ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Electrostatic.cpp
(Generate patch)

Comparing branches/development/src/nonbonded/Electrostatic.cpp (file contents):
Revision 1586 by gezelter, Tue Jun 21 06:34:35 2011 UTC vs.
Revision 1718 by gezelter, Thu May 24 01:29:59 2012 UTC

# Line 34 | Line 34
34   * work.  Good starting points are:
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 < * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   #include <stdio.h>
# Line 46 | Line 47
47   #include "nonbonded/Electrostatic.hpp"
48   #include "utils/simError.h"
49   #include "types/NonBondedInteractionType.hpp"
50 < #include "types/DirectionalAtomType.hpp"
50 > #include "types/FixedChargeAdapter.hpp"
51 > #include "types/MultipoleAdapter.hpp"
52   #include "io/Globals.hpp"
53 + #include "nonbonded/SlaterIntegrals.hpp"
54 + #include "utils/PhysicalConstants.hpp"
55  
56 +
57   namespace OpenMD {
58    
59    Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
60 <                                  forceField_(NULL), info_(NULL), haveCutoffRadius_(false),
61 <                                  haveDampingAlpha_(false), haveDielectric_(false),
60 >                                  forceField_(NULL), info_(NULL),
61 >                                  haveCutoffRadius_(false),
62 >                                  haveDampingAlpha_(false),
63 >                                  haveDielectric_(false),
64                                    haveElectroSpline_(false)
65 < {}
65 >  {}
66    
67    void Electrostatic::initialize() {
68 <
68 >    
69      Globals* simParams_ = info_->getSimParams();
70  
71      summationMap_["HARD"]               = esm_HARD;
72 +    summationMap_["NONE"]               = esm_HARD;
73      summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
74      summationMap_["SHIFTED_POTENTIAL"]  = esm_SHIFTED_POTENTIAL;
75      summationMap_["SHIFTED_FORCE"]      = esm_SHIFTED_FORCE;    
# Line 114 | Line 122 | namespace OpenMD {
122          sprintf( painCave.errMsg,
123                   "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
124                   "\t(Input file specified %s .)\n"
125 <                 "\telectrostaticSummationMethod must be one of: \"none\",\n"
125 >                 "\telectrostaticSummationMethod must be one of: \"hard\",\n"
126                   "\t\"shifted_potential\", \"shifted_force\", or \n"
127                   "\t\"reaction_field\".\n", myMethod.c_str() );
128          painCave.isFatal = 1;
# Line 247 | Line 255 | namespace OpenMD {
255        preRF2_ = 2.0 * preRF_;
256      }
257      
258 <    RealType dx = cutoffRadius_ / RealType(np_ - 1);
258 >    // Add a 2 angstrom safety window to deal with cutoffGroups that
259 >    // have charged atoms longer than the cutoffRadius away from each
260 >    // other.  Splining may not be the best choice here.  Direct calls
261 >    // to erfc might be preferrable.
