| 361 |
|
vector<RealType> rvals; |
| 362 |
|
vector<RealType> J1vals; |
| 363 |
|
vector<RealType> J2vals; |
| 364 |
< |
for (int i = 0; i < np_; i++) { |
| 364 |
> |
// don't start at i = 0, as rval = 0 is undefined for the slater overlap integrals. |
| 365 |
> |
for (int i = 1; i < np_+1; i++) { |
| 366 |
|
rval = RealType(i) * dr; |
| 367 |
|
rvals.push_back(rval); |
| 368 |
|
J1vals.push_back(electrostaticAtomData.hardness * sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromsToBohr ) ); |
| 1050 |
|
// indirect reaction field terms. |
| 1051 |
|
|
| 1052 |
|
*(idat.vpair) += indirect_vpair; |
| 1053 |
< |
(*(idat.excludedPot))[ELECTROSTATIC_FAMILY] += epot; |
| 1053 |
> |
|
| 1054 |
> |
(*(idat.excludedPot))[ELECTROSTATIC_FAMILY] += (*(idat.sw) * vterm + |
| 1055 |
> |
vFluc1 ) * q_i * q_j; |
| 1056 |
|
(*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot; |
| 1057 |
|
*(idat.f1) += indirect_dVdr; |
| 1058 |
|
|
| 1081 |
|
chg1 += *(sdat.flucQ); |
| 1082 |
|
// dVdFQ is really a force, so this is negative the derivative |
| 1083 |
|
*(sdat.dVdFQ) -= *(sdat.flucQ) * data.hardness + data.electronegativity; |
| 1084 |
< |
cerr << "dVdFQ harmonic part = " << *(sdat.dVdFQ) << "\n"; |
| 1084 |
> |
(*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) * |
| 1085 |
> |
(*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity); |
| 1086 |
|
} |
| 1087 |
|
|
| 1088 |
|
if (summationMethod_ == esm_REACTION_FIELD) { |