  *(idat.rij) ;
607 >          rfVal = preRF_ *  *(idat.rij)  *  *(idat.rij);
608 >
609            vterm = preVal * ( riji + rfVal );            
610            dudr  =  *(idat.sw)  * preVal * ( 2.0 * rfVal - riji ) * riji;
611 +          
612 +          // if this is an excluded pair, there are still indirect
613 +          // interactions via the reaction field we must worry about:
614  
615 +          if (idat.excluded) {
616 +            indirect_vpair += preVal * rfVal;
617 +            indirect_Pot += *(idat.sw) * preVal * rfVal;
618 +            indirect_dVdr += *(idat.sw)  * preVal * two * rfVal  * riji * rhat;
619 +          }
620 +          
621          } else {
588          vterm = preVal * riji * erfcVal;            
622  
623 +          vterm = preVal * riji * erfcVal;          
624            dudr  = -  *(idat.sw)  * preVal * c2;
625 +          
626 +        }
627 +        
628 +        vpair += vterm * q_i * q_j;
629 +        epot +=  *(idat.sw)  * vterm * q_i * q_j;
630 +        dVdr += dudr * rhat * q_i * q_j;
631 +
632 +        if (i_is_Fluctuating) {
633 +          if (idat.excluded) {
634 +            // vFluc1 is the difference between the direct coulomb integral
635 +            // and the normal 1/r-like  interaction between point charges.
636 +            coulInt = J1->getValueAt( *(idat.rij) );
637 +            vFluc1 = coulInt - (*(idat.sw) * vterm);
638 +          } else {
639 +            vFluc1 = 0.0;
640 +          }
641 +          *(idat.dVdFQ1) += ( *(idat.sw) * vterm + vFluc1 ) * q_j;
642 +        }
643  
644 +        if (j_is_Fluctuating) {
645 +          if (idat.excluded) {
646 +            // vFluc2 is the difference between the direct coulomb integral
647 +            // and the normal 1/r-like  interaction between point charges.
648 +            coulInt = J2->getValueAt( *(idat.rij) );
649 +            vFluc2 = coulInt - (*(idat.sw) * vterm);
650 +          } else {
651 +            vFluc2 = 0.0;
652 +          }
653 +          *(idat.dVdFQ2) += ( *(idat.sw) * vterm + vFluc2 ) * q_i;
654          }
655 +          
656  
594        *(idat.vpair) += vterm;
595        epot +=  *(idat.sw)  * vterm;
596
597        dVdr += dudr * rhat;      
657        }
658  
659        if (j_is_Dipole) {
# Line 607 | Line 666 | namespace OpenMD {
666            ri3 = ri2 * riji;
667      
668            vterm = - pref * ct_j * ( ri2 - preRF2_ *  *(idat.rij)  );
669 <          *(idat.vpair) += vterm;
669 >          vpair += vterm;
670            epot +=  *(idat.sw)  * vterm;
671  
672 <          dVdr +=  -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
672 >          dVdr +=  -preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
673            duduz_j += -preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );  
674  
675 +          // Even if we excluded this pair from direct interactions,
676 +          // we still have the reaction-field-mediated charge-dipole
677 +          // interaction:
678 +
679 +          if (idat.excluded) {
680 +            indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij);
681 +            indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij);
682 +            indirect_dVdr += preSw * preRF2_ * uz_j;
683 +            indirect_duduz_j += preSw * rhat * preRF2_ *  *(idat.rij);
684 +          }
685 +                      
686          } else {
687            // determine the inverse r used if we have split dipoles
688            if (j_is_SplitDipole) {
# Line 628 | Line 698 | namespace OpenMD {
698  
699            if (screeningMethod_ == DAMPED) {
700              // assemble the damping variables
701 <            res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
702 <            erfcVal = res.first;
703 <            derfcVal = res.second;
701 >            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
702 >            //erfcVal = res.first;
703 >            //derfcVal = res.second;
704 >            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
705 >            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
706              c1 = erfcVal * ri;
707              c2 = (-derfcVal + c1) * ri;
708              c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
# Line 645 | Line 717 | namespace OpenMD {
717            // calculate the potential
718            pot_term =  scale * c2;
719            vterm = -pref * ct_j * pot_term;
720 <          *(idat.vpair) += vterm;
720 >          vpair += vterm;
721            epot +=  *(idat.sw)  * vterm;
722              
723            // calculate derivatives for forces and torques
# Line 654 | Line 726 | namespace OpenMD {
726            duduz_j += -preSw * pot_term * rhat;
727  
728          }
729 +        if (i_is_Fluctuating) {
730 +          *(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i;
731 +        }
732        }
733  
734        if (j_is_Quadrupole) {
# Line 665 | Line 740 | namespace OpenMD {
740            
741          if (screeningMethod_ == DAMPED) {
742            // assemble the damping variables
743 <          res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
744 <          erfcVal = res.first;
745 <          derfcVal = res.second;
743 >          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
744 >          //erfcVal = res.first;
745 >          //derfcVal = res.second;
746 >          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
747 >          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
748            c1 = erfcVal * riji;
749            c2 = (-derfcVal + c1) * riji;
750            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
# Line 684 | Line 761 | namespace OpenMD {
761          c2ri = c2 * riji;
762          c3ri = c3 * riji;
763          c4rij = c4 *  *(idat.rij) ;
764 <        rhatdot2 = 2.0 * rhat * c3;
764 >        rhatdot2 = two * rhat * c3;
765          rhatc4 = rhat * c4rij;
766  
767          // calculate the potential
# Line 692 | Line 769 | namespace OpenMD {
769                       qyy_j * (cy2*c3 - c2ri) +
770                       qzz_j * (cz2*c3 - c2ri) );
771          vterm = pref * pot_term;
772 <        *(idat.vpair) += vterm;
772 >        vpair += vterm;
773          epot +=  *(idat.sw)  * vterm;
774                  
775          // calculate derivatives for the forces and torques
776  
777 <        dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (2.0*cx_j*ux_j + rhat)*c3ri) +
778 <                           qyy_j* (cy2*rhatc4 - (2.0*cy_j*uy_j + rhat)*c3ri) +
779 <                           qzz_j* (cz2*rhatc4 - (2.0*cz_j*uz_j + rhat)*c3ri));
777 >        dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (two*cx_j*ux_j + rhat)*c3ri) +
778 >                           qyy_j* (cy2*rhatc4 - (two*cy_j*uy_j + rhat)*c3ri) +
779 >                           qzz_j* (cz2*rhatc4 - (two*cz_j*uz_j + rhat)*c3ri));
780                            
781          dudux_j += preSw * qxx_j * cx_j * rhatdot2;
782          duduy_j += preSw * qyy_j * cy_j * rhatdot2;
783          duduz_j += preSw * qzz_j * cz_j * rhatdot2;
784 +        if (i_is_Fluctuating) {
785 +          *(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i;
786 +        }
787 +
788        }
789      }
790      
# Line 720 | Line 801 | namespace OpenMD {
801            ri3 = ri2 * riji;
802  
803            vterm = pref * ct_i * ( ri2 - preRF2_ *  *(idat.rij)  );
804 <          *(idat.vpair) += vterm;
804 >          vpair += vterm;
805            epot +=  *(idat.sw)  * vterm;
806            
807 <          dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);
807 >          dVdr += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_ * uz_i);
808            
809            duduz_i += preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );
810 +
811 +          // Even if we excluded this pair from direct interactions,
812 +          // we still have the reaction-field-mediated charge-dipole
813 +          // interaction:
814 +
815 +          if (idat.excluded) {
816 +            indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij);
817 +            indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij);
818 +            indirect_dVdr += -preSw * preRF2_ * uz_i;
819 +            indirect_duduz_i += -preSw * rhat * preRF2_ *  *(idat.rij);
820 +          }
821              
822          } else {
823            
# Line 743 | Line 835 | namespace OpenMD {
835              
836            if (screeningMethod_ == DAMPED) {
837              // assemble the damping variables
838 <            res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
839 <            erfcVal = res.first;
840 <            derfcVal = res.second;
838 >            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
839 >            //erfcVal = res.first;
840 >            //derfcVal = res.second;
841 >            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