262 >
263 >    RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
264      RealType rval;
265      vector<RealType> rvals;
266      vector<RealType> yvals;
# Line 271 | Line 284 | namespace OpenMD {
284      electrostaticAtomData.is_SplitDipole = false;
285      electrostaticAtomData.is_Quadrupole = false;
286  
287 <    if (atomType->isCharge()) {
275 <      GenericData* data = atomType->getPropertyByName("Charge");
287 >    FixedChargeAdapter fca = FixedChargeAdapter(atomType);
288  
289 <      if (data == NULL) {
278 <        sprintf( painCave.errMsg, "Electrostatic::addType could not find "
279 <                 "Charge\n"
280 <                 "\tparameters for atomType %s.\n",
281 <                 atomType->getName().c_str());
282 <        painCave.severity = OPENMD_ERROR;
283 <        painCave.isFatal = 1;
284 <        simError();                  
285 <      }
286 <      
287 <      DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
288 <      if (doubleData == NULL) {
289 <        sprintf( painCave.errMsg,
290 <                 "Electrostatic::addType could not convert GenericData to "
291 <                 "Charge for\n"
292 <                 "\tatom type %s\n", atomType->getName().c_str());
293 <        painCave.severity = OPENMD_ERROR;
294 <        painCave.isFatal = 1;
295 <        simError();          
296 <      }
289 >    if (fca.isFixedCharge()) {
290        electrostaticAtomData.is_Charge = true;
291 <      electrostaticAtomData.charge = doubleData->getData();          
291 >      electrostaticAtomData.charge = fca.getCharge();
292      }
293  
294 <    if (atomType->isDirectional()) {
295 <      DirectionalAtomType* daType = dynamic_cast<DirectionalAtomType*>(atomType);
296 <      
304 <      if (daType->isDipole()) {
305 <        GenericData* data = daType->getPropertyByName("Dipole");
306 <        
307 <        if (data == NULL) {
308 <          sprintf( painCave.errMsg,
309 <                   "Electrostatic::addType could not find Dipole\n"
310 <                   "\tparameters for atomType %s.\n",
311 <                   daType->getName().c_str());
312 <          painCave.severity = OPENMD_ERROR;
313 <          painCave.isFatal = 1;
314 <          simError();                  
315 <        }
316 <      
317 <        DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
318 <        if (doubleData == NULL) {
319 <          sprintf( painCave.errMsg,
320 <                   "Electrostatic::addType could not convert GenericData to "
321 <                   "Dipole Moment\n"
322 <                   "\tfor atom type %s\n", daType->getName().c_str());
323 <          painCave.severity = OPENMD_ERROR;
324 <          painCave.isFatal = 1;
325 <          simError();          
326 <        }
294 >    MultipoleAdapter ma = MultipoleAdapter(atomType);
295 >    if (ma.isMultipole()) {
296 >      if (ma.isDipole()) {
297          electrostaticAtomData.is_Dipole = true;
298 <        electrostaticAtomData.dipole_moment = doubleData->getData();
298 >        electrostaticAtomData.dipole_moment = ma.getDipoleMoment();
299        }
300 <
331 <      if (daType->isSplitDipole()) {
332 <        GenericData* data = daType->getPropertyByName("SplitDipoleDistance");
333 <        
334 <        if (data == NULL) {
335 <          sprintf(painCave.errMsg,
336 <                  "Electrostatic::addType could not find SplitDipoleDistance\n"
337 <                  "\tparameter for atomType %s.\n",
338 <                  daType->getName().c_str());
339 <          painCave.severity = OPENMD_ERROR;
340 <          painCave.isFatal = 1;
341 <          simError();                  
342 <        }
343 <      
344 <        DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
345 <        if (doubleData == NULL) {
346 <          sprintf( painCave.errMsg,
347 <                   "Electrostatic::addType could not convert GenericData to "
348 <                   "SplitDipoleDistance for\n"
349 <                   "\tatom type %s\n", daType->getName().c_str());
350 <          painCave.severity = OPENMD_ERROR;
351 <          painCave.isFatal = 1;
352 <          simError();          
353 <        }
300 >      if (ma.isSplitDipole()) {
301          electrostaticAtomData.is_SplitDipole = true;
302 <        electrostaticAtomData.split_dipole_distance = doubleData->getData();
302 >        electrostaticAtomData.split_dipole_distance = ma.getSplitDipoleDistance();
303        }
304 <
358 <      if (daType->isQuadrupole()) {
359 <        GenericData* data = daType->getPropertyByName("QuadrupoleMoments");
360 <        
361 <        if (data == NULL) {
362 <          sprintf( painCave.errMsg,
363 <                   "Electrostatic::addType could not find QuadrupoleMoments\n"
364 <                   "\tparameter for atomType %s.\n",
365 <                   daType->getName().c_str());
366 <          painCave.severity = OPENMD_ERROR;
367 <          painCave.isFatal = 1;
368 <          simError();                  
369 <        }
370 <        
304 >      if (ma.isQuadrupole()) {
305          // Quadrupoles in OpenMD are set as the diagonal elements
306          // of the diagonalized traceless quadrupole moment tensor.
307          // The column vectors of the unitary matrix that diagonalizes
308          // the quadrupole moment tensor become the eFrame (or the
309          // electrostatic version of the body-fixed frame.
310 <
311 <        Vector3dGenericData* v3dData = dynamic_cast<Vector3dGenericData*>(data);
378 <        if (v3dData == NULL) {
379 <          sprintf( painCave.errMsg,
380 <                   "Electrostatic::addType could not convert GenericData to "
381 <                   "Quadrupole Moments for\n"
382 <                   "\tatom type %s\n", daType->getName().c_str());
383 <          painCave.severity = OPENMD_ERROR;
384 <          painCave.isFatal = 1;
385 <          simError();          
386 <        }
387 <        electrostaticAtomData.is_Quadrupole = true;
388 <        electrostaticAtomData.quadrupole_moments = v3dData->getData();
310 >        electrostaticAtomData.is_Quadrupole = true;
311 >        electrostaticAtomData.quadrupole_moments = ma.getQuadrupoleMoments();
312        }
313      }
314      
315 <    AtomTypeProperties atp = atomType->getATP();    
315 >    FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType);
316  
317 +    if (fqa.isFluctuatingCharge()) {
318 +      electrostaticAtomData.is_FluctuatingCharge = true;
319 +      electrostaticAtomData.electronegativity = fca.getElectronegativity();
320 +      electrostaticAtomData.hardness = fca.getHardness();
321 +      electrostaticAtomData.slaterN = fca.getSlaterN();
322 +      electrostaticAtomData.slaterZeta = fca.getSlaterZeta();
323 +    }
324 +
325      pair<map<int,AtomType*>::iterator,bool> ret;    
326 <    ret = ElectrostaticList.insert( pair<int,AtomType*>(atp.ident, atomType) );
326 >    ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(),
327 >                                                        atomType) );
328      if (ret.second == false) {
329        sprintf( painCave.errMsg,
330                 "Electrostatic already had a previous entry with ident %d\n",
331 <               atp.ident);
331 >               atomType->getIdent() );
332        painCave.severity = OPENMD_INFO;
333        painCave.isFatal = 0;
334        simError();        
335      }
336      
337 <    ElectrostaticMap[atomType] = electrostaticAtomData;    
337 >    ElectrostaticMap[atomType] = electrostaticAtomData;  
338 >
339 >    // Now, iterate over all known types and add to the mixing map:
340 >    
341 >    map<AtomType*, ElectrostaticAtomData>::iterator it;
342 >    for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) {
343 >      AtomType* atype2 = (*it).first;
344 >      
345 >      if ((*it).is_FluctuatingCharge && electrostaticAtomData.is_FluctuatingCharge) {
346 >        
347 >        RealType a = electrostaticAtomData.slaterZeta;
348 >        RealType b = (*it).slaterZeta;
349 >        int m = electrostaticAtomData.slaterN;
350 >        int n = (*it).slaterN;
351 >
352 >        // Create the spline of the coulombic integral for s-type
353 >        // Slater orbitals.  Add a 2 angstrom safety window to deal
354 >        // with cutoffGroups that have charged atoms longer than the
355 >        // cutoffRadius away from each other.
356 >
357 >        RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
358 >        vector<RealType> rvals;
359 >        vector<RealType> J1vals;
360 >        vector<RealType> J2vals;
361 >        for (int i = 0; i < np_; i++) {
362 >          rval = RealType(i) * dr;
363 >          rvals.push_back(rval);
364 >          J1vals.push_back( sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromsToBohr ) );
365 >          J2vals.push_back( sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromsToBohr ) );
366 >        }
367 >
368 >        CubicSpline J1 = new CubicSpline();
369 >        J1->addPoints(rvals, J1vals);
370 >        CubicSpline J2 = new CubicSpline();
371 >        J2->addPoints(rvals, J2vals);
372 >        
373 >        pair<AtomType*, AtomType*> key1, key2;
374 >        key1 = make_pair(atomType, atype2);
375 >        key2 = make_pair(atype2, atomType);
376 >        
377 >        Jij[key1] = J1;
378 >        Jij[key2] = J2;
379 >      }
380 >    }
381 >
382      return;
383    }
384    
# Line 444 | Line 420 | namespace OpenMD {
420      RealType ct_i, ct_j, ct_ij, a1;
421      RealType riji, ri, ri2, ri3, ri4;
422      RealType pref, vterm, epot, dudr;
423 +    RealType vpair(0.0);
424      RealType scale, sc2;
425      RealType pot_term, preVal, rfVal;
426      RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
427      RealType preSw, preSwSc;
428      RealType c1, c2, c3, c4;
429 <    RealType erfcVal, derfcVal;
429 >    RealType erfcVal(1.0), derfcVal(0.0);
430      RealType BigR;
431 +    RealType two(2.0), three(3.0);
432  
433      Vector3d Q_i, Q_j;
434      Vector3d ux_i, uy_i, uz_i;
# Line 460 | Line 438 | namespace OpenMD {
438      Vector3d rhatdot2, rhatc4;
439      Vector3d dVdr;
440  
441 +    // variables for indirect (reaction field) interactions for excluded pairs:
442 +    RealType indirect_Pot(0.0);
443 +    RealType indirect_vpair(0.0);
444 +    Vector3d indirect_dVdr(V3Zero);
445 +    Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero);
446 +
447      pair<RealType, RealType> res;
448      
449      if (!initialized_) initialize();
# Line 484 | Line 468 | namespace OpenMD {
468      bool j_is_SplitDipole = data2.is_SplitDipole;
469      bool j_is_Quadrupole = data2.is_Quadrupole;
470      
471 <    if (i_is_Charge)
471 >    if (i_is_Charge) {
472        q_i = data1.charge;
473 +      if (idat.excluded) {
474 +        *(idat.skippedCharge2) += q_i;
475 +      }
476 +    }
477  
478      if (i_is_Dipole) {
479        mu_i = data1.dipole_moment;
# Line 518 | Line 506 | namespace OpenMD {
506        duduz_i = V3Zero;
507      }
508  
509 <    if (j_is_Charge)
509 >    if (j_is_Charge) {
510        q_j = data2.charge;
511 +      if (idat.excluded) {
512 +        *(idat.skippedCharge1) += q_j;
513 +      }
514 +    }
515  
516 +
517      if (j_is_Dipole) {
518        mu_j = data2.dipole_moment;
519        uz_j = idat.eFrame2->getColumn(2);
# Line 560 | Line 553 | namespace OpenMD {
553        if (j_is_Charge) {
554          if (screeningMethod_ == DAMPED) {
555            // assemble the damping variables
556 <          res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
557 <          erfcVal = res.first;
558 <          derfcVal = res.second;
556 >          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
557 >          //erfcVal = res.first;
558 >          //derfcVal = res.second;
559 >
560 >          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
561 >          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
562 >
563            c1 = erfcVal * riji;
564            c2 = (-derfcVal + c1) * riji;
565          } else {
# Line 581 | Line 578 | namespace OpenMD {
578            dudr  =  *(idat.sw)  * preVal * (c2c_ - c2);
579  
580          } else if (summationMethod_ == esm_REACTION_FIELD) {
581 <          rfVal =  *(idat.electroMult) * preRF_ *  *(idat.rij)  *  *(idat.rij) ;
581 >          rfVal = preRF_ *  *(idat.rij)  *  *(idat.rij);
582 >
583            vterm = preVal * ( riji + rfVal );            
584            dudr  =  *(idat.sw)  * preVal * ( 2.0 * rfVal - riji ) * riji;
585 +          
586 +          // if this is an excluded pair, there are still indirect
587 +          // interactions via the reaction field we must worry about:
588  
589 +          if (idat.excluded) {
590 +            indirect_vpair += preVal * rfVal;
591 +            indirect_Pot += *(idat.sw) * preVal * rfVal;
592 +            indirect_dVdr += *(idat.sw)  * preVal * two * rfVal  * riji * rhat;
593 +          }
594 +          
595          } else {
589          vterm = preVal * riji * erfcVal;            
596  
597 +          vterm = preVal * riji * erfcVal;          
598            dudr  = -  *(idat.sw)  * preVal * c2;
599  
600          }
594
595        *(idat.vpair) += vterm;
596        epot +=  *(idat.sw)  * vterm;
601  
602 <        dVdr += dudr * rhat;      
602 >        vpair += vterm;
603 >        epot +=  *(idat.sw)  * vterm;
604 >        dVdr += dudr * rhat;                
605        }
606  
607        if (j_is_Dipole) {
# Line 608 | Line 614 | namespace OpenMD {
614            ri3 = ri2 * riji;
615      
616            vterm = - pref * ct_j * ( ri2 - preRF2_ *  *(idat.rij)  );
617 <          *(idat.vpair) += vterm;
617 >          vpair += vterm;
618            epot +=  *(idat.sw)  * vterm;
619  
620 <          dVdr +=  -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
620 >          dVdr +=  -preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
621            duduz_j += -preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );  
622  
623 +          // Even if we excluded this pair from direct interactions,
624 +          // we still have the reaction-field-mediated charge-dipole
625 +          // interaction:
626 +
627 +          if (idat.excluded) {
628 +            indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij);
629 +            indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij);
630 +            indirect_dVdr += preSw * preRF2_ * uz_j;
631 +            indirect_duduz_j += preSw * rhat * preRF2_ *  *(idat.rij);
632 +          }
633 +                      
634          } else {
635            // determine the inverse r used if we have split dipoles
636            if (j_is_SplitDipole) {
# Line 629 | Line 646 | namespace OpenMD {
646  
647            if (screeningMethod_ == DAMPED) {
648              // assemble the damping variables
649 <            res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
650 <            erfcVal = res.first;
651 <            derfcVal = res.second;
649 >            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
650 >            //erfcVal = res.first;
651 >            //derfcVal = res.second;
652 >            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
653 >            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
654              c1 = erfcVal * ri;
655              c2 = (-derfcVal + c1) * ri;
656              c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
# Line 646 | Line 665 | namespace OpenMD {
665            // calculate the potential
666            pot_term =  scale * c2;
667            vterm = -pref * ct_j * pot_term;
668 <          *(idat.vpair) += vterm;
668 >          vpair += vterm;
669            epot +=  *(idat.sw)  * vterm;
670              
671            // calculate derivatives for forces and torques
# Line 666 | Line 685 | namespace OpenMD {
685            
686          if (screeningMethod_ == DAMPED) {
687            // assemble the damping variables
688 <          res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
689 <          erfcVal = res.first;
690 <          derfcVal = res.second;
688 >          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
689 >          //erfcVal = res.first;
690 >          //derfcVal = res.second;
691 >          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
692 >          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
693            c1 = erfcVal * riji;
694            c2 = (-derfcVal + c1) * riji;
695            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
# Line 685 | Line 706 | namespace OpenMD {
706          c2ri = c2 * riji;
707          c3ri = c3 * riji;
708          c4rij = c4 *  *(idat.rij) ;
709 <        rhatdot2 = 2.0 * rhat * c3;
709 >        rhatdot2 = two * rhat * c3;
710          rhatc4 = rhat * c4rij;
711  
712          // calculate the potential
# Line 693 | Line 714 | namespace OpenMD {
714                       qyy_j * (cy2*c3 - c2ri) +
715                       qzz_j * (cz2*c3 - c2ri) );
716          vterm = pref * pot_term;
717 <        *(idat.vpair) += vterm;
717 >        vpair += vterm;
718          epot +=  *(idat.sw)  * vterm;
719                  
720          // calculate derivatives for the forces and torques
721  
722 <        dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (2.0*cx_j*ux_j + rhat)*c3ri) +
723 <                           qyy_j* (cy2*rhatc4 - (2.0*cy_j*uy_j + rhat)*c3ri) +
724 <                           qzz_j* (cz2*rhatc4 - (2.0*cz_j*uz_j + rhat)*c3ri));
722 >        dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (two*cx_j*ux_j + rhat)*c3ri) +
723 >                           qyy_j* (cy2*rhatc4 - (two*cy_j*uy_j + rhat)*c3ri) +
724 >                           qzz_j* (cz2*rhatc4 - (two*cz_j*uz_j + rhat)*c3ri));
725                            
726          dudux_j += preSw * qxx_j * cx_j * rhatdot2;
727          duduy_j += preSw * qyy_j * cy_j * rhatdot2;
# Line 721 | Line 742 | namespace OpenMD {
742            ri3 = ri2 * riji;
743  
744            vterm = pref * ct_i * ( ri2 - preRF2_ *  *(idat.rij)  );
745 <          *(idat.vpair) += vterm;
745 >          vpair += vterm;
746            epot +=  *(idat.sw)  * vterm;
747            
748 <          dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);
748 >          dVdr += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_ * uz_i);
749            
750            duduz_i += preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );
751 +
752 +          // Even if we excluded this pair from direct interactions,
753 +          // we still have the reaction-field-mediated charge-dipole
754 +          // interaction:
755 +
756 +          if (idat.excluded) {
757 +            indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij);
758 +            indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij);
759 +            indirect_dVdr += -preSw * preRF2_ * uz_i;
760 +            indirect_duduz_i += -preSw * rhat * preRF2_ *  *(idat.rij);
761 +          }
762              
763          } else {
764            
# Line 744 | Line 776 | namespace OpenMD {
776              
777            if (screeningMethod_ == DAMPED) {
778              // assemble the damping variables
779 <            res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
780 <            erfcVal = res.first;
781 <            derfcVal = res.second;
779 >            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
780 >            //erfcVal = res.first;
781 >            //derfcVal = res.second;
782 >            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
783 >            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
784              c1 = erfcVal * ri;
785              c2 = (-derfcVal + c1) * ri;
786              c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
# Line 761 | Line 795 | namespace OpenMD {
795            // calculate the potential
796            pot_term = c2 * scale;
797            vterm = pref * ct_i * pot_term;
798 <          *(idat.vpair) += vterm;
798 >          vpair += vterm;
799            epot +=  *(idat.sw)  * vterm;
800  
801            // calculate derivatives for the forces and torques
# Line 784 | Line 818 | namespace OpenMD {
818  
819            vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
820                             preRF2_ * ct_ij );
821 <          *(idat.vpair) += vterm;
821 >          vpair += vterm;
822            epot +=  *(idat.sw)  * vterm;
823              
824            a1 = 5.0 * ct_i * ct_j - ct_ij;
825              
826 <          dVdr += preSw * 3.0 * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
826 >          dVdr += preSw * three * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
827  
828 <          duduz_i += preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
829 <          duduz_j += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_*uz_i);
828 >          duduz_i += preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
829 >          duduz_j += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_*uz_i);
830  
831 +          if (idat.excluded) {
832 +            indirect_vpair +=  - pref * preRF2_ * ct_ij;
833 +            indirect_Pot +=    - preSw * preRF2_ * ct_ij;
834 +            indirect_duduz_i += -preSw * preRF2_ * uz_j;
835 +            indirect_duduz_j += -preSw * preRF2_ * uz_i;
836 +          }
837 +
838          } else {
839            
840            if (i_is_SplitDipole) {
# Line 816 | Line 857 | namespace OpenMD {
857            }
858            if (screeningMethod_ == DAMPED) {
859              // assemble damping variables
860 <            res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
861 <            erfcVal = res.first;
862 <            derfcVal = res.second;
860 >            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
861 >            //erfcVal = res.first;
862 >            //derfcVal = res.second;
863 >            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
864 >            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
865              c1 = erfcVal * ri;
866              c2 = (-derfcVal + c1) * ri;
867              c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
# Line 843 | Line 886 | namespace OpenMD {
886            // calculate the potential
887            pot_term = (ct_ij * c2ri - ctidotj * c3);
888            vterm = pref * pot_term;
889 <          *(idat.vpair) += vterm;
889 >          vpair += vterm;
890            epot +=  *(idat.sw)  * vterm;
891  
892            // calculate derivatives for the forces and torques
# Line 867 | Line 910 | namespace OpenMD {
910  
911          if (screeningMethod_ == DAMPED) {
912            // assemble the damping variables
913 <          res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
914 <          erfcVal = res.first;
915 <          derfcVal = res.second;
913 >          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
914 >          //erfcVal = res.first;
915 >          //derfcVal = res.second;
916 >          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
917 >          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
918            c1 = erfcVal * riji;
919            c2 = (-derfcVal + c1) * riji;
920            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
# Line 886 | Line 931 | namespace OpenMD {
931          c2ri = c2 * riji;
932          c3ri = c3 * riji;
933          c4rij = c4 *  *(idat.rij) ;
934 <        rhatdot2 = 2.0 * rhat * c3;
934 >        rhatdot2 = two * rhat * c3;
935          rhatc4 = rhat * c4rij;
936  
937          // calculate the potential
# Line 895 | Line 940 | namespace OpenMD {
940                       qzz_i * (cz2 * c3 - c2ri) );
941          
942          vterm = pref * pot_term;
943 <        *(idat.vpair) += vterm;
943 >        vpair += vterm;
944          epot +=  *(idat.sw)  * vterm;
945  
946          // calculate the derivatives for the forces and torques
947  
948 <        dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (2.0*cx_i*ux_i + rhat)*c3ri) +
949 <                          qyy_i* (cy2*rhatc4 - (2.0*cy_i*uy_i + rhat)*c3ri) +
950 <                          qzz_i* (cz2*rhatc4 - (2.0*cz_i*uz_i + rhat)*c3ri));
948 >        dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (two*cx_i*ux_i + rhat)*c3ri) +
949 >                          qyy_i* (cy2*rhatc4 - (two*cy_i*uy_i + rhat)*c3ri) +
950 >                          qzz_i* (cz2*rhatc4 - (two*cz_i*uz_i + rhat)*c3ri));
951  
952          dudux_i += preSw * qxx_i * cx_i *  rhatdot2;
953          duduy_i += preSw * qyy_i * cy_i *  rhatdot2;
# Line 910 | Line 955 | namespace OpenMD {
955        }
956      }
957  
913    (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
914    *(idat.f1) += dVdr;
958  
959 <    if (i_is_Dipole || i_is_Quadrupole)
960 <      *(idat.t1) -= cross(uz_i, duduz_i);
961 <    if (i_is_Quadrupole) {
962 <      *(idat.t1) -= cross(ux_i, dudux_i);
963 <      *(idat.t1) -= cross(uy_i, duduy_i);
964 <    }
965 <    
966 <    if (j_is_Dipole || j_is_Quadrupole)
967 <      *(idat.t2) -= cross(uz_j, duduz_j);
968 <    if (j_is_Quadrupole) {
969 <      *(idat.t2) -= cross(uz_j, dudux_j);
970 <      *(idat.t2) -= cross(uz_j, duduy_j);
971 <    }
959 >    if (!idat.excluded) {
960 >      *(idat.vpair) += vpair;
961 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
962 >      *(idat.f1) += dVdr;
963 >      
964 >      if (i_is_Dipole || i_is_Quadrupole)
965 >        *(idat.t1) -= cross(uz_i, duduz_i);
966 >      if (i_is_Quadrupole) {
967 >        *(idat.t1) -= cross(ux_i, dudux_i);
968 >        *(idat.t1) -= cross(uy_i, duduy_i);
969 >      }
970 >      
971 >      if (j_is_Dipole || j_is_Quadrupole)
972 >        *(idat.t2) -= cross(uz_j, duduz_j);
973 >      if (j_is_Quadrupole) {
974 >        *(idat.t2) -= cross(uz_j, dudux_j);
975 >        *(idat.t2) -= cross(uz_j, duduy_j);
976 >      }
977  
978 <    return;
931 <  }  
978 >    } else {
979  
980 <  void Electrostatic::calcSkipCorrection(InteractionData &idat) {
980 >      // only accumulate the forces and torques resulting from the
981 >      // indirect reaction field terms.
982  
983 <    if (!initialized_) initialize();
984 <    
985 <    ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
938 <    ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
939 <    
940 <    // logicals
941 <
942 <    bool i_is_Charge = data1.is_Charge;
943 <    bool i_is_Dipole = data1.is_Dipole;
944 <
945 <    bool j_is_Charge = data2.is_Charge;
946 <    bool j_is_Dipole = data2.is_Dipole;
947 <
948 <    RealType q_i, q_j;
949 <    
950 <    // The skippedCharge computation is needed by the real-space cutoff methods
951 <    // (i.e. shifted force and shifted potential)
952 <
953 <    if (i_is_Charge) {
954 <      q_i = data1.charge;
955 <      *(idat.skippedCharge2) += q_i;
956 <    }
957 <
958 <    if (j_is_Charge) {
959 <      q_j = data2.charge;
960 <      *(idat.skippedCharge1) += q_j;
961 <    }
962 <
963 <    // the rest of this function should only be necessary for reaction field.
964 <
965 <    if (summationMethod_ == esm_REACTION_FIELD) {
966 <      RealType riji, ri2, ri3;
967 <      RealType mu_i, ct_i;
968 <      RealType mu_j, ct_j;
969 <      RealType preVal, rfVal, vterm, dudr, pref, myPot(0.0);
970 <      Vector3d dVdr, uz_i, uz_j, duduz_i, duduz_j, rhat;
971 <
972 <      // some variables we'll need independent of electrostatic type:
983 >      *(idat.vpair) += indirect_vpair;
984 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot;
985 >      *(idat.f1) += indirect_dVdr;
986        
974      riji = 1.0 /  *(idat.rij) ;
975      rhat =  *(idat.d)  * riji;
976
977      if (i_is_Dipole) {
978        mu_i = data1.dipole_moment;
979        uz_i = idat.eFrame1->getColumn(2);      
980        ct_i = dot(uz_i, rhat);
981        duduz_i = V3Zero;
982      }
983            
984      if (j_is_Dipole) {
985        mu_j = data2.dipole_moment;
986        uz_j = idat.eFrame2->getColumn(2);      
987        ct_j = dot(uz_j, rhat);
988        duduz_j = V3Zero;
989      }
990    
991      if (i_is_Charge) {
992        if (j_is_Charge) {
993          preVal =  *(idat.electroMult) * pre11_ * q_i * q_j;
994          rfVal = preRF_ *  *(idat.rij)  *  *(idat.rij) ;
995          vterm = preVal * rfVal;
996          myPot +=  *(idat.sw)  * vterm;        
997          dudr  =  *(idat.sw)  * preVal * 2.0 * rfVal * riji;        
998          dVdr += dudr * rhat;
999        }
1000        
1001        if (j_is_Dipole) {
1002          ri2 = riji * riji;
1003          ri3 = ri2 * riji;        
1004          pref =  *(idat.electroMult) * pre12_ * q_i * mu_j;
1005          vterm = - pref * ct_j * ( ri2 - preRF2_ *  *(idat.rij)  );
1006          myPot +=  *(idat.sw)  * vterm;        
1007          dVdr += - *(idat.sw)  * pref * ( ri3 * ( uz_j - 3.0 * ct_j * rhat) - preRF2_ * uz_j);
1008          duduz_j += - *(idat.sw)  * pref * rhat * (ri2 - preRF2_ *  *(idat.rij) );
1009        }
1010      }
1011      if (i_is_Dipole) {
1012        if (j_is_Charge) {
1013          ri2 = riji * riji;
1014          ri3 = ri2 * riji;        
1015          pref =  *(idat.electroMult) * pre12_ * q_j * mu_i;
1016          vterm = - pref * ct_i * ( ri2 - preRF2_ *  *(idat.rij)  );
1017          myPot +=  *(idat.sw)  * vterm;        
1018          dVdr +=  *(idat.sw)  * pref * ( ri3 * ( uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);      
1019          duduz_i +=  *(idat.sw)  * pref * rhat * (ri2 - preRF2_ *  *(idat.rij));
1020        }
1021      }
1022      
1023      // accumulate the forces and torques resulting from the self term
1024      (*(idat.pot))[ELECTROSTATIC_FAMILY] += myPot;
1025      *(idat.f1) += dVdr;
1026      
987        if (i_is_Dipole)
988 <        *(idat.t1) -= cross(uz_i, duduz_i);
988 >        *(idat.t1) -= cross(uz_i, indirect_duduz_i);
989        if (j_is_Dipole)
990 <        *(idat.t2) -= cross(uz_j, duduz_j);
990 >        *(idat.t2) -= cross(uz_j, indirect_duduz_j);
991      }
992 <  }
992 >
993 >
994 >    return;
995 >  }  
996      
997    void Electrostatic::calcSelfCorrection(SelfData &sdat) {
998      RealType mu1, preVal, chg1, self;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines