64 |
|
Globals* simParams_ = info_->getSimParams(); |
65 |
|
|
66 |
|
summationMap_["HARD"] = esm_HARD; |
67 |
+ |
summationMap_["NONE"] = esm_HARD; |
68 |
|
summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION; |
69 |
|
summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL; |
70 |
|
summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE; |
117 |
|
sprintf( painCave.errMsg, |
118 |
|
"Electrostatic::initialize: Unknown electrostaticSummationMethod.\n" |
119 |
|
"\t(Input file specified %s .)\n" |
120 |
< |
"\telectrostaticSummationMethod must be one of: \"none\",\n" |
120 |
> |
"\telectrostaticSummationMethod must be one of: \"hard\",\n" |
121 |
|
"\t\"shifted_potential\", \"shifted_force\", or \n" |
122 |
|
"\t\"reaction_field\".\n", myMethod.c_str() ); |
123 |
|
painCave.isFatal = 1; |
250 |
|
preRF2_ = 2.0 * preRF_; |
251 |
|
} |
252 |
|
|
253 |
< |
RealType dx = cutoffRadius_ / RealType(np_ - 1); |
253 |
> |
// Add a 2 angstrom safety window to deal with cutoffGroups that |
254 |
> |
// have charged atoms longer than the cutoffRadius away from each |
255 |
> |
// other. Splining may not be the best choice here. Direct calls |
256 |
> |
// to erfc might be preferrable. |
257 |
> |
|
258 |
> |
RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1); |
259 |
|
RealType rval; |
260 |
|
vector<RealType> rvals; |
261 |
|
vector<RealType> yvals; |
584 |
|
if (j_is_Charge) { |
585 |
|
if (screeningMethod_ == DAMPED) { |
586 |
|
// assemble the damping variables |
587 |
< |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
588 |
< |
erfcVal = res.first; |
589 |
< |
derfcVal = res.second; |
587 |
> |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
588 |
> |
//erfcVal = res.first; |
589 |
> |
//derfcVal = res.second; |
590 |
> |
|
591 |
> |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
592 |
> |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
593 |
> |
|
594 |
|
c1 = erfcVal * riji; |
595 |
|
c2 = (-derfcVal + c1) * riji; |
596 |
|
} else { |
677 |
|
|
678 |
|
if (screeningMethod_ == DAMPED) { |
679 |
|
// assemble the damping variables |
680 |
< |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
681 |
< |
erfcVal = res.first; |
682 |
< |
derfcVal = res.second; |
680 |
> |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
681 |
> |
//erfcVal = res.first; |
682 |
> |
//derfcVal = res.second; |
683 |
> |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
684 |
> |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
685 |
|
c1 = erfcVal * ri; |
686 |
|
c2 = (-derfcVal + c1) * ri; |
687 |
|
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
716 |
|
|
717 |
|
if (screeningMethod_ == DAMPED) { |
718 |
|
// assemble the damping variables |
719 |
< |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
720 |
< |
erfcVal = res.first; |
721 |
< |
derfcVal = res.second; |
719 |
> |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
720 |
> |
//erfcVal = res.first; |
721 |
> |
//derfcVal = res.second; |
722 |
> |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
723 |
> |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
724 |
|
c1 = erfcVal * riji; |
725 |
|
c2 = (-derfcVal + c1) * riji; |
726 |
|
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji; |
807 |
|
|
808 |
|
if (screeningMethod_ == DAMPED) { |
809 |
|
// assemble the damping variables |
810 |
< |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
811 |
< |
erfcVal = res.first; |
812 |
< |
derfcVal = res.second; |
810 |
> |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
811 |
> |
//erfcVal = res.first; |
812 |
> |
//derfcVal = res.second; |
813 |
> |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
814 |
> |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
815 |
|
c1 = erfcVal * ri; |
816 |
|
c2 = (-derfcVal + c1) * ri; |
817 |
|
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
888 |
|
} |
889 |
|
if (screeningMethod_ == DAMPED) { |
890 |
|
// assemble damping variables |
891 |
< |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
892 |
< |
erfcVal = res.first; |
893 |
< |
derfcVal = res.second; |
891 |
> |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
892 |
> |
//erfcVal = res.first; |
893 |
> |
//derfcVal = res.second; |
894 |
> |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
895 |
> |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
896 |
|
c1 = erfcVal * ri; |
897 |
|
c2 = (-derfcVal + c1) * ri; |
898 |
|
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
941 |
|
|
942 |
|
if (screeningMethod_ == DAMPED) { |
943 |
|
// assemble the damping variables |
944 |
< |
res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
945 |
< |
erfcVal = res.first; |
946 |
< |
derfcVal = res.second; |
944 |
> |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
945 |
> |
//erfcVal = res.first; |
946 |
> |
//derfcVal = res.second; |
947 |
> |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
948 |
> |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
949 |
|
c1 = erfcVal * riji; |
950 |
|
c2 = (-derfcVal + c1) * riji; |
951 |
|
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji; |
1010 |
|
|
1011 |
|
// only accumulate the forces and torques resulting from the |
1012 |
|
// indirect reaction field terms. |
1013 |
+ |
|
1014 |
|
*(idat.vpair) += indirect_vpair; |
1015 |
|
(*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot; |
1016 |
|
*(idat.f1) += indirect_dVdr; |
1024 |
|
|
1025 |
|
return; |
1026 |
|
} |
1006 |
– |
|
1007 |
– |
void Electrostatic::calcSkipCorrection(InteractionData &idat) { |
1008 |
– |
|
1009 |
– |
if (!initialized_) initialize(); |
1010 |
– |
|
1011 |
– |
ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first]; |
1012 |
– |
ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second]; |
1013 |
– |
|
1014 |
– |
// logicals |
1015 |
– |
|
1016 |
– |
bool i_is_Charge = data1.is_Charge; |
1017 |
– |
bool i_is_Dipole = data1.is_Dipole; |
1018 |
– |
|
1019 |
– |
bool j_is_Charge = data2.is_Charge; |
1020 |
– |
bool j_is_Dipole = data2.is_Dipole; |
1021 |
– |
|
1022 |
– |
RealType q_i, q_j; |
1023 |
– |
|
1024 |
– |
// The skippedCharge computation is needed by the real-space |
1025 |
– |
// cutoff methods (i.e. shifted force and shifted potential) |
1026 |
– |
|
1027 |
– |
if (i_is_Charge) { |
1028 |
– |
q_i = data1.charge; |
1029 |
– |
*(idat.skippedCharge2) += q_i; |
1030 |
– |
} |
1027 |
|
|
1032 |
– |
if (j_is_Charge) { |
1033 |
– |
q_j = data2.charge; |
1034 |
– |
*(idat.skippedCharge1) += q_j; |
1035 |
– |
} |
1036 |
– |
|
1037 |
– |
// the rest of this function should only be necessary for reaction field. |
1038 |
– |
|
1039 |
– |
if (summationMethod_ == esm_REACTION_FIELD) { |
1040 |
– |
RealType riji, ri2, ri3; |
1041 |
– |
RealType mu_i, ct_i; |
1042 |
– |
RealType mu_j, ct_j; |
1043 |
– |
RealType preVal, rfVal, vterm, dudr, pref, myPot(0.0); |
1044 |
– |
Vector3d dVdr, uz_i, uz_j, duduz_i, duduz_j, rhat; |
1045 |
– |
|
1046 |
– |
// some variables we'll need independent of electrostatic type: |
1047 |
– |
|
1048 |
– |
riji = 1.0 / *(idat.rij) ; |
1049 |
– |
rhat = *(idat.d) * riji; |
1050 |
– |
|
1051 |
– |
if (i_is_Dipole) { |
1052 |
– |
mu_i = data1.dipole_moment; |
1053 |
– |
uz_i = idat.eFrame1->getColumn(2); |
1054 |
– |
ct_i = dot(uz_i, rhat); |
1055 |
– |
duduz_i = V3Zero; |
1056 |
– |
} |
1057 |
– |
|
1058 |
– |
if (j_is_Dipole) { |
1059 |
– |
mu_j = data2.dipole_moment; |
1060 |
– |
uz_j = idat.eFrame2->getColumn(2); |
1061 |
– |
ct_j = dot(uz_j, rhat); |
1062 |
– |
duduz_j = V3Zero; |
1063 |
– |
} |
1064 |
– |
|
1065 |
– |
if (i_is_Charge) { |
1066 |
– |
if (j_is_Charge) { |
1067 |
– |
preVal = *(idat.electroMult) * pre11_ * q_i * q_j; |
1068 |
– |
rfVal = preRF_ * *(idat.rij) * *(idat.rij) ; |
1069 |
– |
vterm = preVal * rfVal; |
1070 |
– |
myPot += *(idat.sw) * vterm; |
1071 |
– |
dudr = *(idat.sw) * preVal * 2.0 * rfVal * riji; |
1072 |
– |
dVdr += dudr * rhat; |
1073 |
– |
} |
1074 |
– |
|
1075 |
– |
if (j_is_Dipole) { |
1076 |
– |
ri2 = riji * riji; |
1077 |
– |
ri3 = ri2 * riji; |
1078 |
– |
pref = *(idat.electroMult) * pre12_ * q_i * mu_j; |
1079 |
– |
vterm = - pref * ct_j * ( ri2 - preRF2_ * *(idat.rij) ); |
1080 |
– |
myPot += *(idat.sw) * vterm; |
1081 |
– |
dVdr += - *(idat.sw) * pref * ( ri3 * ( uz_j - 3.0 * ct_j * rhat) - preRF2_ * uz_j); |
1082 |
– |
duduz_j += - *(idat.sw) * pref * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
1083 |
– |
} |
1084 |
– |
} |
1085 |
– |
if (i_is_Dipole) { |
1086 |
– |
if (j_is_Charge) { |
1087 |
– |
ri2 = riji * riji; |
1088 |
– |
ri3 = ri2 * riji; |
1089 |
– |
pref = *(idat.electroMult) * pre12_ * q_j * mu_i; |
1090 |
– |
vterm = - pref * ct_i * ( ri2 - preRF2_ * *(idat.rij) ); |
1091 |
– |
myPot += *(idat.sw) * vterm; |
1092 |
– |
dVdr += *(idat.sw) * pref * ( ri3 * ( uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i); |
1093 |
– |
duduz_i += *(idat.sw) * pref * rhat * (ri2 - preRF2_ * *(idat.rij)); |
1094 |
– |
} |
1095 |
– |
} |
1096 |
– |
|
1097 |
– |
// accumulate the forces and torques resulting from the self term |
1098 |
– |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += myPot; |
1099 |
– |
*(idat.f1) += dVdr; |
1100 |
– |
|
1101 |
– |
if (i_is_Dipole) |
1102 |
– |
*(idat.t1) -= cross(uz_i, duduz_i); |
1103 |
– |
if (j_is_Dipole) |
1104 |
– |
*(idat.t2) -= cross(uz_j, duduz_j); |
1105 |
– |
} |
1106 |
– |
} |
1107 |
– |
|
1028 |
|
void Electrostatic::calcSelfCorrection(SelfData &sdat) { |
1029 |
|
RealType mu1, preVal, chg1, self; |
1030 |
|
|