ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Electrostatic.cpp
(Generate patch)

Comparing branches/development/src/nonbonded/Electrostatic.cpp (file contents):
Revision 1710 by gezelter, Fri May 18 21:44:02 2012 UTC vs.
Revision 1825 by gezelter, Wed Jan 9 19:27:52 2013 UTC

# Line 48 | Line 48
48   #include "utils/simError.h"
49   #include "types/NonBondedInteractionType.hpp"
50   #include "types/FixedChargeAdapter.hpp"
51 + #include "types/FluctuatingChargeAdapter.hpp"
52   #include "types/MultipoleAdapter.hpp"
53   #include "io/Globals.hpp"
54 + #include "nonbonded/SlaterIntegrals.hpp"
55 + #include "utils/PhysicalConstants.hpp"
56 + #include "math/erfc.hpp"
57 + #include "math/SquareMatrix.hpp"
58  
59   namespace OpenMD {
60    
# Line 58 | Line 63 | namespace OpenMD {
63                                    haveCutoffRadius_(false),
64                                    haveDampingAlpha_(false),
65                                    haveDielectric_(false),
66 <                                  haveElectroSpline_(false)
66 >                                  haveElectroSplines_(false)
67    {}
68    
69    void Electrostatic::initialize() {
# Line 84 | Line 89 | namespace OpenMD {
89      // Charge-Dipole, assuming charges are measured in electrons, and
90      // dipoles are measured in debyes
91      pre12_ = 69.13373;
92 <    // Dipole-Dipole, assuming dipoles are measured in debyes
92 >    // Dipole-Dipole, assuming dipoles are measured in Debye
93      pre22_ = 14.39325;
94      // Charge-Quadrupole, assuming charges are measured in electrons, and
95      // quadrupoles are measured in 10^-26 esu cm^2
96 <    // This unit is also known affectionately as an esu centi-barn.
96 >    // This unit is also known affectionately as an esu centibarn.
97      pre14_ = 69.13373;
98 <    
98 >    // Dipole-Quadrupole, assuming dipoles are measured in debyes and
99 >    // quadrupoles in esu centibarns:
100 >    pre24_ = 14.39325;
101 >    // Quadrupole-Quadrupole, assuming esu centibarns:
102 >    pre44_ = 14.39325;
103 >
104      // conversions for the simulation box dipole moment
105      chargeToC_ = 1.60217733e-19;
106      angstromToM_ = 1.0e-10;
107      debyeToCm_ = 3.33564095198e-30;
108      
109 <    // number of points for electrostatic splines
110 <    np_ = 100;
109 >    // Default number of points for electrostatic splines
110 >    np_ = 140;
111      
112      // variables to handle different summation methods for long-range
113      // electrostatics:
114      summationMethod_ = esm_HARD;    
115      screeningMethod_ = UNDAMPED;
116      dielectric_ = 1.0;
107    one_third_ = 1.0 / 3.0;
117    
118      // check the summation method:
119      if (simParams_->haveElectrostaticSummationMethod()) {
# Line 189 | Line 198 | namespace OpenMD {
198          
199          // throw warning
200          sprintf( painCave.errMsg,
201 <                 "Electrostatic::initialize: dampingAlpha was not specified in the input file.\n"
202 <                 "\tA default value of %f (1/ang) will be used for the cutoff of\n\t%f (ang).\n",
201 >                 "Electrostatic::initialize: dampingAlpha was not specified in the\n"
202 >                 "\tinput file.  A default value of %f (1/ang) will be used for the\n"
203 >                 "\tcutoff of %f (ang).\n",
204                   dampingAlpha_, cutoffRadius_);
205          painCave.severity = OPENMD_INFO;
206          painCave.isFatal = 0;
# Line 211 | Line 221 | namespace OpenMD {
221        
222        if (at->isElectrostatic())
223          addType(at);
224 +    }  
225 +    
226 +    if (summationMethod_ == esm_REACTION_FIELD) {
227 +      preRF_ = (dielectric_ - 1.0) /
228 +        ((2.0 * dielectric_ + 1.0) * pow(cutoffRadius_,3) );
229      }
230      
231 +    RealType b0c, b1c, b2c, b3c, b4c, b5c;
232 +    RealType db0c_1, db0c_2, db0c_3, db0c_4, db0c_5;
233 +    RealType a2, expTerm, invArootPi;
234 +    
235 +    RealType r = cutoffRadius_;
236 +    RealType r2 = r * r;
237  
238 <    cutoffRadius2_ = cutoffRadius_ * cutoffRadius_;
239 <    rcuti_ = 1.0 / cutoffRadius_;
240 <    rcuti2_ = rcuti_ * rcuti_;
241 <    rcuti3_ = rcuti2_ * rcuti_;
242 <    rcuti4_ = rcuti2_ * rcuti2_;
243 <
244 <    if (screeningMethod_ == DAMPED) {
245 <      
246 <      alpha2_ = dampingAlpha_ * dampingAlpha_;
247 <      alpha4_ = alpha2_ * alpha2_;
248 <      alpha6_ = alpha4_ * alpha2_;
249 <      alpha8_ = alpha4_ * alpha4_;
229 <      
230 <      constEXP_ = exp(-alpha2_ * cutoffRadius2_);
231 <      invRootPi_ = 0.56418958354775628695;
232 <      alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_;
233 <
234 <      c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_;
235 <      c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_;
236 <      c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_;
237 <      c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_;
238 <      c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_;
239 <      c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_;
238 >    if (screeningMethod_ == DAMPED) {      
239 >      a2 = dampingAlpha_ * dampingAlpha_;
240 >      invArootPi = 1.0 / (dampingAlpha_ * sqrt(M_PI));    
241 >      expTerm = exp(-a2 * r2);
242 >      // values of Smith's B_l functions at the cutoff radius:
243 >      b0c = erfc(dampingAlpha_ * r) / r;
244 >      b1c = (      b0c     + 2.0*a2     * expTerm * invArootPi) / r2;
245 >      b2c = (3.0 * b1c + pow(2.0*a2, 2) * expTerm * invArootPi) / r2;
246 >      b3c = (5.0 * b2c + pow(2.0*a2, 3) * expTerm * invArootPi) / r2;
247 >      b4c = (7.0 * b3c + pow(2.0*a2, 4) * expTerm * invArootPi) / r2;
248 >      b5c = (9.0 * b4c + pow(2.0*a2, 5) * expTerm * invArootPi) / r2;
249 >      selfMult_ = b0c + a2 * invArootPi;
250      } else {
251 <      c1c_ = rcuti_;
252 <      c2c_ = c1c_ * rcuti_;
253 <      c3c_ = 3.0 * c2c_ * rcuti_;
254 <      c4c_ = 5.0 * c3c_ * rcuti2_;
255 <      c5c_ = 7.0 * c4c_ * rcuti2_;
256 <      c6c_ = 9.0 * c5c_ * rcuti2_;
251 >      a2 = 0.0;
252 >      b0c = 1.0 / r;
253 >      b1c = (      b0c) / r2;
254 >      b2c = (3.0 * b1c) / r2;
255 >      b3c = (5.0 * b2c) / r2;
256 >      b4c = (7.0 * b3c) / r2;
257 >      b5c = (9.0 * b4c) / r2;
258 >      selfMult_ = b0c;
259      }
260 <  
261 <    if (summationMethod_ == esm_REACTION_FIELD) {
262 <      preRF_ = (dielectric_ - 1.0) /
263 <        ((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_);
264 <      preRF2_ = 2.0 * preRF_;
265 <    }
260 >
261 >    // higher derivatives of B_0 at the cutoff radius:
262 >    db0c_1 = -r * b1c;
263 >    db0c_2 =     -b1c + r2 * b2c;
264 >    db0c_3 =          3.0*r*b2c  - r2*r*b3c;
265 >    db0c_4 =          3.0*b2c  - 6.0*r2*b3c     + r2*r2*b4c;
266 >    db0c_5 =                    -15.0*r*b3c + 10.0*r2*r*b4c - r2*r2*r*b5c;
267      
268 +    // working variables for the splines:
269 +    RealType ri, ri2;
270 +    RealType b0, b1, b2, b3, b4, b5;
271 +    RealType db0_1, db0_2, db0_3, db0_4, db0_5;
272 +    RealType f0;
273 +    RealType g0, g1, g2, g3, g4;
274 +    RealType h1, h2, h3, h4;
275 +    RealType s2, s3, s4;
276 +    RealType t3, t4;
277 +    RealType u4;
278 +
279 +    // working variables for Taylor expansion:
280 +    RealType rmRc, rmRc2, rmRc3, rmRc4;
281 +
282 +    // Approximate using splines using a maximum of 0.1 Angstroms
283 +    // between points.
284 +    int nptest = int((cutoffRadius_ + 2.0) / 0.1);
285 +    np_ = (np_ > nptest) ? np_ : nptest;
286 +  
287      // Add a 2 angstrom safety window to deal with cutoffGroups that
288      // have charged atoms longer than the cutoffRadius away from each
289 <    // other.  Splining may not be the best choice here.  Direct calls
290 <    // to erfc might be preferrable.
289 >    // other.  Splining is almost certainly the best choice here.
290 >    // Direct calls to erfc would be preferrable if it is a very fast
291 >    // implementation.
292  
293 <    RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
294 <    RealType rval;
295 <    vector<RealType> rvals;
296 <    vector<RealType> yvals;
297 <    for (int i = 0; i < np_; i++) {
298 <      rval = RealType(i) * dx;
299 <      rvals.push_back(rval);
300 <      yvals.push_back(erfc(dampingAlpha_ * rval));
293 >    RealType dx = (cutoffRadius_ + 2.0) / RealType(np_);
294 >
295 >    // Storage vectors for the computed functions    
296 >    vector<RealType> rv;
297 >    vector<RealType> v01v, v02v;
298 >    vector<RealType> v11v, v12v, v13v;
299 >    vector<RealType> v21v, v22v, v23v, v24v;
300 >    vector<RealType> v31v, v32v, v33v, v34v, v35v;
301 >    vector<RealType> v41v, v42v, v43v, v44v, v45v, v46v;
302 >
303 >    for (int i = 1; i < np_ + 1; i++) {
304 >      r = RealType(i) * dx;
305 >      rv.push_back(r);
306 >
307 >      ri = 1.0 / r;
308 >      ri2 = ri * ri;
309 >
310 >      r2 = r * r;
311 >      expTerm = exp(-a2 * r2);
312 >
313 >      // Taylor expansion factors (no need for factorials this way):
314 >      rmRc = r - cutoffRadius_;
315 >      rmRc2 = rmRc  * rmRc / 2.0;
316 >      rmRc3 = rmRc2 * rmRc / 3.0;
317 >      rmRc4 = rmRc3 * rmRc / 4.0;
318 >
319 >      // values of Smith's B_l functions at r:
320 >      if (screeningMethod_ == DAMPED) {            
321 >        b0 = erfc(dampingAlpha_ * r) * ri;
322 >        b1 = (      b0 +     2.0*a2     * expTerm * invArootPi) * ri2;
323 >        b2 = (3.0 * b1 + pow(2.0*a2, 2) * expTerm * invArootPi) * ri2;
324 >        b3 = (5.0 * b2 + pow(2.0*a2, 3) * expTerm * invArootPi) * ri2;
325 >        b4 = (7.0 * b3 + pow(2.0*a2, 4) * expTerm * invArootPi) * ri2;
326 >        b5 = (9.0 * b4 + pow(2.0*a2, 5) * expTerm * invArootPi) * ri2;
327 >      } else {
328 >        b0 = ri;
329 >        b1 = (      b0) * ri2;
330 >        b2 = (3.0 * b1) * ri2;
331 >        b3 = (5.0 * b2) * ri2;
332 >        b4 = (7.0 * b3) * ri2;
333 >        b5 = (9.0 * b4) * ri2;
334 >      }
335 >                
336 >      // higher derivatives of B_0 at r:
337 >      db0_1 = -r * b1;
338 >      db0_2 =     -b1 + r2 * b2;
339 >      db0_3 =          3.0*r*b2   - r2*r*b3;
340 >      db0_4 =          3.0*b2   - 6.0*r2*b3     + r2*r2*b4;
341 >      db0_5 =                    -15.0*r*b3 + 10.0*r2*r*b4 - r2*r2*r*b5;
342 >
343 >
344 >      switch (summationMethod_) {
345 >      case esm_SHIFTED_FORCE:
346 >        f0 = b0 - b0c - rmRc*db0c_1;
347 >        
348 >        g0 = db0_1 - db0c_1;
349 >        g1 = g0 - rmRc *db0c_2;
350 >        g2 = g1 - rmRc2*db0c_3;
351 >        g3 = g2 - rmRc3*db0c_4;
352 >        g4 = g3 - rmRc4*db0c_5;
353 >        
354 >        h1 = db0_2 - db0c_2;
355 >        h2 = h1 - rmRc *db0c_3;
356 >        h3 = h2 - rmRc2*db0c_4;
357 >        h4 = h3 - rmRc3*db0c_5;
358 >        
359 >        s2 = db0_3 - db0c_3;
360 >        s3 = s2 - rmRc *db0c_4;
361 >        s4 = s3 - rmRc2*db0c_5;
362 >        
363 >        t3 = db0_4 - db0c_4;
364 >        t4 = t3 - rmRc *db0c_5;
365 >        
366 >        u4 = db0_5 - db0c_5;
367 >        break;
368 >
369 >      case esm_SHIFTED_POTENTIAL:
370 >        f0 = b0 - b0c;
371 >        
372 >        g0 = db0_1;
373 >        g1 = db0_1 - db0c_1;
374 >        g2 = g1 - rmRc *db0c_2;
375 >        g3 = g2 - rmRc2*db0c_3;
376 >        g4 = g3 - rmRc3*db0c_4;
377 >
378 >        h1 = db0_2;
379 >        h2 = db0_2 - db0c_2;
380 >        h3 = h2 - rmRc *db0c_3;
381 >        h4 = h3 - rmRc2*db0c_4;
382 >        
383 >        s2 = db0_3;
384 >        s3 = db0_3 - db0c_3;
385 >        s4 = s3 - rmRc *db0c_4;
386 >
387 >        t3 = db0_4;
388 >        t4 = db0_4 - db0c_4;
389 >        
390 >        u4 = db0_5;
391 >        break;
392 >
393 >      case esm_SWITCHING_FUNCTION:
394 >      case esm_HARD:
395 >        f0 = b0;
396 >        
397 >        g0 = db0_1;
398 >        g1 = g0;
399 >        g2 = g1;
400 >        g3 = g2;
401 >        g4 = g3;
402 >        
403 >        h1 = db0_2;
404 >        h2 = h1;
405 >        h3 = h2;
406 >        h4 = h3;
407 >        
408 >        s2 = db0_3;
409 >        s3 = s2;
410 >        s4 = s3;
411 >        
412 >        t3 = db0_4;
413 >        t4 = t3;
414 >        
415 >        u4 = db0_5;
416 >        break;
417 >
418 >      case esm_REACTION_FIELD:
419 >
420 >        // following DL_POLY's lead for shifting the image charge potential:
421 >        f0 = b0  + preRF_ * r2
422 >          - (b0c + preRF_ * cutoffRadius_ * cutoffRadius_);
423 >
424 >        g0 = db0_1 + preRF_ * 2.0 * r;
425 >        g1 = g0;
426 >        g2 = g1;
427 >        g3 = g2;
428 >        g4 = g3;
429 >
430 >        h1 = db0_2 + preRF_ * 2.0;
431 >        h2 = h1;
432 >        h3 = h2;
433 >        h4 = h3;
434 >
435 >        s2 = db0_3;
436 >        s3 = s2;
437 >        s4 = s3;
438 >        
439 >        t3 = db0_4;
440 >        t4 = t3;
441 >        
442 >        u4 = db0_5;        
443 >        break;
444 >                
445 >      case esm_EWALD_FULL:
446 >      case esm_EWALD_PME:
447 >      case esm_EWALD_SPME:
448 >      default :
449 >        map<string, ElectrostaticSummationMethod>::iterator i;
450 >        std::string meth;
451 >        for (i = summationMap_.begin(); i != summationMap_.end(); ++i) {
452 >          if ((*i).second == summationMethod_) meth = (*i).first;
453 >        }
454 >        sprintf( painCave.errMsg,
455 >                 "Electrostatic::initialize: electrostaticSummationMethod %s \n"
456 >                 "\thas not been implemented yet. Please select one of:\n"
457 >                 "\t\"hard\", \"shifted_potential\", or \"shifted_force\"\n",
458 >                 meth.c_str() );
459 >        painCave.isFatal = 1;
460 >        simError();
461 >        break;      
462 >      }
463 >
464 >      v01 = f0;
465 >      v02 = g0;
466 >
467 >      v11 = g1;
468 >      v12 = g1 * ri;
469 >      v13 = h1 - v12;
470 >
471 >      v21 = g2 * ri;
472 >      v22 = h2 - v21;
473 >      v23 = v22 * ri;
474 >      v24 = s2 - 3.0*v23;        
475 >
476 >      v31 = (h3 - g3 * ri) * ri;
477 >      v32 = s3 - 3.0*v31;
478 >      v33 = v31 * ri;
479 >      v34 = v32 * ri;
480 >      v35 = t3 - 6.0*v34 - 3.0*v33;
481 >
482 >      v41 = (h4 - g4 * ri) * ri2;
483 >      v42 = s4 * ri - 3.0*v41;
484 >      v43 = t4 - 6.0*v42 - 3.0*v41;
485 >      v44 = v42 * ri;
486 >      v45 = v43 * ri;
487 >      v46 = u4 - 10.0*v45 - 15.0*v44;
488 >
489 >      // Add these computed values to the storage vectors for spline creation:
490 >      v01v.push_back(v01);
491 >      v02v.push_back(v02);
492 >
493 >      v11v.push_back(v11);
494 >      v12v.push_back(v12);
495 >      v13v.push_back(v13);
496 >
497 >      v21v.push_back(v21);
498 >      v22v.push_back(v22);
499 >      v23v.push_back(v23);
500 >      v24v.push_back(v24);
501 >
502 >      v31v.push_back(v31);
503 >      v32v.push_back(v32);
504 >      v33v.push_back(v33);
505 >      v34v.push_back(v34);
506 >      v35v.push_back(v35);
507 >      
508 >      v41v.push_back(v41);
509 >      v42v.push_back(v42);
510 >      v43v.push_back(v43);
511 >      v44v.push_back(v44);
512 >      v45v.push_back(v45);
513 >      v46v.push_back(v46);
514      }
515 <    erfcSpline_ = new CubicSpline();
516 <    erfcSpline_->addPoints(rvals, yvals);
517 <    haveElectroSpline_ = true;
515 >
516 >    // construct the spline structures and fill them with the values we've
517 >    // computed:
518 >
519 >    v01s = new CubicSpline();
520 >    v01s->addPoints(rv, v01v);
521 >    v02s = new CubicSpline();
522 >    v02s->addPoints(rv, v02v);
523 >
524 >    v11s = new CubicSpline();
525 >    v11s->addPoints(rv, v11v);
526 >    v12s = new CubicSpline();
527 >    v12s->addPoints(rv, v12v);
528 >    v13s = new CubicSpline();
529 >    v13s->addPoints(rv, v13v);
530 >
531 >    v21s = new CubicSpline();
532 >    v21s->addPoints(rv, v21v);
533 >    v22s = new CubicSpline();
534 >    v22s->addPoints(rv, v22v);
535 >    v23s = new CubicSpline();
536 >    v23s->addPoints(rv, v23v);
537 >    v24s = new CubicSpline();
538 >    v24s->addPoints(rv, v24v);
539  
540 +    v31s = new CubicSpline();
541 +    v31s->addPoints(rv, v31v);
542 +    v32s = new CubicSpline();
543 +    v32s->addPoints(rv, v32v);
544 +    v33s = new CubicSpline();
545 +    v33s->addPoints(rv, v33v);
546 +    v34s = new CubicSpline();
547 +    v34s->addPoints(rv, v34v);
548 +    v35s = new CubicSpline();
549 +    v35s->addPoints(rv, v35v);
550 +
551 +    v41s = new CubicSpline();
552 +    v41s->addPoints(rv, v41v);
553 +    v42s = new CubicSpline();
554 +    v42s->addPoints(rv, v42v);
555 +    v43s = new CubicSpline();
556 +    v43s->addPoints(rv, v43v);
557 +    v44s = new CubicSpline();
558 +    v44s->addPoints(rv, v44v);
559 +    v45s = new CubicSpline();
560 +    v45s->addPoints(rv, v45v);
561 +    v46s = new CubicSpline();
562 +    v46s->addPoints(rv, v46v);
563 +
564 +    haveElectroSplines_ = true;
565 +
566      initialized_ = true;
567    }
568        
# Line 278 | Line 571 | namespace OpenMD {
571      ElectrostaticAtomData electrostaticAtomData;
572      electrostaticAtomData.is_Charge = false;
573      electrostaticAtomData.is_Dipole = false;
281    electrostaticAtomData.is_SplitDipole = false;
574      electrostaticAtomData.is_Quadrupole = false;
575 +    electrostaticAtomData.is_Fluctuating = false;
576  
577      FixedChargeAdapter fca = FixedChargeAdapter(atomType);
578  
579      if (fca.isFixedCharge()) {
580        electrostaticAtomData.is_Charge = true;
581 <      electrostaticAtomData.charge = fca.getCharge();
581 >      electrostaticAtomData.fixedCharge = fca.getCharge();
582      }
583  
584      MultipoleAdapter ma = MultipoleAdapter(atomType);
585      if (ma.isMultipole()) {
586        if (ma.isDipole()) {
587          electrostaticAtomData.is_Dipole = true;
588 <        electrostaticAtomData.dipole_moment = ma.getDipoleMoment();
588 >        electrostaticAtomData.dipole = ma.getDipole();
589        }
297      if (ma.isSplitDipole()) {
298        electrostaticAtomData.is_SplitDipole = true;
299        electrostaticAtomData.split_dipole_distance = ma.getSplitDipoleDistance();
300      }
590        if (ma.isQuadrupole()) {
302        // Quadrupoles in OpenMD are set as the diagonal elements
303        // of the diagonalized traceless quadrupole moment tensor.
304        // The column vectors of the unitary matrix that diagonalizes
305        // the quadrupole moment tensor become the eFrame (or the
306        // electrostatic version of the body-fixed frame.
591          electrostaticAtomData.is_Quadrupole = true;
592 <        electrostaticAtomData.quadrupole_moments = ma.getQuadrupoleMoments();
592 >        electrostaticAtomData.quadrupole = ma.getQuadrupole();
593        }
594      }
595      
596 +    FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType);
597  
598 +    if (fqa.isFluctuatingCharge()) {
599 +      electrostaticAtomData.is_Fluctuating = true;
600 +      electrostaticAtomData.electronegativity = fqa.getElectronegativity();
601 +      electrostaticAtomData.hardness = fqa.getHardness();
602 +      electrostaticAtomData.slaterN = fqa.getSlaterN();
603 +      electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
604 +    }
605 +
606      pair<map<int,AtomType*>::iterator,bool> ret;    
607      ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(),
608                                                          atomType) );
# Line 322 | Line 615 | namespace OpenMD {
615        simError();        
616      }
617      
618 <    ElectrostaticMap[atomType] = electrostaticAtomData;    
618 >    ElectrostaticMap[atomType] = electrostaticAtomData;  
619 >
620 >    // Now, iterate over all known types and add to the mixing map:
621 >    
622 >    map<AtomType*, ElectrostaticAtomData>::iterator it;
623 >    for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) {
624 >      AtomType* atype2 = (*it).first;
625 >      ElectrostaticAtomData eaData2 = (*it).second;
626 >      if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) {
627 >        
628 >        RealType a = electrostaticAtomData.slaterZeta;
629 >        RealType b = eaData2.slaterZeta;
630 >        int m = electrostaticAtomData.slaterN;
631 >        int n = eaData2.slaterN;
632 >
633 >        // Create the spline of the coulombic integral for s-type
634 >        // Slater orbitals.  Add a 2 angstrom safety window to deal
635 >        // with cutoffGroups that have charged atoms longer than the
636 >        // cutoffRadius away from each other.
637 >
638 >        RealType rval;
639 >        RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
640 >        vector<RealType> rvals;
641 >        vector<RealType> Jvals;
642 >        // don't start at i = 0, as rval = 0 is undefined for the
643 >        // slater overlap integrals.
644 >        for (int i = 1; i < np_+1; i++) {
645 >          rval = RealType(i) * dr;
646 >          rvals.push_back(rval);
647 >          Jvals.push_back(sSTOCoulInt( a, b, m, n, rval *
648 >                                       PhysicalConstants::angstromToBohr ) *
649 >                          PhysicalConstants::hartreeToKcal );
650 >        }
651 >        
652 >        CubicSpline* J = new CubicSpline();
653 >        J->addPoints(rvals, Jvals);
654 >        
655 >        pair<AtomType*, AtomType*> key1, key2;
656 >        key1 = make_pair(atomType, atype2);
657 >        key2 = make_pair(atype2, atomType);
658 >        
659 >        Jij[key1] = J;
660 >        Jij[key2] = J;
661 >      }
662 >    }
663 >
664      return;
665    }
666    
667    void Electrostatic::setCutoffRadius( RealType rCut ) {
668      cutoffRadius_ = rCut;
331    rrf_ = cutoffRadius_;
669      haveCutoffRadius_ = true;
670    }
671  
335  void Electrostatic::setSwitchingRadius( RealType rSwitch ) {
336    rt_ = rSwitch;
337  }
672    void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
673      summationMethod_ = esm;
674    }
# Line 352 | Line 686 | namespace OpenMD {
686  
687    void Electrostatic::calcForce(InteractionData &idat) {
688  
689 <    // utility variables.  Should clean these up and use the Vector3d and
690 <    // Mat3x3d to replace as many as we can in future versions:
689 >    RealType C_a, C_b;  // Charges
690 >    Vector3d D_a, D_b;  // Dipoles (space-fixed)
691 >    Mat3x3d  Q_a, Q_b;  // Quadrupoles (space-fixed)
692  
693 <    RealType q_i, q_j, mu_i, mu_j, d_i, d_j;
694 <    RealType qxx_i, qyy_i, qzz_i;
695 <    RealType qxx_j, qyy_j, qzz_j;
696 <    RealType cx_i, cy_i, cz_i;
697 <    RealType cx_j, cy_j, cz_j;
698 <    RealType cx2, cy2, cz2;
364 <    RealType ct_i, ct_j, ct_ij, a1;
365 <    RealType riji, ri, ri2, ri3, ri4;
366 <    RealType pref, vterm, epot, dudr;
367 <    RealType vpair(0.0);
368 <    RealType scale, sc2;
369 <    RealType pot_term, preVal, rfVal;
370 <    RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
371 <    RealType preSw, preSwSc;
372 <    RealType c1, c2, c3, c4;
373 <    RealType erfcVal(1.0), derfcVal(0.0);
374 <    RealType BigR;
375 <    RealType two(2.0), three(3.0);
693 >    RealType ri;                                 // Distance utility scalar
694 >    RealType rdDa, rdDb;                         // Dipole utility scalars
695 >    Vector3d rxDa, rxDb;                         // Dipole utility vectors
696 >    RealType rdQar, rdQbr, trQa, trQb;           // Quadrupole utility scalars
697 >    Vector3d Qar, Qbr, rQa, rQb, rxQar, rxQbr;   // Quadrupole utility vectors
698 >    RealType pref;
699  
700 <    Vector3d Q_i, Q_j;
701 <    Vector3d ux_i, uy_i, uz_i;
702 <    Vector3d ux_j, uy_j, uz_j;
703 <    Vector3d dudux_i, duduy_i, duduz_i;
704 <    Vector3d dudux_j, duduy_j, duduz_j;
382 <    Vector3d rhatdot2, rhatc4;
383 <    Vector3d dVdr;
700 >    RealType DadDb, trQaQb, DadQbr, DbdQar;       // Cross-interaction scalars
701 >    RealType rQaQbr;
702 >    Vector3d DaxDb, DadQb, DbdQa, DaxQbr, DbxQar; // Cross-interaction vectors
703 >    Vector3d rQaQb, QaQbr, QaxQb, rQaxQbr;
704 >    Mat3x3d  QaQb;                                // Cross-interaction matrices
705  
706 <    // variables for indirect (reaction field) interactions for excluded pairs:
707 <    RealType indirect_Pot(0.0);
708 <    RealType indirect_vpair(0.0);
709 <    Vector3d indirect_dVdr(V3Zero);
710 <    Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero);
706 >    RealType U(0.0);  // Potential
707 >    Vector3d F(0.0);  // Force
708 >    Vector3d Ta(0.0); // Torque on site a
709 >    Vector3d Tb(0.0); // Torque on site b
710 >    Vector3d Ea(0.0); // Electric field at site a
711 >    Vector3d Eb(0.0); // Electric field at site b
712 >    RealType dUdCa(0.0); // fluctuating charge force at site a
713 >    RealType dUdCb(0.0); // fluctuating charge force at site a
714 >    
715 >    // Indirect interactions mediated by the reaction field.
716 >    RealType indirect_Pot(0.0);  // Potential
717 >    Vector3d indirect_F(0.0);    // Force
718 >    Vector3d indirect_Ta(0.0);   // Torque on site a
719 >    Vector3d indirect_Tb(0.0);   // Torque on site b
720  
721 <    pair<RealType, RealType> res;
721 >    // Excluded potential that is still computed for fluctuating charges
722 >    RealType excluded_Pot(0.0);
723 >
724 >    RealType rfContrib, coulInt;
725      
726 +    // spline for coulomb integral
727 +    CubicSpline* J;
728 +
729      if (!initialized_) initialize();
730      
731      ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
# Line 397 | Line 733 | namespace OpenMD {
733      
734      // some variables we'll need independent of electrostatic type:
735  
736 <    riji = 1.0 /  *(idat.rij) ;
737 <    Vector3d rhat =  *(idat.d)   * riji;
738 <
736 >    ri = 1.0 /  *(idat.rij);
737 >    Vector3d rhat =  *(idat.d)  * ri;
738 >      
739      // logicals
740  
741 <    bool i_is_Charge = data1.is_Charge;
742 <    bool i_is_Dipole = data1.is_Dipole;
743 <    bool i_is_SplitDipole = data1.is_SplitDipole;
744 <    bool i_is_Quadrupole = data1.is_Quadrupole;
741 >    bool a_is_Charge = data1.is_Charge;
742 >    bool a_is_Dipole = data1.is_Dipole;
743 >    bool a_is_Quadrupole = data1.is_Quadrupole;
744 >    bool a_is_Fluctuating = data1.is_Fluctuating;
745  
746 <    bool j_is_Charge = data2.is_Charge;
747 <    bool j_is_Dipole = data2.is_Dipole;
748 <    bool j_is_SplitDipole = data2.is_SplitDipole;
749 <    bool j_is_Quadrupole = data2.is_Quadrupole;
746 >    bool b_is_Charge = data2.is_Charge;
747 >    bool b_is_Dipole = data2.is_Dipole;
748 >    bool b_is_Quadrupole = data2.is_Quadrupole;
749 >    bool b_is_Fluctuating = data2.is_Fluctuating;
750 >
751 >    // Obtain all of the required radial function values from the
752 >    // spline structures:
753      
754 <    if (i_is_Charge) {
755 <      q_i = data1.charge;
756 <      if (idat.excluded) {
418 <        *(idat.skippedCharge2) += q_i;
419 <      }
754 >    // needed for fields (and forces):
755 >    if (a_is_Charge || b_is_Charge) {
756 >      v02 = v02s->getValueAt( *(idat.rij) );
757      }
758 <
759 <    if (i_is_Dipole) {
760 <      mu_i = data1.dipole_moment;
424 <      uz_i = idat.eFrame1->getColumn(2);
425 <      
426 <      ct_i = dot(uz_i, rhat);
427 <
428 <      if (i_is_SplitDipole)
429 <        d_i = data1.split_dipole_distance;
430 <      
431 <      duduz_i = V3Zero;
758 >    if (a_is_Dipole || b_is_Dipole) {
759 >      v12 = v12s->getValueAt( *(idat.rij) );
760 >      v13 = v13s->getValueAt( *(idat.rij) );
761      }
762 <    
763 <    if (i_is_Quadrupole) {
764 <      Q_i = data1.quadrupole_moments;
436 <      qxx_i = Q_i.x();
437 <      qyy_i = Q_i.y();
438 <      qzz_i = Q_i.z();
439 <      
440 <      ux_i = idat.eFrame1->getColumn(0);
441 <      uy_i = idat.eFrame1->getColumn(1);
442 <      uz_i = idat.eFrame1->getColumn(2);
443 <
444 <      cx_i = dot(ux_i, rhat);
445 <      cy_i = dot(uy_i, rhat);
446 <      cz_i = dot(uz_i, rhat);
447 <
448 <      dudux_i = V3Zero;
449 <      duduy_i = V3Zero;
450 <      duduz_i = V3Zero;
762 >    if (a_is_Quadrupole || b_is_Quadrupole) {
763 >      v23 = v23s->getValueAt( *(idat.rij) );
764 >      v24 = v24s->getValueAt( *(idat.rij) );
765      }
766  
767 <    if (j_is_Charge) {
768 <      q_j = data2.charge;
769 <      if (idat.excluded) {
456 <        *(idat.skippedCharge1) += q_j;
457 <      }
767 >    // needed for potentials (and torques):
768 >    if (a_is_Charge && b_is_Charge) {
769 >      v01 = v01s->getValueAt( *(idat.rij) );
770      }
771 +    if ((a_is_Charge && b_is_Dipole) || (b_is_Charge && a_is_Dipole)) {
772 +      v11 = v11s->getValueAt( *(idat.rij) );
773 +    }
774 +    if ((a_is_Charge && b_is_Quadrupole) || (b_is_Charge && a_is_Quadrupole)) {
775 +      v21 = v21s->getValueAt( *(idat.rij) );
776 +      v22 = v22s->getValueAt( *(idat.rij) );
777 +    } else if (a_is_Dipole && b_is_Dipole) {
778 +      v21 = v21s->getValueAt( *(idat.rij) );
779 +      v22 = v22s->getValueAt( *(idat.rij) );
780 +      v23 = v23s->getValueAt( *(idat.rij) );
781 +      v24 = v24s->getValueAt( *(idat.rij) );
782 +    }
783 +    if ((a_is_Dipole && b_is_Quadrupole) ||
784 +        (b_is_Dipole && a_is_Quadrupole)) {
785 +      v31 = v31s->getValueAt( *(idat.rij) );
786 +      v32 = v32s->getValueAt( *(idat.rij) );
787 +      v33 = v33s->getValueAt( *(idat.rij) );
788 +      v34 = v34s->getValueAt( *(idat.rij) );
789 +      v35 = v35s->getValueAt( *(idat.rij) );
790 +    }
791 +    if (a_is_Quadrupole && b_is_Quadrupole) {
792 +      v41 = v41s->getValueAt( *(idat.rij) );
793 +      v42 = v42s->getValueAt( *(idat.rij) );
794 +      v43 = v43s->getValueAt( *(idat.rij) );
795 +      v44 = v44s->getValueAt( *(idat.rij) );
796 +      v45 = v45s->getValueAt( *(idat.rij) );
797 +      v46 = v46s->getValueAt( *(idat.rij) );
798 +    }
799  
800 <
801 <    if (j_is_Dipole) {
802 <      mu_j = data2.dipole_moment;
803 <      uz_j = idat.eFrame2->getColumn(2);
800 >    // calculate the single-site contributions (fields, etc).
801 >    
802 >    if (a_is_Charge) {
803 >      C_a = data1.fixedCharge;
804        
805 <      ct_j = dot(uz_j, rhat);
806 <
807 <      if (j_is_SplitDipole)
468 <        d_j = data2.split_dipole_distance;
805 >      if (a_is_Fluctuating) {
806 >        C_a += *(idat.flucQ1);
807 >      }
808        
809 <      duduz_j = V3Zero;
809 >      if (idat.excluded) {
810 >        *(idat.skippedCharge2) += C_a;
811 >      }
812 >      Eb -= C_a *  pre11_ * v02 * rhat;
813      }
814      
815 <    if (j_is_Quadrupole) {
816 <      Q_j = data2.quadrupole_moments;
817 <      qxx_j = Q_j.x();
818 <      qyy_j = Q_j.y();
819 <      qzz_j = Q_j.z();
478 <      
479 <      ux_j = idat.eFrame2->getColumn(0);
480 <      uy_j = idat.eFrame2->getColumn(1);
481 <      uz_j = idat.eFrame2->getColumn(2);
482 <
483 <      cx_j = dot(ux_j, rhat);
484 <      cy_j = dot(uy_j, rhat);
485 <      cz_j = dot(uz_j, rhat);
486 <
487 <      dudux_j = V3Zero;
488 <      duduy_j = V3Zero;
489 <      duduz_j = V3Zero;
815 >    if (a_is_Dipole) {
816 >      D_a = *(idat.dipole1);
817 >      rdDa = dot(rhat, D_a);
818 >      rxDa = cross(rhat, D_a);
819 >      Eb -=  pre12_ * (v13 * rdDa * rhat + v12 * D_a);
820      }
821      
822 <    epot = 0.0;
823 <    dVdr = V3Zero;
822 >    if (a_is_Quadrupole) {
823 >      Q_a = *(idat.quadrupole1);
824 >      trQa =  Q_a.trace();
825 >      Qar =   Q_a * rhat;
826 >      rQa = rhat * Q_a;
827 >      rdQar = dot(rhat, Qar);
828 >      rxQar = cross(rhat, Qar);
829 >      Eb -= pre14_ * ((trQa * rhat + 2.0 * Qar) * v23 + rdQar * rhat * v24);
830 >    }
831      
832 <    if (i_is_Charge) {
833 <      
834 <      if (j_is_Charge) {
835 <        if (screeningMethod_ == DAMPED) {
836 <          // assemble the damping variables
837 <          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
838 <          //erfcVal = res.first;
839 <          //derfcVal = res.second;
840 <
841 <          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
842 <          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
832 >    if (b_is_Charge) {
833 >      C_b = data2.fixedCharge;
834 >      
835 >      if (b_is_Fluctuating)
836 >        C_b += *(idat.flucQ2);
837 >      
838 >      if (idat.excluded) {
839 >        *(idat.skippedCharge1) += C_b;
840 >      }
841 >      Ea += C_b *  pre11_ * v02 * rhat;
842 >    }
843 >    
844 >    if (b_is_Dipole) {
845 >      D_b = *(idat.dipole2);
846 >      rdDb = dot(rhat, D_b);
847 >      rxDb = cross(rhat, D_b);
848 >      Ea += pre12_ * (v13 * rdDb * rhat + v12 * D_b);
849 >    }
850 >    
851 >    if (b_is_Quadrupole) {
852 >      Q_b = *(idat.quadrupole2);
853 >      trQb =  Q_b.trace();
854 >      Qbr =   Q_b * rhat;
855 >      rQb = rhat * Q_b;
856 >      rdQbr = dot(rhat, Qbr);
857 >      rxQbr = cross(rhat, Qbr);
858 >      Ea += pre14_ * ((trQb * rhat + 2.0 * Qbr) * v23 + rdQbr * rhat * v24);
859 >    }
860 >    
861 >    if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) {
862 >      J = Jij[idat.atypes];
863 >    }    
864 >    
865 >    if (a_is_Charge) {    
866 >      
867 >      if (b_is_Charge) {
868 >        pref =  pre11_ * *(idat.electroMult);          
869 >        U  += C_a * C_b * pref * v01;
870 >        F  += C_a * C_b * pref * v02 * rhat;
871 >        
872 >        // If this is an excluded pair, there are still indirect
873 >        // interactions via the reaction field we must worry about:
874  
875 <          c1 = erfcVal * riji;
876 <          c2 = (-derfcVal + c1) * riji;
877 <        } else {
878 <          c1 = riji;
511 <          c2 = c1 * riji;
875 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
876 >          rfContrib = preRF_ * pref * C_a * C_b * *(idat.r2);
877 >          indirect_Pot += rfContrib;
878 >          indirect_F   += rfContrib * 2.0 * ri * rhat;
879          }
513
514        preVal =  *(idat.electroMult) * pre11_ * q_i * q_j;
880          
881 <        if (summationMethod_ == esm_SHIFTED_POTENTIAL) {
882 <          vterm = preVal * (c1 - c1c_);
883 <          dudr  = - *(idat.sw)  * preVal * c2;
881 >        // Fluctuating charge forces are handled via Coulomb integrals
882 >        // for excluded pairs (i.e. those connected via bonds) and
883 >        // with the standard charge-charge interaction otherwise.
884  
885 <        } else if (summationMethod_ == esm_SHIFTED_FORCE)  {
886 <          vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij)  - cutoffRadius_) );
887 <          dudr  =  *(idat.sw)  * preVal * (c2c_ - c2);
885 >        if (idat.excluded) {          
886 >          if (a_is_Fluctuating || b_is_Fluctuating) {
887 >            coulInt = J->getValueAt( *(idat.rij) );
888 >            if (a_is_Fluctuating)  dUdCa += coulInt * C_b;
889 >            if (b_is_Fluctuating)  dUdCb += coulInt * C_a;
890 >            excluded_Pot += C_a * C_b * coulInt;
891 >          }          
892 >        } else {
893 >          if (a_is_Fluctuating) dUdCa += C_b * pref * v01;
894 >          if (a_is_Fluctuating) dUdCb += C_a * pref * v01;
895 >        }
896 >      }
897  
898 <        } else if (summationMethod_ == esm_REACTION_FIELD) {
899 <          rfVal = preRF_ *  *(idat.rij)  *  *(idat.rij);
898 >      if (b_is_Dipole) {
899 >        pref =  pre12_ * *(idat.electroMult);        
900 >        U  += C_a * pref * v11 * rdDb;
901 >        F  += C_a * pref * (v13 * rdDb * rhat + v12 * D_b);
902 >        Tb += C_a * pref * v11 * rxDb;
903  
904 <          vterm = preVal * ( riji + rfVal );            
528 <          dudr  =  *(idat.sw)  * preVal * ( 2.0 * rfVal - riji ) * riji;
529 <          
530 <          // if this is an excluded pair, there are still indirect
531 <          // interactions via the reaction field we must worry about:
904 >        if (a_is_Fluctuating) dUdCa += pref * v11 * rdDb;
905  
906 <          if (idat.excluded) {
907 <            indirect_vpair += preVal * rfVal;
908 <            indirect_Pot += *(idat.sw) * preVal * rfVal;
536 <            indirect_dVdr += *(idat.sw)  * preVal * two * rfVal  * riji * rhat;
537 <          }
538 <          
539 <        } else {
906 >        // Even if we excluded this pair from direct interactions, we
907 >        // still have the reaction-field-mediated charge-dipole
908 >        // interaction:
909  
910 <          vterm = preVal * riji * erfcVal;          
911 <          dudr  = -  *(idat.sw)  * preVal * c2;
912 <
910 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
911 >          rfContrib = C_a * pref * preRF_ * 2.0 * *(idat.rij);
912 >          indirect_Pot += rfContrib * rdDb;
913 >          indirect_F   += rfContrib * D_b / (*idat.rij);
914 >          indirect_Tb  += C_a * pref * preRF_ * rxDb;
915          }
545
546        vpair += vterm;
547        epot +=  *(idat.sw)  * vterm;
548        dVdr += dudr * rhat;                
916        }
917  
918 <      if (j_is_Dipole) {
919 <        // pref is used by all the possible methods
920 <        pref =  *(idat.electroMult) * pre12_ * q_i * mu_j;
921 <        preSw =  *(idat.sw)  * pref;
918 >      if (b_is_Quadrupole) {
919 >        pref = pre14_ * *(idat.electroMult);
920 >        U  +=  C_a * pref * (v21 * trQb + v22 * rdQbr);
921 >        F  +=  C_a * pref * (trQb * rhat + 2.0 * Qbr) * v23;
922 >        F  +=  C_a * pref * rdQbr * rhat * v24;
923 >        Tb +=  C_a * pref * 2.0 * rxQbr * v22;
924  
925 <        if (summationMethod_ == esm_REACTION_FIELD) {
926 <          ri2 = riji * riji;
927 <          ri3 = ri2 * riji;
559 <    
560 <          vterm = - pref * ct_j * ( ri2 - preRF2_ *  *(idat.rij)  );
561 <          vpair += vterm;
562 <          epot +=  *(idat.sw)  * vterm;
925 >        if (a_is_Fluctuating) dUdCa += pref * (v21 * trQb + v22 * rdQbr);
926 >      }
927 >    }
928  
929 <          dVdr +=  -preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
565 <          duduz_j += -preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );  
929 >    if (a_is_Dipole) {
930  
931 <          // Even if we excluded this pair from direct interactions,
932 <          // we still have the reaction-field-mediated charge-dipole
569 <          // interaction:
931 >      if (b_is_Charge) {
932 >        pref = pre12_ * *(idat.electroMult);
933  
934 <          if (idat.excluded) {
935 <            indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij);
936 <            indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij);
574 <            indirect_dVdr += preSw * preRF2_ * uz_j;
575 <            indirect_duduz_j += preSw * rhat * preRF2_ *  *(idat.rij);
576 <          }
577 <                      
578 <        } else {
579 <          // determine the inverse r used if we have split dipoles
580 <          if (j_is_SplitDipole) {
581 <            BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
582 <            ri = 1.0 / BigR;
583 <            scale =  *(idat.rij)  * ri;
584 <          } else {
585 <            ri = riji;
586 <            scale = 1.0;
587 <          }
588 <          
589 <          sc2 = scale * scale;
934 >        U  -= C_b * pref * v11 * rdDa;
935 >        F  -= C_b * pref * (v13 * rdDa * rhat + v12 * D_a);
936 >        Ta -= C_b * pref * v11 * rxDa;
937  
938 <          if (screeningMethod_ == DAMPED) {
592 <            // assemble the damping variables
593 <            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
594 <            //erfcVal = res.first;
595 <            //derfcVal = res.second;
596 <            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
597 <            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
598 <            c1 = erfcVal * ri;
599 <            c2 = (-derfcVal + c1) * ri;
600 <            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
601 <          } else {
602 <            c1 = ri;
603 <            c2 = c1 * ri;
604 <            c3 = 3.0 * c2 * ri;
605 <          }
606 <            
607 <          c2ri = c2 * ri;
938 >        if (b_is_Fluctuating) dUdCb -= pref * v11 * rdDa;
939  
940 <          // calculate the potential
941 <          pot_term =  scale * c2;
942 <          vterm = -pref * ct_j * pot_term;
943 <          vpair += vterm;
944 <          epot +=  *(idat.sw)  * vterm;
945 <            
946 <          // calculate derivatives for forces and torques
947 <
617 <          dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3);
618 <          duduz_j += -preSw * pot_term * rhat;
619 <
940 >        // Even if we excluded this pair from direct interactions,
941 >        // we still have the reaction-field-mediated charge-dipole
942 >        // interaction:
943 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
944 >          rfContrib = C_b * pref * preRF_ * 2.0 * *(idat.rij);
945 >          indirect_Pot -= rfContrib * rdDa;
946 >          indirect_F   -= rfContrib * D_a / (*idat.rij);
947 >          indirect_Ta  -= C_b * pref * preRF_ * rxDa;
948          }
949        }
950  
951 <      if (j_is_Quadrupole) {
952 <        // first precalculate some necessary variables
953 <        cx2 = cx_j * cx_j;
954 <        cy2 = cy_j * cy_j;
955 <        cz2 = cz_j * cz_j;
956 <        pref =   *(idat.electroMult) * pre14_ * q_i * one_third_;
957 <          
958 <        if (screeningMethod_ == DAMPED) {
959 <          // assemble the damping variables
960 <          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
961 <          //erfcVal = res.first;
962 <          //derfcVal = res.second;
963 <          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
964 <          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
965 <          c1 = erfcVal * riji;
966 <          c2 = (-derfcVal + c1) * riji;
967 <          c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
968 <          c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
969 <        } else {
642 <          c1 = riji;
643 <          c2 = c1 * riji;
644 <          c3 = 3.0 * c2 * riji;
645 <          c4 = 5.0 * c3 * riji * riji;
951 >      if (b_is_Dipole) {
952 >        pref = pre22_ * *(idat.electroMult);
953 >        DadDb = dot(D_a, D_b);
954 >        DaxDb = cross(D_a, D_b);
955 >
956 >        U  -= pref * (DadDb * v21 + rdDa * rdDb * v22);
957 >        F  -= pref * (DadDb * rhat + rdDb * D_a + rdDa * D_b)*v23;
958 >        F  -= pref * (rdDa * rdDb) * v24 * rhat;
959 >        Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa);
960 >        Tb += pref * (-v21 * DaxDb - v22 * rdDa * rxDb);
961 >
962 >        // Even if we excluded this pair from direct interactions, we
963 >        // still have the reaction-field-mediated dipole-dipole
964 >        // interaction:
965 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
966 >          rfContrib = -pref * preRF_ * 2.0;
967 >          indirect_Pot += rfContrib * DadDb;
968 >          indirect_Ta  += rfContrib * DaxDb;
969 >          indirect_Tb  -= rfContrib * DaxDb;
970          }
971  
972 <        // precompute variables for convenience
649 <        preSw =  *(idat.sw)  * pref;
650 <        c2ri = c2 * riji;
651 <        c3ri = c3 * riji;
652 <        c4rij = c4 *  *(idat.rij) ;
653 <        rhatdot2 = two * rhat * c3;
654 <        rhatc4 = rhat * c4rij;
972 >      }
973  
974 <        // calculate the potential
975 <        pot_term = ( qxx_j * (cx2*c3 - c2ri) +
976 <                     qyy_j * (cy2*c3 - c2ri) +
977 <                     qzz_j * (cz2*c3 - c2ri) );
978 <        vterm = pref * pot_term;
661 <        vpair += vterm;
662 <        epot +=  *(idat.sw)  * vterm;
663 <                
664 <        // calculate derivatives for the forces and torques
974 >      if (b_is_Quadrupole) {
975 >        pref = pre24_ * *(idat.electroMult);
976 >        DadQb = D_a * Q_b;
977 >        DadQbr = dot(D_a, Qbr);
978 >        DaxQbr = cross(D_a, Qbr);
979  
980 <        dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (two*cx_j*ux_j + rhat)*c3ri) +
981 <                           qyy_j* (cy2*rhatc4 - (two*cy_j*uy_j + rhat)*c3ri) +
982 <                           qzz_j* (cz2*rhatc4 - (two*cz_j*uz_j + rhat)*c3ri));
983 <                          
984 <        dudux_j += preSw * qxx_j * cx_j * rhatdot2;
985 <        duduy_j += preSw * qyy_j * cy_j * rhatdot2;
986 <        duduz_j += preSw * qzz_j * cz_j * rhatdot2;
980 >        U  -= pref * ((trQb*rdDa + 2.0*DadQbr)*v31 + rdDa*rdQbr*v32);
981 >        F  -= pref * (trQb*D_a + 2.0*DadQb) * v33;
982 >        F  -= pref * (trQb*rdDa*rhat + 2.0*DadQbr*rhat + D_a*rdQbr
983 >                      + 2.0*rdDa*rQb)*v34;
984 >        F  -= pref * (rdDa * rdQbr * rhat * v35);
985 >        Ta += pref * ((-trQb*rxDa + 2.0 * DaxQbr)*v31 - rxDa*rdQbr*v32);
986 >        Tb += pref * ((2.0*cross(DadQb, rhat) - 2.0*DaxQbr)*v31
987 >                      - 2.0*rdDa*rxQbr*v32);
988        }
989      }
675    
676    if (i_is_Dipole) {
990  
991 <      if (j_is_Charge) {
992 <        // variables used by all the methods
993 <        pref =  *(idat.electroMult) * pre12_ * q_j * mu_i;
994 <        preSw =  *(idat.sw)  * pref;
991 >    if (a_is_Quadrupole) {
992 >      if (b_is_Charge) {
993 >        pref = pre14_ * *(idat.electroMult);
994 >        U  += C_b * pref * (v21 * trQa + v22 * rdQar);
995 >        F  += C_b * pref * (trQa * rhat + 2.0 * Qar) * v23;
996 >        F  += C_b * pref * rdQar * rhat * v24;
997 >        Ta += C_b * pref * 2.0 * rxQar * v22;
998  
999 <        if (summationMethod_ == esm_REACTION_FIELD) {
999 >        if (b_is_Fluctuating) dUdCb += pref * (v21 * trQa + v22 * rdQar);
1000 >      }
1001 >      if (b_is_Dipole) {
1002 >        pref = pre24_ * *(idat.electroMult);
1003 >        DbdQa = D_b * Q_a;
1004 >        DbdQar = dot(D_b, Qar);
1005 >        DbxQar = cross(D_b, Qar);
1006  
1007 <          ri2 = riji * riji;
1008 <          ri3 = ri2 * riji;
1007 >        U  += pref * ((trQa*rdDb + 2.0*DbdQar)*v31 + rdDb*rdQar*v32);
1008 >        F  += pref * (trQa*D_b + 2.0*DbdQa) * v33;
1009 >        F  += pref * (trQa*rdDb*rhat + 2.0*DbdQar*rhat + D_b*rdQar
1010 >                      + 2.0*rdDb*rQa)*v34;
1011 >        F  += pref * (rdDb * rdQar * rhat * v35);
1012 >        Ta += pref * ((-2.0*cross(DbdQa, rhat) + 2.0*DbxQar)*v31
1013 >                      + 2.0*rdDb*rxQar*v32);
1014 >        Tb += pref * ((trQa*rxDb - 2.0 * DbxQar)*v31 + rxDb*rdQar*v32);
1015 >      }
1016 >      if (b_is_Quadrupole) {
1017 >        pref = pre44_ * *(idat.electroMult);  // yes
1018 >        QaQb = Q_a * Q_b;
1019 >        trQaQb = QaQb.trace();
1020 >        rQaQb = rhat * QaQb;
1021 >        QaQbr = QaQb * rhat;
1022 >        QaxQb = cross(Q_a, Q_b);
1023 >        rQaQbr = dot(rQa, Qbr);
1024 >        rQaxQbr = cross(rQa, Qbr);
1025 >        
1026 >        U  += pref * (trQa * trQb + 2.0 * trQaQb) * v41;
1027 >        U  += pref * (trQa * rdQbr + trQb * rdQar  + 4.0 * rQaQbr) * v42;
1028 >        U  += pref * (rdQar * rdQbr) * v43;
1029  
1030 <          vterm = pref * ct_i * ( ri2 - preRF2_ *  *(idat.rij)  );
1031 <          vpair += vterm;
1032 <          epot +=  *(idat.sw)  * vterm;
691 <          
692 <          dVdr += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_ * uz_i);
693 <          
694 <          duduz_i += preSw * rhat * (ri2 - preRF2_ *  *(idat.rij) );
1030 >        F  += pref * rhat * (trQa * trQb + 2.0 * trQaQb)*v44;
1031 >        F  += pref * rhat * (trQa * rdQbr + trQb * rdQar + 4.0 * rQaQbr)*v45;
1032 >        F  += pref * rhat * (rdQar * rdQbr)*v46;
1033  
1034 <          // Even if we excluded this pair from direct interactions,
1035 <          // we still have the reaction-field-mediated charge-dipole
1036 <          // interaction:
1034 >        F  += pref * 2.0 * (trQb*rQa + trQa*rQb)*v44;
1035 >        F  += pref * 4.0 * (rQaQb + QaQbr)*v44;
1036 >        F  += pref * 2.0 * (rQa*rdQbr + rdQar*rQb)*v45;
1037  
1038 <          if (idat.excluded) {
1039 <            indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij);
1040 <            indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij);
1041 <            indirect_dVdr += -preSw * preRF2_ * uz_i;
1042 <            indirect_duduz_i += -preSw * rhat * preRF2_ *  *(idat.rij);
705 <          }
706 <            
707 <        } else {
708 <          
709 <          // determine inverse r if we are using split dipoles
710 <          if (i_is_SplitDipole) {
711 <            BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
712 <            ri = 1.0 / BigR;
713 <            scale =  *(idat.rij)  * ri;
714 <          } else {
715 <            ri = riji;
716 <            scale = 1.0;
717 <          }
718 <          
719 <          sc2 = scale * scale;
720 <            
721 <          if (screeningMethod_ == DAMPED) {
722 <            // assemble the damping variables
723 <            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
724 <            //erfcVal = res.first;
725 <            //derfcVal = res.second;
726 <            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
727 <            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
728 <            c1 = erfcVal * ri;
729 <            c2 = (-derfcVal + c1) * ri;
730 <            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
731 <          } else {
732 <            c1 = ri;
733 <            c2 = c1 * ri;
734 <            c3 = 3.0 * c2 * ri;
735 <          }
736 <          
737 <          c2ri = c2 * ri;
738 <              
739 <          // calculate the potential
740 <          pot_term = c2 * scale;
741 <          vterm = pref * ct_i * pot_term;
742 <          vpair += vterm;
743 <          epot +=  *(idat.sw)  * vterm;
1038 >        Ta += pref * (- 4.0 * QaxQb * v41);
1039 >        Ta += pref * (- 2.0 * trQb * cross(rQa, rhat)
1040 >                      + 4.0 * cross(rhat, QaQbr)
1041 >                      - 4.0 * rQaxQbr) * v42;
1042 >        Ta += pref * 2.0 * cross(rhat,Qar) * rdQbr * v43;
1043  
745          // calculate derivatives for the forces and torques
746          dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3);
747          duduz_i += preSw * pot_term * rhat;
748        }
749      }
1044  
1045 <      if (j_is_Dipole) {
1046 <        // variables used by all methods
1047 <        ct_ij = dot(uz_i, uz_j);
1045 >        Tb += pref * (+ 4.0 * QaxQb * v41);
1046 >        Tb += pref * (- 2.0 * trQa * cross(rQb, rhat)
1047 >                      - 4.0 * cross(rQaQb, rhat)
1048 >                      + 4.0 * rQaxQbr) * v42;
1049 >        // Possible replacement for line 2 above:
1050 >        //             + 4.0 * cross(rhat, QbQar)
1051  
1052 <        pref =  *(idat.electroMult) * pre22_ * mu_i * mu_j;
756 <        preSw =  *(idat.sw)  * pref;
1052 >        Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43;
1053  
1054 <        if (summationMethod_ == esm_REACTION_FIELD) {
759 <          ri2 = riji * riji;
760 <          ri3 = ri2 * riji;
761 <          ri4 = ri2 * ri2;
762 <
763 <          vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
764 <                           preRF2_ * ct_ij );
765 <          vpair += vterm;
766 <          epot +=  *(idat.sw)  * vterm;
767 <            
768 <          a1 = 5.0 * ct_i * ct_j - ct_ij;
769 <            
770 <          dVdr += preSw * three * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
771 <
772 <          duduz_i += preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
773 <          duduz_j += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_*uz_i);
774 <
775 <          if (idat.excluded) {
776 <            indirect_vpair +=  - pref * preRF2_ * ct_ij;
777 <            indirect_Pot +=    - preSw * preRF2_ * ct_ij;
778 <            indirect_duduz_i += -preSw * preRF2_ * uz_j;
779 <            indirect_duduz_j += -preSw * preRF2_ * uz_i;
780 <          }
781 <
782 <        } else {
783 <          
784 <          if (i_is_SplitDipole) {
785 <            if (j_is_SplitDipole) {
786 <              BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
787 <            } else {
788 <              BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
789 <            }
790 <            ri = 1.0 / BigR;
791 <            scale =  *(idat.rij)  * ri;
792 <          } else {
793 <            if (j_is_SplitDipole) {
794 <              BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
795 <              ri = 1.0 / BigR;
796 <              scale =  *(idat.rij)  * ri;
797 <            } else {
798 <              ri = riji;
799 <              scale = 1.0;
800 <            }
801 <          }
802 <          if (screeningMethod_ == DAMPED) {
803 <            // assemble damping variables
804 <            //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
805 <            //erfcVal = res.first;
806 <            //derfcVal = res.second;
807 <            erfcVal = erfc(dampingAlpha_ * *(idat.rij));
808 <            derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
809 <            c1 = erfcVal * ri;
810 <            c2 = (-derfcVal + c1) * ri;
811 <            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
812 <            c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri;
813 <          } else {
814 <            c1 = ri;
815 <            c2 = c1 * ri;
816 <            c3 = 3.0 * c2 * ri;
817 <            c4 = 5.0 * c3 * ri * ri;
818 <          }
819 <
820 <          // precompute variables for convenience
821 <          sc2 = scale * scale;
822 <          cti3 = ct_i * sc2 * c3;
823 <          ctj3 = ct_j * sc2 * c3;
824 <          ctidotj = ct_i * ct_j * sc2;
825 <          preSwSc = preSw * scale;
826 <          c2ri = c2 * ri;
827 <          c3ri = c3 * ri;
828 <          c4rij = c4 *  *(idat.rij) ;
829 <
830 <          // calculate the potential
831 <          pot_term = (ct_ij * c2ri - ctidotj * c3);
832 <          vterm = pref * pot_term;
833 <          vpair += vterm;
834 <          epot +=  *(idat.sw)  * vterm;
835 <
836 <          // calculate derivatives for the forces and torques
837 <          dVdr += preSwSc * ( ctidotj * rhat * c4rij  -
838 <                              (ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri);
839 <          
840 <          duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat);
841 <          duduz_j += preSw * (uz_i * c2ri - cti3 * rhat);
842 <        }
1054 >        //  cerr << " tsum = " << Ta + Tb - cross(  *(idat.d) , F ) << "\n";
1055        }
1056      }
1057  
1058 <    if (i_is_Quadrupole) {
1059 <      if (j_is_Charge) {
1060 <        // precompute some necessary variables
849 <        cx2 = cx_i * cx_i;
850 <        cy2 = cy_i * cy_i;
851 <        cz2 = cz_i * cz_i;
852 <
853 <        pref =  *(idat.electroMult) * pre14_ * q_j * one_third_;
854 <
855 <        if (screeningMethod_ == DAMPED) {
856 <          // assemble the damping variables
857 <          //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
858 <          //erfcVal = res.first;
859 <          //derfcVal = res.second;
860 <          erfcVal = erfc(dampingAlpha_ * *(idat.rij));
861 <          derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
862 <          c1 = erfcVal * riji;
863 <          c2 = (-derfcVal + c1) * riji;
864 <          c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
865 <          c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
866 <        } else {
867 <          c1 = riji;
868 <          c2 = c1 * riji;
869 <          c3 = 3.0 * c2 * riji;
870 <          c4 = 5.0 * c3 * riji * riji;
871 <        }
872 <          
873 <        // precompute some variables for convenience
874 <        preSw =  *(idat.sw)  * pref;
875 <        c2ri = c2 * riji;
876 <        c3ri = c3 * riji;
877 <        c4rij = c4 *  *(idat.rij) ;
878 <        rhatdot2 = two * rhat * c3;
879 <        rhatc4 = rhat * c4rij;
880 <
881 <        // calculate the potential
882 <        pot_term = ( qxx_i * (cx2 * c3 - c2ri) +
883 <                     qyy_i * (cy2 * c3 - c2ri) +
884 <                     qzz_i * (cz2 * c3 - c2ri) );
885 <        
886 <        vterm = pref * pot_term;
887 <        vpair += vterm;
888 <        epot +=  *(idat.sw)  * vterm;
889 <
890 <        // calculate the derivatives for the forces and torques
891 <
892 <        dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (two*cx_i*ux_i + rhat)*c3ri) +
893 <                          qyy_i* (cy2*rhatc4 - (two*cy_i*uy_i + rhat)*c3ri) +
894 <                          qzz_i* (cz2*rhatc4 - (two*cz_i*uz_i + rhat)*c3ri));
895 <
896 <        dudux_i += preSw * qxx_i * cx_i *  rhatdot2;
897 <        duduy_i += preSw * qyy_i * cy_i *  rhatdot2;
898 <        duduz_i += preSw * qzz_i * cz_i *  rhatdot2;
899 <      }
1058 >    if (idat.doElectricField) {
1059 >      *(idat.eField1) += Ea * *(idat.electroMult);
1060 >      *(idat.eField2) += Eb * *(idat.electroMult);
1061      }
1062  
1063 +    if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw);
1064 +    if (b_is_Fluctuating) *(idat.dVdFQ2) += dUdCb * *(idat.sw);
1065  
1066      if (!idat.excluded) {
904      *(idat.vpair) += vpair;
905      (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
906      *(idat.f1) += dVdr;
1067        
1068 <      if (i_is_Dipole || i_is_Quadrupole)
1069 <        *(idat.t1) -= cross(uz_i, duduz_i);
1070 <      if (i_is_Quadrupole) {
911 <        *(idat.t1) -= cross(ux_i, dudux_i);
912 <        *(idat.t1) -= cross(uy_i, duduy_i);
913 <      }
1068 >      *(idat.vpair) += U;
1069 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += U * *(idat.sw);
1070 >      *(idat.f1) += F * *(idat.sw);
1071        
1072 <      if (j_is_Dipole || j_is_Quadrupole)
1073 <        *(idat.t2) -= cross(uz_j, duduz_j);
917 <      if (j_is_Quadrupole) {
918 <        *(idat.t2) -= cross(uz_j, dudux_j);
919 <        *(idat.t2) -= cross(uz_j, duduy_j);
920 <      }
1072 >      if (a_is_Dipole || a_is_Quadrupole)
1073 >        *(idat.t1) += Ta * *(idat.sw);
1074  
1075 +      if (b_is_Dipole || b_is_Quadrupole)
1076 +        *(idat.t2) += Tb * *(idat.sw);
1077 +      
1078      } else {
1079  
1080        // only accumulate the forces and torques resulting from the
1081        // indirect reaction field terms.
1082  
1083 <      *(idat.vpair) += indirect_vpair;
1084 <      (*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot;
1085 <      *(idat.f1) += indirect_dVdr;
1083 >      *(idat.vpair) += indirect_Pot;      
1084 >      (*(idat.excludedPot))[ELECTROSTATIC_FAMILY] +=  excluded_Pot;
1085 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += *(idat.sw) * indirect_Pot;
1086 >      *(idat.f1) += *(idat.sw) * indirect_F;
1087        
1088 <      if (i_is_Dipole)
1089 <        *(idat.t1) -= cross(uz_i, indirect_duduz_i);
1090 <      if (j_is_Dipole)
1091 <        *(idat.t2) -= cross(uz_j, indirect_duduz_j);
1088 >      if (a_is_Dipole || a_is_Quadrupole)
1089 >        *(idat.t1) += *(idat.sw) * indirect_Ta;
1090 >            
1091 >      if (b_is_Dipole || b_is_Quadrupole)
1092 >        *(idat.t2) += *(idat.sw) * indirect_Tb;
1093      }
936
937
1094      return;
1095 <  }  
1095 >  }
1096      
1097    void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1098 <    RealType mu1, preVal, chg1, self;
943 <    
1098 >
1099      if (!initialized_) initialize();
1100  
1101      ElectrostaticAtomData data = ElectrostaticMap[sdat.atype];
1102 <  
1102 >    
1103      // logicals
1104      bool i_is_Charge = data.is_Charge;
1105      bool i_is_Dipole = data.is_Dipole;
1106 +    bool i_is_Fluctuating = data.is_Fluctuating;
1107 +    RealType C_a = data.fixedCharge;  
1108 +    RealType self, preVal, DadDa;
1109 +    
1110 +    if (i_is_Fluctuating) {
1111 +      C_a += *(sdat.flucQ);
1112 +      // dVdFQ is really a force, so this is negative the derivative
1113 +      *(sdat.dVdFQ) -=  *(sdat.flucQ) * data.hardness + data.electronegativity;
1114 +      (*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) *
1115 +        (*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity);
1116 +    }
1117  
1118 <    if (summationMethod_ == esm_REACTION_FIELD) {
1119 <      if (i_is_Dipole) {
1120 <        mu1 = data.dipole_moment;          
1121 <        preVal = pre22_ * preRF2_ * mu1 * mu1;
1122 <        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal;
1123 <        
1124 <        // The self-correction term adds into the reaction field vector
1125 <        Vector3d uz_i = sdat.eFrame->getColumn(2);
1126 <        Vector3d ei = preVal * uz_i;
1118 >    switch (summationMethod_) {
1119 >    case esm_REACTION_FIELD:
1120 >      
1121 >      if (i_is_Charge) {
1122 >        // Self potential [see Wang and Hermans, "Reaction Field
1123 >        // Molecular Dynamics Simulation with Friedman’s Image Charge
1124 >        // Method," J. Phys. Chem. 99, 12001-12007 (1995).]
1125 >        preVal = pre11_ * preRF_ * C_a * C_a;
1126 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal / cutoffRadius_;
1127 >      }
1128  
1129 <        // This looks very wrong.  A vector crossed with itself is zero.
1130 <        *(sdat.t) -= cross(uz_i, ei);
1129 >      if (i_is_Dipole) {
1130 >        DadDa = data.dipole.lengthSquare();
1131 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= pre22_ * preRF_ * DadDa;
1132        }
1133 <    } else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) {
1134 <      if (i_is_Charge) {        
1135 <        chg1 = data.charge;
1136 <        if (screeningMethod_ == DAMPED) {
1137 <          self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1138 <        } else {        
1139 <          self = - 0.5 * rcuti_ * chg1 * (chg1 +  *(sdat.skippedCharge)) * pre11_;
972 <        }
1133 >      
1134 >      break;
1135 >      
1136 >    case esm_SHIFTED_FORCE:
1137 >    case esm_SHIFTED_POTENTIAL:
1138 >      if (i_is_Charge) {
1139 >        self = - selfMult_ * C_a * (C_a + *(sdat.skippedCharge)) * pre11_;
1140          (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1141        }
1142 +      break;
1143 +    default:
1144 +      break;
1145      }
1146    }
1147 <
1147 >  
1148    RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1149      // This seems to work moderately well as a default.  There's no
1150      // inherent scale for 1/r interactions that we can standardize.

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines