| 217 |
|
addType(at); |
| 218 |
|
} |
| 219 |
|
|
| 220 |
– |
|
| 220 |
|
cutoffRadius2_ = cutoffRadius_ * cutoffRadius_; |
| 221 |
|
rcuti_ = 1.0 / cutoffRadius_; |
| 222 |
|
rcuti2_ = rcuti_ * rcuti_; |
| 283 |
|
electrostaticAtomData.is_Dipole = false; |
| 284 |
|
electrostaticAtomData.is_SplitDipole = false; |
| 285 |
|
electrostaticAtomData.is_Quadrupole = false; |
| 286 |
+ |
electrostaticAtomData.is_Fluctuating = false; |
| 287 |
|
|
| 288 |
|
FixedChargeAdapter fca = FixedChargeAdapter(atomType); |
| 289 |
|
|
| 364 |
|
rval = RealType(i) * dr; |
| 365 |
|
rvals.push_back(rval); |
| 366 |
|
J1vals.push_back( sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromsToBohr ) ); |
| 367 |
+ |
// may not be necessary if Slater coulomb integral is symmetric |
| 368 |
|
J2vals.push_back( sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromsToBohr ) ); |
| 369 |
|
} |
| 370 |
|
|
| 447 |
|
Vector3d indirect_dVdr(V3Zero); |
| 448 |
|
Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero); |
| 449 |
|
|
| 450 |
+ |
RealType coulInt, vFluc1(0.0), vFluc2(0.0); |
| 451 |
|
pair<RealType, RealType> res; |
| 452 |
+ |
|
| 453 |
+ |
// splines for coulomb integrals |
| 454 |
+ |
CubicSpline* J1; |
| 455 |
+ |
CubicSpline* J2; |
| 456 |
|
|
| 457 |
|
if (!initialized_) initialize(); |
| 458 |
|
|
| 470 |
|
bool i_is_Dipole = data1.is_Dipole; |
| 471 |
|
bool i_is_SplitDipole = data1.is_SplitDipole; |
| 472 |
|
bool i_is_Quadrupole = data1.is_Quadrupole; |
| 473 |
+ |
bool i_is_Fluctuating = data1.is_Fluctuating; |
| 474 |
|
|
| 475 |
|
bool j_is_Charge = data2.is_Charge; |
| 476 |
|
bool j_is_Dipole = data2.is_Dipole; |
| 477 |
|
bool j_is_SplitDipole = data2.is_SplitDipole; |
| 478 |
|
bool j_is_Quadrupole = data2.is_Quadrupole; |
| 479 |
+ |
bool j_is_Fluctuating = data2.is_Fluctuating; |
| 480 |
|
|
| 481 |
|
if (i_is_Charge) { |
| 482 |
|
q_i = data1.fixedCharge; |
| 483 |
+ |
|
| 484 |
+ |
if (i_is_Fluctuating) { |
| 485 |
+ |
q_i += *(idat.flucQ1); |
| 486 |
+ |
} |
| 487 |
+ |
|
| 488 |
|
if (idat.excluded) { |
| 489 |
|
*(idat.skippedCharge2) += q_i; |
| 490 |
|
} |
| 523 |
|
|
| 524 |
|
if (j_is_Charge) { |
| 525 |
|
q_j = data2.fixedCharge; |
| 526 |
+ |
|
| 527 |
+ |
if (i_is_Fluctuating) |
| 528 |
+ |
q_j += *(idat.flucQ2); |
| 529 |
+ |
|
| 530 |
|
if (idat.excluded) { |
| 531 |
|
*(idat.skippedCharge1) += q_j; |
| 532 |
|
} |
| 564 |
|
duduz_j = V3Zero; |
| 565 |
|
} |
| 566 |
|
|
| 567 |
+ |
if (i_is_Fluctuating && j_is_Fluctuating) { |
| 568 |
+ |
J1 = Jij[idat.atypes]; |
| 569 |
+ |
J2 = Jij[make_pair(idat.atypes.second, idat.atypes.first)]; |
| 570 |
+ |
} |
| 571 |
+ |
|
| 572 |
|
epot = 0.0; |
| 573 |
|
dVdr = V3Zero; |
| 574 |
|
|
| 620 |
|
|
| 621 |
|
vterm = preVal * riji * erfcVal; |
| 622 |
|
dudr = - *(idat.sw) * preVal * c2; |
| 623 |
< |
|
| 623 |
> |
|
| 624 |
|
} |
| 625 |
< |
|
| 625 |
> |
|
| 626 |
|
vpair += vterm; |
| 627 |
|
epot += *(idat.sw) * vterm; |
| 628 |
< |
dVdr += dudr * rhat; |
| 628 |
> |
dVdr += dudr * rhat; |
| 629 |
> |
|
| 630 |
> |
if (i_is_Fluctuating) { |
| 631 |
> |
if (idat.excluded) { |
| 632 |
> |
// vFluc1 is the difference between the direct coulomb integral |
| 633 |
> |
// and the normal 1/r-like interaction between point charges. |
| 634 |
> |
coulInt = J1->getValueAt( *(idat.rij) ); |
| 635 |
> |
vFluc1 = pre11_ * coulInt * q_i * q_j - (*(idat.sw) * vterm); |
| 636 |
> |
} else { |
| 637 |
> |
vFluc1 = 0.0; |
| 638 |
> |
} |
| 639 |
> |
*(idat.dVdFQ1) += ( *(idat.sw) * vterm + vFluc1 ) / q_i; |
| 640 |
> |
} |
| 641 |
> |
|
| 642 |
> |
if (j_is_Fluctuating) { |
| 643 |
> |
if (idat.excluded) { |
| 644 |
> |
// vFluc2 is the difference between the direct coulomb integral |
| 645 |
> |
// and the normal 1/r-like interaction between point charges. |
| 646 |
> |
coulInt = J2->getValueAt( *(idat.rij) ); |
| 647 |
> |
vFluc2 = pre11_ * coulInt * q_i * q_j - (*(idat.sw) * vterm); |
| 648 |
> |
} else { |
| 649 |
> |
vFluc2 = 0.0; |
| 650 |
> |
} |
| 651 |
> |
*(idat.dVdFQ2) += ( *(idat.sw) * vterm + vFluc2 ) / q_j; |
| 652 |
> |
} |
| 653 |
> |
|
| 654 |
> |
|
| 655 |
|
} |
| 656 |
|
|
| 657 |
|
if (j_is_Dipole) { |
| 724 |
|
duduz_j += -preSw * pot_term * rhat; |
| 725 |
|
|
| 726 |
|
} |
| 727 |
+ |
if (i_is_Fluctuating) { |
| 728 |
+ |
*(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i; |
| 729 |
+ |
} |
| 730 |
|
} |
| 731 |
|
|
| 732 |
|
if (j_is_Quadrupole) { |
| 779 |
|
dudux_j += preSw * qxx_j * cx_j * rhatdot2; |
| 780 |
|
duduy_j += preSw * qyy_j * cy_j * rhatdot2; |
| 781 |
|
duduz_j += preSw * qzz_j * cz_j * rhatdot2; |
| 782 |
+ |
if (i_is_Fluctuating) { |
| 783 |
+ |
*(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i; |
| 784 |
+ |
} |
| 785 |
+ |
|
| 786 |
|
} |
| 787 |
|
} |
| 788 |
|
|
| 858 |
|
// calculate derivatives for the forces and torques |
| 859 |
|
dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3); |
| 860 |
|
duduz_i += preSw * pot_term * rhat; |
| 861 |
+ |
} |
| 862 |
+ |
|
| 863 |
+ |
if (j_is_Fluctuating) { |
| 864 |
+ |
*(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j; |
| 865 |
|
} |
| 866 |
+ |
|
| 867 |
|
} |
| 868 |
|
|
| 869 |
|
if (j_is_Dipole) { |
| 1014 |
|
dudux_i += preSw * qxx_i * cx_i * rhatdot2; |
| 1015 |
|
duduy_i += preSw * qyy_i * cy_i * rhatdot2; |
| 1016 |
|
duduz_i += preSw * qzz_i * cz_i * rhatdot2; |
| 1017 |
+ |
|
| 1018 |
+ |
if (j_is_Fluctuating) { |
| 1019 |
+ |
*(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j; |
| 1020 |
+ |
} |
| 1021 |
+ |
|
| 1022 |
|
} |
| 1023 |
|
} |
| 1024 |
|
|
| 1057 |
|
*(idat.t2) -= cross(uz_j, indirect_duduz_j); |
| 1058 |
|
} |
| 1059 |
|
|
| 995 |
– |
|
| 1060 |
|
return; |
| 1061 |
|
} |
| 1062 |
|
|