842 >            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
843              c1 = erfcVal * ri;
844              c2 = (-derfcVal + c1) * ri;
845              c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
# Line 760 | Line 854 | namespace OpenMD {
854            // calculate the potential
855            pot_term = c2 * scale;
856            vterm = pref * ct_i * pot_term;
857 <          *(idat.vpair) += vterm;
857 >          vpair += vterm;
858            epot +=  *(idat.sw)  * vterm;
859  
860            // calculate derivatives for the forces and torques
861            dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3);
862            duduz_i += preSw * pot_term * rhat;
863          }
864 +
865 +        if (j_is_Fluctuating) {
866 +          *(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j;
867 +        }
868 +
869        }
870  
871        if (j_is_Dipole) {
# Line 783 | Line 882 | namespace OpenMD {
882  
883            vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
884                             preRF2_ * ct_ij );
885 <          *(idat.vpair) += vterm;
885 >          vpair += vterm;
886            epot +=  *(idat.sw)  * vterm;
887              
888            a1 = 5.0 * ct_i * ct_j - ct_ij;
889              
890 <          dVdr += preSw * 3.0 * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
890 >          dVdr += preSw * three * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
891  
892 <          duduz_i += preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
893 <          duduz_j += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_*uz_i);
892 >          duduz_i += preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
893 >          duduz_j += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_*uz_i);
894  
895 +          if (idat.excluded) {
896 +            indirect_vpair +=  - pref * preRF2_ * ct_ij;
897 +            indirect_Pot +=    - preSw * preRF2_ * ct_ij;
898 +            indirect_duduz_i += -preSw * preRF2_ * uz_j;
899 +            indirect_duduz_j += -preSw * preRF2_ * uz_i;
900 +          }
901 +
902          } else {
903            
904            if (i_is_SplitDipole) {
# Line 815 | Line 921 | namespace OpenMD {
921            }
922            if (screeningMethod_ == DAMPED) {
923              // assemble damping variables
924 <            res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
925 <            erfcVal = res.first;
926 <            derfcVal = res.second;
924 >            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
925 >            //erfcVal = res.first;
926 >            //derfcVal = res.second;
927 >            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
928 >            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
929              c1 = erfcVal * ri;
930              c2 = (-derfcVal + c1) * ri;
931              c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
# Line 842 | Line 950 | namespace OpenMD {
950            // calculate the potential
951            pot_term = (ct_ij * c2ri - ctidotj * c3);
952            vterm = pref * pot_term;
953 <          *(idat.vpair) += vterm;
953 >          vpair += vterm;
954            epot +=  *(idat.sw)  * vterm;
955  
956            // calculate derivatives for the forces and torques
# Line 866 | Line 974 | namespace OpenMD {
974  
975          if (screeningMethod_ == DAMPED) {
976            // assemble the damping variables
977 <          res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
978 <          erfcVal = res.first;
979 <          derfcVal = res.second;
977 >          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
978 >          //erfcVal = res.first;
979 >          //derfcVal = res.second;
980 >          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
981 >          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
982            c1 = erfcVal * riji;
983            c2 = (-derfcVal + c1) * riji;
984            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
# Line 885 | Line 995 | namespace OpenMD {
995          c2ri = c2 * riji;
996          c3ri = c3 * riji;
997          c4rij = c4 *  *(idat.rij) ;
998 <        rhatdot2 = 2.0 * rhat * c3;
998 >        rhatdot2 = two * rhat * c3;
999          rhatc4 = rhat * c4rij;
1000  
1001          // calculate the potential
# Line 894 | Line 1004 | namespace OpenMD {
1004                       qzz_i * (cz2 * c3 - c2ri) );
1005          
1006          vterm = pref * pot_term;
1007 <        *(idat.vpair) += vterm;
1007 >        vpair += vterm;
1008          epot +=  *(idat.sw)  * vterm;
1009  
1010          // calculate the derivatives for the forces and torques
1011  
1012 <        dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (2.0*cx_i*ux_i + rhat)*c3ri) +
1013 <                          qyy_i* (cy2*rhatc4 - (2.0*cy_i*uy_i + rhat)*c3ri) +
1014 <                          qzz_i* (cz2*rhatc4 - (2.0*cz_i*uz_i + rhat)*c3ri));
1012 >        dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (two*cx_i*ux_i + rhat)*c3ri) +
1013 >                          qyy_i* (cy2*rhatc4 - (two*cy_i*uy_i + rhat)*c3ri) +
1014 >                          qzz_i* (cz2*rhatc4 - (two*cz_i*uz_i + rhat)*c3ri));
1015  
1016          dudux_i += preSw * qxx_i * cx_i *  rhatdot2;
1017          duduy_i += preSw * qyy_i * cy_i *  rhatdot2;
1018          duduz_i += preSw * qzz_i * cz_i *  rhatdot2;
1019 +
1020 +        if (j_is_Fluctuating) {
1021 +          *(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j;
1022 +        }
1023 +
1024        }
1025      }
1026  
912    idat.pot[ELECTROSTATIC_FAMILY] += epot;
913    *(idat.f1) += dVdr;
1027  
1028 <    if (i_is_Dipole || i_is_Quadrupole)
1029 <      *(idat.t1) -= cross(uz_i, duduz_i);
1030 <    if (i_is_Quadrupole) {
1031 <      *(idat.t1) -= cross(ux_i, dudux_i);
1032 <      *(idat.t1) -= cross(uy_i, duduy_i);
1033 <    }
1034 <    
1035 <    if (j_is_Dipole || j_is_Quadrupole)
1036 <      *(idat.t2) -= cross(uz_j, duduz_j);
1037 <    if (j_is_Quadrupole) {
1038 <      *(idat.t2) -= cross(uz_j, dudux_j);
1039 <      *(idat.t2) -= cross(uz_j, duduy_j);
1040 <    }
1028 >    if (!idat.excluded) {
1029 >      *(idat.vpair) += vpair;
1030 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
1031 >      *(idat.f1) += dVdr;
1032 >      
1033 >      if (i_is_Dipole || i_is_Quadrupole)
1034 >        *(idat.t1) -= cross(uz_i, duduz_i);
1035 >      if (i_is_Quadrupole) {
1036 >        *(idat.t1) -= cross(ux_i, dudux_i);
1037 >        *(idat.t1) -= cross(uy_i, duduy_i);
1038 >      }
1039 >      
1040 >      if (j_is_Dipole || j_is_Quadrupole)
1041 >        *(idat.t2) -= cross(uz_j, duduz_j);
1042 >      if (j_is_Quadrupole) {
1043 >        *(idat.t2) -= cross(uz_j, dudux_j);
1044 >        *(idat.t2) -= cross(uz_j, duduy_j);
1045 >      }
1046  
1047 <    return;
930 <  }  
1047 >    } else {
1048  
1049 <  void Electrostatic::calcSkipCorrection(InteractionData &idat) {
1049 >      // only accumulate the forces and torques resulting from the
1050 >      // indirect reaction field terms.
1051  
1052 <    if (!initialized_) initialize();
935 <    
936 <    ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes->first];
937 <    ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes->second];
938 <    
939 <    // logicals
940 <
941 <    bool i_is_Charge = data1.is_Charge;
942 <    bool i_is_Dipole = data1.is_Dipole;
943 <
944 <    bool j_is_Charge = data2.is_Charge;
945 <    bool j_is_Dipole = data2.is_Dipole;
946 <
947 <    RealType q_i, q_j;
948 <    
949 <    // The skippedCharge computation is needed by the real-space cutoff methods
950 <    // (i.e. shifted force and shifted potential)
951 <
952 <    if (i_is_Charge) {
953 <      q_i = data1.charge;
954 <      *(idat.skippedCharge2) += q_i;
955 <    }
956 <
957 <    if (j_is_Charge) {
958 <      q_j = data2.charge;
959 <      *(idat.skippedCharge1) += q_j;
960 <    }
961 <
962 <    // the rest of this function should only be necessary for reaction field.
963 <
964 <    if (summationMethod_ == esm_REACTION_FIELD) {
965 <      RealType riji, ri2, ri3;
966 <      RealType mu_i, ct_i;
967 <      RealType mu_j, ct_j;
968 <      RealType preVal, rfVal, vterm, dudr, pref, myPot(0.0);
969 <      Vector3d dVdr, uz_i, uz_j, duduz_i, duduz_j, rhat;
970 <
971 <      // some variables we'll need independent of electrostatic type:
1052 >      *(idat.vpair) += indirect_vpair;
1053        
1054 <      riji = 1.0 /  *(idat.rij) ;
1055 <      rhat =  *(idat.d)  * riji;
1056 <
1057 <      if (i_is_Dipole) {
977 <        mu_i = data1.dipole_moment;
978 <        uz_i = idat.eFrame1->getColumn(2);      
979 <        ct_i = dot(uz_i, rhat);
980 <        duduz_i = V3Zero;
981 <      }
982 <            
983 <      if (j_is_Dipole) {
984 <        mu_j = data2.dipole_moment;
985 <        uz_j = idat.eFrame2->getColumn(2);      
986 <        ct_j = dot(uz_j, rhat);
987 <        duduz_j = V3Zero;
988 <      }
989 <    
990 <      if (i_is_Charge) {
991 <        if (j_is_Charge) {
992 <          preVal =  *(idat.electroMult) * pre11_ * q_i * q_j;
993 <          rfVal = preRF_ *  *(idat.rij)  *  *(idat.rij) ;
994 <          vterm = preVal * rfVal;
995 <          myPot +=  *(idat.sw)  * vterm;        
996 <          dudr  =  *(idat.sw)  * preVal * 2.0 * rfVal * riji;        
997 <          dVdr += dudr * rhat;
998 <        }
999 <        
1000 <        if (j_is_Dipole) {
1001 <          ri2 = riji * riji;
1002 <          ri3 = ri2 * riji;        
1003 <          pref =  *(idat.electroMult) * pre12_ * q_i * mu_j;
1004 <          vterm = - pref * ct_j * ( ri2 - preRF2_ *  *(idat.rij)  );
1005 <          myPot +=  *(idat.sw)  * vterm;        
1006 <          dVdr += - *(idat.sw)  * pref * ( ri3 * ( uz_j - 3.0 * ct_j * rhat) - preRF2_ * uz_j);
1007 <          duduz_j += - *(idat.sw)  * pref * rhat * (ri2 - preRF2_ *  *(idat.rij) );
1008 <        }
1009 <      }
1010 <      if (i_is_Dipole) {
1011 <        if (j_is_Charge) {
1012 <          ri2 = riji * riji;
1013 <          ri3 = ri2 * riji;        
1014 <          pref =  *(idat.electroMult) * pre12_ * q_j * mu_i;
1015 <          vterm = - pref * ct_i * ( ri2 - preRF2_ *  *(idat.rij)  );
1016 <          myPot +=  *(idat.sw)  * vterm;        
1017 <          dVdr +=  *(idat.sw)  * pref * ( ri3 * ( uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);      
1018 <          duduz_i +=  *(idat.sw)  * pref * rhat * (ri2 - preRF2_ *  *(idat.rij));
1019 <        }
1020 <      }
1054 >      (*(idat.excludedPot))[ELECTROSTATIC_FAMILY] +=   (*(idat.sw) * vterm +
1055 >                                                        vFluc1 ) * q_i * q_j;
1056 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot;
1057 >      *(idat.f1) += indirect_dVdr;
1058        
1022      // accumulate the forces and torques resulting from the self term
1023      idat.pot[ELECTROSTATIC_FAMILY] += myPot;
1024      *(idat.f1) += dVdr;
1025      
1059        if (i_is_Dipole)
1060 <        *(idat.t1) -= cross(uz_i, duduz_i);
1060 >        *(idat.t1) -= cross(uz_i, indirect_duduz_i);
1061        if (j_is_Dipole)
1062 <        *(idat.t2) -= cross(uz_j, duduz_j);
1062 >        *(idat.t2) -= cross(uz_j, indirect_duduz_j);
1063      }
1064 <  }
1064 >
1065 >    return;
1066 >  }  
1067      
1068    void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1069 <    RealType mu1, preVal, chg1, self;
1035 <    
1069 >    RealType mu1, preVal, self;
1070      if (!initialized_) initialize();
1071 <    
1071 >
1072      ElectrostaticAtomData data = ElectrostaticMap[sdat.atype];
1073    
1074      // logicals
1041
1075      bool i_is_Charge = data.is_Charge;
1076      bool i_is_Dipole = data.is_Dipole;
1077 +    bool i_is_Fluctuating = data.is_Fluctuating;
1078 +    RealType chg1 = data.fixedCharge;  
1079 +    
1080 +    if (i_is_Fluctuating) {
1081 +      chg1 += *(sdat.flucQ);
1082 +      // dVdFQ is really a force, so this is negative the derivative
1083 +      *(sdat.dVdFQ) -=  *(sdat.flucQ) * data.hardness + data.electronegativity;
1084 +      (*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) *
1085 +        (*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity);
1086 +    }
1087  
1088      if (summationMethod_ == esm_REACTION_FIELD) {
1089        if (i_is_Dipole) {
1090          mu1 = data.dipole_moment;          
1091          preVal = pre22_ * preRF2_ * mu1 * mu1;
1092 <        sdat.pot[2] -= 0.5 * preVal;
1092 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal;
1093          
1094          // The self-correction term adds into the reaction field vector
1095          Vector3d uz_i = sdat.eFrame->getColumn(2);
# Line 1057 | Line 1100 | namespace OpenMD {
1100        }
1101      } else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) {
1102        if (i_is_Charge) {        
1060        chg1 = data.charge;
1103          if (screeningMethod_ == DAMPED) {
1104            self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1105          } else {        
1106            self = - 0.5 * rcuti_ * chg1 * (chg1 +  *(sdat.skippedCharge)) * pre11_;
1107          }
1108 <        sdat.pot[ELECTROSTATIC_FAMILY] += self;
1108 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1109        }
1110      }
1111    }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines