ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Electrostatic.cpp
(Generate patch)

Comparing branches/development/src/nonbonded/Electrostatic.cpp (file contents):
Revision 1821 by gezelter, Mon Jan 7 20:05:43 2013 UTC vs.
Revision 1825 by gezelter, Wed Jan 9 19:27:52 2013 UTC

# Line 106 | Line 106 | namespace OpenMD {
106      angstromToM_ = 1.0e-10;
107      debyeToCm_ = 3.33564095198e-30;
108      
109 <    // number of points for electrostatic splines
110 <    np_ = 1000;
109 >    // Default number of points for electrostatic splines
110 >    np_ = 140;
111      
112      // variables to handle different summation methods for long-range
113      // electrostatics:
# Line 246 | Line 246 | namespace OpenMD {
246        b3c = (5.0 * b2c + pow(2.0*a2, 3) * expTerm * invArootPi) / r2;
247        b4c = (7.0 * b3c + pow(2.0*a2, 4) * expTerm * invArootPi) / r2;
248        b5c = (9.0 * b4c + pow(2.0*a2, 5) * expTerm * invArootPi) / r2;
249 <      selfMult_ = b0c  +  2.0 * a2 * invArootPi;
249 >      selfMult_ = b0c + a2 * invArootPi;
250      } else {
251        a2 = 0.0;
252        b0c = 1.0 / r;
# Line 279 | Line 279 | namespace OpenMD {
279      // working variables for Taylor expansion:
280      RealType rmRc, rmRc2, rmRc3, rmRc4;
281  
282 +    // Approximate using splines using a maximum of 0.1 Angstroms
283 +    // between points.
284 +    int nptest = int((cutoffRadius_ + 2.0) / 0.1);
285 +    np_ = (np_ > nptest) ? np_ : nptest;
286 +  
287      // Add a 2 angstrom safety window to deal with cutoffGroups that
288      // have charged atoms longer than the cutoffRadius away from each
289      // other.  Splining is almost certainly the best choice here.
# Line 685 | Line 690 | namespace OpenMD {
690      Vector3d D_a, D_b;  // Dipoles (space-fixed)
691      Mat3x3d  Q_a, Q_b;  // Quadrupoles (space-fixed)
692  
693 <    RealType ri, ri2, ri3, ri4;                  // Distance utility scalars
693 >    RealType ri;                                 // Distance utility scalar
694      RealType rdDa, rdDb;                         // Dipole utility scalars
695      Vector3d rxDa, rxDb;                         // Dipole utility vectors
696      RealType rdQar, rdQbr, trQa, trQb;           // Quadrupole utility scalars
# Line 695 | Line 700 | namespace OpenMD {
700      RealType DadDb, trQaQb, DadQbr, DbdQar;       // Cross-interaction scalars
701      RealType rQaQbr;
702      Vector3d DaxDb, DadQb, DbdQa, DaxQbr, DbxQar; // Cross-interaction vectors
703 <    Vector3d rQaQb, QaQbr, QaxQb, QbxQa, rQaxQbr, QbQar, rQbxQar;
704 <    Mat3x3d  QaQb, QbQa;                          // Cross-interaction matrices
703 >    Vector3d rQaQb, QaQbr, QaxQb, rQaxQbr;
704 >    Mat3x3d  QaQb;                                // Cross-interaction matrices
705  
706      RealType U(0.0);  // Potential
707      Vector3d F(0.0);  // Force
# Line 730 | Line 735 | namespace OpenMD {
735  
736      ri = 1.0 /  *(idat.rij);
737      Vector3d rhat =  *(idat.d)  * ri;
733    ri2 = ri * ri;
738        
739      // logicals
740  
# Line 792 | Line 796 | namespace OpenMD {
796        v45 = v45s->getValueAt( *(idat.rij) );
797        v46 = v46s->getValueAt( *(idat.rij) );
798      }
795
799  
800      // calculate the single-site contributions (fields, etc).
801      
# Line 1011 | Line 1014 | namespace OpenMD {
1014          Tb += pref * ((trQa*rxDb - 2.0 * DbxQar)*v31 + rxDb*rdQar*v32);
1015        }
1016        if (b_is_Quadrupole) {
1017 <        pref = pre44_ * *(idat.electroMult);
1017 >        pref = pre44_ * *(idat.electroMult);  // yes
1018          QaQb = Q_a * Q_b;
1016        QbQa = Q_b * Q_a;
1019          trQaQb = QaQb.trace();
1020          rQaQb = rhat * QaQb;
1021 <        QbQar = QbQa * rhat;
1020 <        QaQbr = QaQb * rhat;        
1021 >        QaQbr = QaQb * rhat;
1022          QaxQb = cross(Q_a, Q_b);
1022        QbxQa = cross(Q_b, Q_a);
1023          rQaQbr = dot(rQa, Qbr);
1024          rQaxQbr = cross(rQa, Qbr);
1025        //rQbxQar = cross(rQb, Qar);
1026
1027
1028        // First part of potential and associated forces:
1029        // U += pref * (trQa * trQb) * v41;
1030        // F += pref * rhat * (trQa * trQb) * v44;
1031        // Ta += 0.0;
1032        // Tb += 0.0;
1033
1034        // cerr << "Aa:\n";
1035        // cerr << *(idat.A1)  << "\n\n";
1036
1037        // cerr << "Ab:\n";
1038        // cerr << *(idat.A2)  << "\n\n";
1039
1040        // cerr << "Qa:\n";
1041        // cerr << Q_a << "\n\n";
1042        // cerr << "Qb:\n";
1043        // cerr << Q_b << "\n\n";
1044
1045        
1046        // Second part of potential and associated forces:
1047        // Probably suspect (particularly torques):
1048        // cerr << "trQaQb = " << trQaQb << "\n";
1049
1050        // U += pref * 2.0 * trQaQb * v41;
1051        // F += pref * rhat * (2.0 * trQaQb) * v44;
1052        // Ta += pref * (-4.0*QaxQb) * v41;
1053        // Tb += pref * (-4.0*QbxQa) * v41;
1054
1055        // cerr << "QaxQb = " << QaxQb << "\n";
1056        // cerr << "QbxQa = " << QbxQa << "\n";
1057
1058        // Third part of potential:
1059        // U += pref * (trQa * rdQbr) * v42;
1060        // F += pref * rhat * (trQa * rdQbr) * v45;
1061        // F += pref * 2.0 * (trQa * rQb) * v44;
1062        // Ta += 0.0;
1063        // Tb += pref * 2.0 * trQa * cross(rhat, Qbr) * v42;
1025          
1026          U  += pref * (trQa * trQb + 2.0 * trQaQb) * v41;
1027          U  += pref * (trQa * rdQbr + trQb * rdQar  + 4.0 * rQaQbr) * v42;
# Line 1083 | Line 1044 | namespace OpenMD {
1044  
1045          Tb += pref * (+ 4.0 * QaxQb * v41);
1046          Tb += pref * (- 2.0 * trQa * cross(rQb, rhat)
1047 <                      + 4.0 * cross(rhat, QbQar)
1047 >                      - 4.0 * cross(rQaQb, rhat)
1048                        + 4.0 * rQaxQbr) * v42;
1049 +        // Possible replacement for line 2 above:
1050 +        //             + 4.0 * cross(rhat, QbQar)
1051 +
1052          Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43;
1053  
1090        // Tb += pref * (+ 4.0 * QaxQb * v41);
1091        // Tb += pref * (- 2.0 * trQa * cross(rQb, rhat)
1092        //               - 4.0 * cross(rQaQb, rhat)
1093        //               + 4.0 * rQaxQbr) * v42;
1094        // Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43;
1095
1054          //  cerr << " tsum = " << Ta + Tb - cross(  *(idat.d) , F ) << "\n";
1055        }
1056      }
# Line 1134 | Line 1092 | namespace OpenMD {
1092          *(idat.t2) += *(idat.sw) * indirect_Tb;
1093      }
1094      return;
1095 <  }  
1095 >  }
1096      
1097    void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1098  
# Line 1177 | Line 1135 | namespace OpenMD {
1135        
1136      case esm_SHIFTED_FORCE:
1137      case esm_SHIFTED_POTENTIAL:
1138 <      if (i_is_Charge) {        
1139 <        self = -0.5 * selfMult_ * C_a * (C_a + *(sdat.skippedCharge)) * pre11_;
1138 >      if (i_is_Charge) {
1139 >        self = - selfMult_ * C_a * (C_a + *(sdat.skippedCharge)) * pre11_;
1140          (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1141        }
1142        break;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines