ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Electrostatic.cpp
(Generate patch)

Comparing branches/development/src/nonbonded/Electrostatic.cpp (file contents):
Revision 1504 by gezelter, Sat Oct 2 20:41:53 2010 UTC vs.
Revision 1808 by gezelter, Mon Oct 22 20:42:10 2012 UTC

# Line 34 | Line 34
34   * work.  Good starting points are:
35   *                                                                      
36   * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 < * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).          
38   * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 < * [4]  Vardeman & Gezelter, in progress (2009).                        
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   #include <stdio.h>
# Line 46 | Line 47
47   #include "nonbonded/Electrostatic.hpp"
48   #include "utils/simError.h"
49   #include "types/NonBondedInteractionType.hpp"
50 < #include "types/DirectionalAtomType.hpp"
50 > #include "types/FixedChargeAdapter.hpp"
51 > #include "types/FluctuatingChargeAdapter.hpp"
52 > #include "types/MultipoleAdapter.hpp"
53 > #include "io/Globals.hpp"
54 > #include "nonbonded/SlaterIntegrals.hpp"
55 > #include "utils/PhysicalConstants.hpp"
56 > #include "math/erfc.hpp"
57 > #include "math/SquareMatrix.hpp"
58  
51
59   namespace OpenMD {
60    
61    Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
62 <                                  forceField_(NULL) {}
62 >                                  forceField_(NULL), info_(NULL),
63 >                                  haveCutoffRadius_(false),
64 >                                  haveDampingAlpha_(false),
65 >                                  haveDielectric_(false),
66 >                                  haveElectroSplines_(false)
67 >  {}
68    
69    void Electrostatic::initialize() {
70 +    
71 +    Globals* simParams_ = info_->getSimParams();
72 +
73 +    summationMap_["HARD"]               = esm_HARD;
74 +    summationMap_["NONE"]               = esm_HARD;
75 +    summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
76 +    summationMap_["SHIFTED_POTENTIAL"]  = esm_SHIFTED_POTENTIAL;
77 +    summationMap_["SHIFTED_FORCE"]      = esm_SHIFTED_FORCE;    
78 +    summationMap_["REACTION_FIELD"]     = esm_REACTION_FIELD;    
79 +    summationMap_["EWALD_FULL"]         = esm_EWALD_FULL;        
80 +    summationMap_["EWALD_PME"]          = esm_EWALD_PME;        
81 +    summationMap_["EWALD_SPME"]         = esm_EWALD_SPME;        
82 +    screeningMap_["DAMPED"]             = DAMPED;
83 +    screeningMap_["UNDAMPED"]           = UNDAMPED;
84 +
85      // these prefactors convert the multipole interactions into kcal / mol
86      // all were computed assuming distances are measured in angstroms
87      // Charge-Charge, assuming charges are measured in electrons
# Line 62 | Line 89 | namespace OpenMD {
89      // Charge-Dipole, assuming charges are measured in electrons, and
90      // dipoles are measured in debyes
91      pre12_ = 69.13373;
92 <    // Dipole-Dipole, assuming dipoles are measured in debyes
92 >    // Dipole-Dipole, assuming dipoles are measured in Debye
93      pre22_ = 14.39325;
94      // Charge-Quadrupole, assuming charges are measured in electrons, and
95      // quadrupoles are measured in 10^-26 esu cm^2
96 <    // This unit is also known affectionately as an esu centi-barn.
96 >    // This unit is also known affectionately as an esu centibarn.
97      pre14_ = 69.13373;
98 <    
98 >    // Dipole-Quadrupole, assuming dipoles are measured in debyes and
99 >    // quadrupoles in esu centibarns:
100 >    pre24_ = 14.39325;
101 >    // Quadrupole-Quadrupole, assuming esu centibarns:
102 >    pre44_ = 14.39325;
103 >
104      // conversions for the simulation box dipole moment
105      chargeToC_ = 1.60217733e-19;
106      angstromToM_ = 1.0e-10;
# Line 79 | Line 111 | namespace OpenMD {
111      
112      // variables to handle different summation methods for long-range
113      // electrostatics:
114 <    summationMethod_ = NONE;    
114 >    summationMethod_ = esm_HARD;    
115      screeningMethod_ = UNDAMPED;
116      dielectric_ = 1.0;
85    one_third_ = 1.0 / 3.0;
86    haveDefaultCutoff_ = false;
87    haveDampingAlpha_ = false;
88    haveDielectric_ = false;  
89    haveElectroSpline_ = false;
117    
118 <    // find all of the Electrostatic atom Types:
119 <    ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
120 <    ForceField::AtomTypeContainer::MapTypeIterator i;
121 <    AtomType* at;
122 <
123 <    for (at = atomTypes->beginType(i); at != NULL;
124 <         at = atomTypes->nextType(i)) {
125 <      
126 <      if (at->isElectrostatic())
127 <        addType(at);
118 >    // check the summation method:
119 >    if (simParams_->haveElectrostaticSummationMethod()) {
120 >      string myMethod = simParams_->getElectrostaticSummationMethod();
121 >      toUpper(myMethod);
122 >      map<string, ElectrostaticSummationMethod>::iterator i;
123 >      i = summationMap_.find(myMethod);
124 >      if ( i != summationMap_.end() ) {
125 >        summationMethod_ = (*i).second;
126 >      } else {
127 >        // throw error
128 >        sprintf( painCave.errMsg,
129 >                 "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
130 >                 "\t(Input file specified %s .)\n"
131 >                 "\telectrostaticSummationMethod must be one of: \"hard\",\n"
132 >                 "\t\"shifted_potential\", \"shifted_force\", or \n"
133 >                 "\t\"reaction_field\".\n", myMethod.c_str() );
134 >        painCave.isFatal = 1;
135 >        simError();
136 >      }
137 >    } else {
138 >      // set ElectrostaticSummationMethod to the cutoffMethod:
139 >      if (simParams_->haveCutoffMethod()){
140 >        string myMethod = simParams_->getCutoffMethod();
141 >        toUpper(myMethod);
142 >        map<string, ElectrostaticSummationMethod>::iterator i;
143 >        i = summationMap_.find(myMethod);
144 >        if ( i != summationMap_.end() ) {
145 >          summationMethod_ = (*i).second;
146 >        }
147 >      }
148      }
149      
150 +    if (summationMethod_ == esm_REACTION_FIELD) {        
151 +      if (!simParams_->haveDielectric()) {
152 +        // throw warning
153 +        sprintf( painCave.errMsg,
154 +                 "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
155 +                 "\tA default value of %f will be used for the dielectric.\n", dielectric_);
156 +        painCave.isFatal = 0;
157 +        painCave.severity = OPENMD_INFO;
158 +        simError();
159 +      } else {
160 +        dielectric_ = simParams_->getDielectric();      
161 +      }
162 +      haveDielectric_ = true;
163 +    }
164 +    
165 +    if (simParams_->haveElectrostaticScreeningMethod()) {
166 +      string myScreen = simParams_->getElectrostaticScreeningMethod();
167 +      toUpper(myScreen);
168 +      map<string, ElectrostaticScreeningMethod>::iterator i;
169 +      i = screeningMap_.find(myScreen);
170 +      if ( i != screeningMap_.end()) {
171 +        screeningMethod_ = (*i).second;
172 +      } else {
173 +        sprintf( painCave.errMsg,
174 +                 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
175 +                 "\t(Input file specified %s .)\n"
176 +                 "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
177 +                 "or \"damped\".\n", myScreen.c_str() );
178 +        painCave.isFatal = 1;
179 +        simError();
180 +      }
181 +    }
182 +
183      // check to make sure a cutoff value has been set:
184 <    if (!haveDefaultCutoff_) {
184 >    if (!haveCutoffRadius_) {
185        sprintf( painCave.errMsg, "Electrostatic::initialize has no Default "
186                 "Cutoff value!\n");
187        painCave.severity = OPENMD_ERROR;
188        painCave.isFatal = 1;
189        simError();
190      }
191 <
192 <    defaultCutoff2_ = defaultCutoff_ * defaultCutoff_;
193 <    rcuti_ = 1.0 / defaultCutoff_;
194 <    rcuti2_ = rcuti_ * rcuti_;
195 <    rcuti3_ = rcuti2_ * rcuti_;
196 <    rcuti4_ = rcuti2_ * rcuti2_;
197 <
198 <    if (screeningMethod_ == DAMPED) {
199 <      if (!haveDampingAlpha_) {
200 <        sprintf( painCave.errMsg, "Electrostatic::initialize has no "
201 <                 "DampingAlpha value!\n");
202 <        painCave.severity = OPENMD_ERROR;
203 <        painCave.isFatal = 1;
191 >          
192 >    if (screeningMethod_ == DAMPED) {      
193 >      if (!simParams_->haveDampingAlpha()) {
194 >        // first set a cutoff dependent alpha value
195 >        // we assume alpha depends linearly with rcut from 0 to 20.5 ang
196 >        dampingAlpha_ = 0.425 - cutoffRadius_* 0.02;
197 >        if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;
198 >        
199 >        // throw warning
200 >        sprintf( painCave.errMsg,
201 >                 "Electrostatic::initialize: dampingAlpha was not specified in the\n"
202 >                 "\tinput file.  A default value of %f (1/ang) will be used for the\n"
203 >                 "\tcutoff of %f (ang).\n",
204 >                 dampingAlpha_, cutoffRadius_);
205 >        painCave.severity = OPENMD_INFO;
206 >        painCave.isFatal = 0;
207          simError();
208 +      } else {
209 +        dampingAlpha_ = simParams_->getDampingAlpha();
210        }
211 +      haveDampingAlpha_ = true;
212 +    }
213  
214 <      alpha2_ = dampingAlpha_ * dampingAlpha_;
215 <      alpha4_ = alpha2_ * alpha2_;
216 <      alpha6_ = alpha4_ * alpha2_;
217 <      alpha8_ = alpha4_ * alpha4_;
214 >    // find all of the Electrostatic atom Types:
215 >    ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
216 >    ForceField::AtomTypeContainer::MapTypeIterator i;
217 >    AtomType* at;
218 >    
219 >    for (at = atomTypes->beginType(i); at != NULL;
220 >         at = atomTypes->nextType(i)) {
221        
222 <      constEXP_ = exp(-alpha2_ * defaultCutoff2_);
223 <      invRootPi_ = 0.56418958354775628695;
224 <      alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_;
222 >      if (at->isElectrostatic())
223 >        addType(at);
224 >    }  
225 >    
226 >    if (summationMethod_ == esm_REACTION_FIELD) {
227 >      preRF_ = (dielectric_ - 1.0) /
228 >        ((2.0 * dielectric_ + 1.0) * pow(cutoffRadius_,3) );
229 >    }
230 >    
231 >    RealType b0c, b1c, b2c, b3c, b4c, b5c;
232 >    RealType db0c_1, db0c_2, db0c_3, db0c_4, db0c_5;
233 >    RealType a2, expTerm, invArootPi;
234 >    
235 >    RealType r = cutoffRadius_;
236 >    RealType r2 = r * r;
237  
238 <      c1c_ = erfc(dampingAlpha_ * defaultCutoff_) * rcuti_;
239 <      c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_;
240 <      c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_;
241 <      c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_;
242 <      c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_;
243 <      c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_;
238 >    if (screeningMethod_ == DAMPED) {      
239 >      a2 = dampingAlpha_ * dampingAlpha_;
240 >      invArootPi = 1.0 / (dampingAlpha_ * sqrt(M_PI));    
241 >      expTerm = exp(-a2 * r2);
242 >      // values of Smith's B_l functions at the cutoff radius:
243 >      b0c = erfc(dampingAlpha_ * r) / r;
244 >      b1c = (      b0c     + 2.0*a2     * expTerm * invArootPi) / r2;
245 >      b2c = (3.0 * b1c + pow(2.0*a2, 2) * expTerm * invArootPi) / r2;
246 >      b3c = (5.0 * b2c + pow(2.0*a2, 3) * expTerm * invArootPi) / r2;
247 >      b4c = (7.0 * b3c + pow(2.0*a2, 4) * expTerm * invArootPi) / r2;
248 >      b5c = (9.0 * b4c + pow(2.0*a2, 5) * expTerm * invArootPi) / r2;
249 >      selfMult_ = b0c  +  2.0 * a2 * invArootPi;
250      } else {
251 <      c1c_ = rcuti_;
252 <      c2c_ = c1c_ * rcuti_;
253 <      c3c_ = 3.0 * c2c_ * rcuti_;
254 <      c4c_ = 5.0 * c3c_ * rcuti2_;
255 <      c5c_ = 7.0 * c4c_ * rcuti2_;
256 <      c6c_ = 9.0 * c5c_ * rcuti2_;
257 <    }
258 <  
259 <    if (summationMethod_ == REACTION_FIELD) {
260 <      if (haveDielectric_) {
261 <        preRF_ = (dielectric_ - 1.0) /
262 <            ((2.0 * dielectric_ + 1.0) * defaultCutoff2_ * defaultCutoff_);
263 <        preRF2_ = 2.0 * preRF_;
251 >      a2 = 0.0;
252 >      b0c = 1.0 / r;
253 >      b1c = (      b0c) / r2;
254 >      b2c = (3.0 * b1c) / r2;
255 >      b3c = (5.0 * b2c) / r2;
256 >      b4c = (7.0 * b3c) / r2;
257 >      b5c = (9.0 * b4c) / r2;
258 >      selfMult_ = b0c;
259 >    }
260 >
261 >    // higher derivatives of B_0 at the cutoff radius:
262 >    db0c_1 = -r * b1c;
263 >    db0c_2 =     -b1c + r2 * b2c;
264 >    db0c_3 =          3.0*r*b2c  - r2*r*b3c;
265 >    db0c_4 =          3.0*b2c  - 6.0*r2*b3c     + r2*r2*b4c;
266 >    db0c_5 =                    -15.0*r*b3c + 10.0*r2*r*b4c - r2*r2*r*b5c;
267 >    
268 >    // working variables for the splines:
269 >    RealType ri, ri2;
270 >    RealType b0, b1, b2, b3, b4, b5;
271 >    RealType db0_1, db0_2, db0_3, db0_4, db0_5;
272 >    RealType f0;
273 >    RealType g0, g1, g2, g3, g4;
274 >    RealType h1, h2, h3, h4;
275 >    RealType s2, s3, s4;
276 >    RealType t3, t4;
277 >    RealType u4;
278 >
279 >    // working variables for Taylor expansion:
280 >    RealType rmRc, rmRc2, rmRc3, rmRc4;
281 >
282 >    // Add a 2 angstrom safety window to deal with cutoffGroups that
283 >    // have charged atoms longer than the cutoffRadius away from each
284 >    // other.  Splining is almost certainly the best choice here.
285 >    // Direct calls to erfc would be preferrable if it is a very fast
286 >    // implementation.
287 >
288 >    RealType dx = (cutoffRadius_ + 2.0) / RealType(np_);
289 >
290 >    // Storage vectors for the computed functions    
291 >    vector<RealType> rv;
292 >    vector<RealType> v01v, v02v;
293 >    vector<RealType> v11v, v12v, v13v;
294 >    vector<RealType> v21v, v22v, v23v, v24v;
295 >    vector<RealType> v31v, v32v, v33v, v34v, v35v;
296 >    vector<RealType> v41v, v42v, v43v, v44v, v45v, v46v;
297 >
298 >    for (int i = 1; i < np_ + 1; i++) {
299 >      r = RealType(i) * dx;
300 >      rv.push_back(r);
301 >
302 >      ri = 1.0 / r;
303 >      ri2 = ri * ri;
304 >
305 >      r2 = r * r;
306 >      expTerm = exp(-a2 * r2);
307 >
308 >      // Taylor expansion factors (no need for factorials this way):
309 >      rmRc = r - cutoffRadius_;
310 >      rmRc2 = rmRc  * rmRc / 2.0;
311 >      rmRc3 = rmRc2 * rmRc / 3.0;
312 >      rmRc4 = rmRc3 * rmRc / 4.0;
313 >
314 >      // values of Smith's B_l functions at r:
315 >      if (screeningMethod_ == DAMPED) {            
316 >        b0 = erfc(dampingAlpha_ * r) * ri;
317 >        b1 = (      b0 +     2.0*a2     * expTerm * invArootPi) * ri2;
318 >        b2 = (3.0 * b1 + pow(2.0*a2, 2) * expTerm * invArootPi) * ri2;
319 >        b3 = (5.0 * b2 + pow(2.0*a2, 3) * expTerm * invArootPi) * ri2;
320 >        b4 = (7.0 * b3 + pow(2.0*a2, 4) * expTerm * invArootPi) * ri2;
321 >        b5 = (9.0 * b4 + pow(2.0*a2, 5) * expTerm * invArootPi) * ri2;
322        } else {
323 <        sprintf( painCave.errMsg, "Electrostatic::initialize has no Dielectric"
324 <                 " value!\n");
325 <        painCave.severity = OPENMD_ERROR;
323 >        b0 = ri;
324 >        b1 = (      b0) * ri2;
325 >        b2 = (3.0 * b1) * ri2;
326 >        b3 = (5.0 * b2) * ri2;
327 >        b4 = (7.0 * b3) * ri2;
328 >        b5 = (9.0 * b4) * ri2;
329 >      }
330 >                
331 >      // higher derivatives of B_0 at r:
332 >      db0_1 = -r * b1;
333 >      db0_2 =     -b1 + r2 * b2;
334 >      db0_3 =          3.0*r*b2   - r2*r*b3;
335 >      db0_4 =          3.0*b2   - 6.0*r2*b3     + r2*r2*b4;
336 >      db0_5 =                    -15.0*r*b3 + 10.0*r2*r*b4 - r2*r2*r*b5;
337 >
338 >
339 >      switch (summationMethod_) {
340 >      case esm_SHIFTED_FORCE:
341 >        f0 = b0 - b0c - rmRc*db0c_1;
342 >        
343 >        g0 = db0_1 - db0c_1;
344 >        g1 = g0 - rmRc *db0c_2;
345 >        g2 = g1 - rmRc2*db0c_3;
346 >        g3 = g2 - rmRc3*db0c_4;
347 >        g4 = g3 - rmRc4*db0c_5;
348 >        
349 >        h1 = db0_2 - db0c_2;
350 >        h2 = h1 - rmRc *db0c_3;
351 >        h3 = h2 - rmRc2*db0c_4;
352 >        h4 = h3 - rmRc3*db0c_5;
353 >        
354 >        s2 = db0_3 - db0c_3;
355 >        s3 = s2 - rmRc *db0c_4;
356 >        s4 = s3 - rmRc2*db0c_5;
357 >        
358 >        t3 = db0_4 - db0c_4;
359 >        t4 = t3 - rmRc *db0c_5;
360 >        
361 >        u4 = db0_5 - db0c_5;
362 >        break;
363 >
364 >      case esm_SHIFTED_POTENTIAL:
365 >        f0 = b0 - b0c;
366 >        
367 >        g0 = db0_1;
368 >        g1 = db0_1 - db0c_1;
369 >        g2 = g1 - rmRc *db0c_2;
370 >        g3 = g2 - rmRc2*db0c_3;
371 >        g4 = g3 - rmRc3*db0c_4;
372 >
373 >        h1 = db0_2;
374 >        h2 = db0_2 - db0c_2;
375 >        h3 = h2 - rmRc *db0c_3;
376 >        h4 = h3 - rmRc2*db0c_4;
377 >        
378 >        s2 = db0_3;
379 >        s3 = db0_3 - db0c_3;
380 >        s4 = s3 - rmRc *db0c_4;
381 >
382 >        t3 = db0_4;
383 >        t4 = db0_4 - db0c_4;
384 >        
385 >        u4 = db0_5;
386 >        break;
387 >
388 >      case esm_SWITCHING_FUNCTION:
389 >      case esm_HARD:
390 >        f0 = b0;
391 >        
392 >        g0 = db0_1;
393 >        g1 = g0;
394 >        g2 = g1;
395 >        g3 = g2;
396 >        g4 = g3;
397 >        
398 >        h1 = db0_2;
399 >        h2 = h1;
400 >        h3 = h2;
401 >        h4 = h3;
402 >        
403 >        s2 = db0_3;
404 >        s3 = s2;
405 >        s4 = s3;
406 >        
407 >        t3 = db0_4;
408 >        t4 = t3;
409 >        
410 >        u4 = db0_5;
411 >        break;
412 >
413 >      case esm_REACTION_FIELD:
414 >
415 >        // following DL_POLY's lead for shifting the image charge potential:
416 >        f0 = b0  + preRF_ * r2
417 >          - (b0c + preRF_ * cutoffRadius_ * cutoffRadius_);
418 >
419 >        g0 = db0_1 + preRF_ * 2.0 * r;
420 >        g1 = g0;
421 >        g2 = g1;
422 >        g3 = g2;
423 >        g4 = g3;
424 >
425 >        h1 = db0_2 + preRF_ * 2.0;
426 >        h2 = h1;
427 >        h3 = h2;
428 >        h4 = h3;
429 >
430 >        s2 = db0_3;
431 >        s3 = s2;
432 >        s4 = s3;
433 >        
434 >        t3 = db0_4;
435 >        t4 = t3;
436 >        
437 >        u4 = db0_5;        
438 >        break;
439 >                
440 >      case esm_EWALD_FULL:
441 >      case esm_EWALD_PME:
442 >      case esm_EWALD_SPME:
443 >      default :
444 >        map<string, ElectrostaticSummationMethod>::iterator i;
445 >        std::string meth;
446 >        for (i = summationMap_.begin(); i != summationMap_.end(); ++i) {
447 >          if ((*i).second == summationMethod_) meth = (*i).first;
448 >        }
449 >        sprintf( painCave.errMsg,
450 >                 "Electrostatic::initialize: electrostaticSummationMethod %s \n"
451 >                 "\thas not been implemented yet. Please select one of:\n"
452 >                 "\t\"hard\", \"shifted_potential\", or \"shifted_force\"\n",
453 >                 meth.c_str() );
454          painCave.isFatal = 1;
455          simError();
456 +        break;      
457        }
458 <    }
459 <                              
460 <    RealType dx = defaultCutoff_ / RealType(np_ - 1);
461 <    RealType rval;
462 <    vector<RealType> rvals;
463 <    vector<RealType> yvals;
464 <    for (int i = 0; i < np_; i++) {
465 <      rval = RealType(i) * dx;
466 <      rvals.push_back(rval);
467 <      yvals.push_back(erfc(dampingAlpha_ * rval));
458 >
459 >      v01 = f0;
460 >      v02 = g0;
461 >
462 >      v11 = g1;
463 >      v12 = g1 * ri;
464 >      v13 = h1 - v12;
465 >
466 >      v21 = g2 * ri;
467 >      v22 = h2 - v21;
468 >      v23 = v22 * ri;
469 >      v24 = s2 - 3.0*v23;        
470 >
471 >      v31 = (h3 - g3 * ri) * ri;
472 >      v32 = s3 - 3.0*v31;
473 >      v33 = v31 * ri;
474 >      v34 = v32 * ri;
475 >      v35 = t3 - 6.0*v34 - 3.0*v33;
476 >
477 >      v41 = (h4 - g4 * ri) * ri2;
478 >      v42 = s4 * ri - 3.0*v41;
479 >      v43 = t4 - 6.0*v42 - 3.0*v41;
480 >      v44 = v42 * ri;
481 >      v45 = v43 * ri;
482 >      v46 = u4 - 10.0*v45 - 15.0*v44;
483 >
484 >      // Add these computed values to the storage vectors for spline creation:
485 >      v01v.push_back(v01);
486 >      v02v.push_back(v02);
487 >
488 >      v11v.push_back(v11);
489 >      v12v.push_back(v12);
490 >      v13v.push_back(v13);
491 >
492 >      v21v.push_back(v21);
493 >      v22v.push_back(v22);
494 >      v23v.push_back(v23);
495 >      v24v.push_back(v24);
496 >
497 >      v31v.push_back(v31);
498 >      v32v.push_back(v32);
499 >      v33v.push_back(v33);
500 >      v34v.push_back(v34);
501 >      v35v.push_back(v35);
502 >
503 >      v41v.push_back(v41);
504 >      v42v.push_back(v42);
505 >      v43v.push_back(v43);
506 >      v44v.push_back(v44);
507 >      v45v.push_back(v45);
508 >      v46v.push_back(v46);
509      }
174    erfcSpline_ = new CubicSpline();
175    erfcSpline_->addPoints(rvals, yvals);
176    haveElectroSpline_ = true;
510  
511 +    // construct the spline structures and fill them with the values we've
512 +    // computed:
513 +
514 +    v01s = new CubicSpline();
515 +    v01s->addPoints(rv, v01v);
516 +    v02s = new CubicSpline();
517 +    v02s->addPoints(rv, v02v);
518 +
519 +    v11s = new CubicSpline();
520 +    v11s->addPoints(rv, v11v);
521 +    v12s = new CubicSpline();
522 +    v12s->addPoints(rv, v12v);
523 +    v13s = new CubicSpline();
524 +    v13s->addPoints(rv, v13v);
525 +
526 +    v21s = new CubicSpline();
527 +    v21s->addPoints(rv, v21v);
528 +    v22s = new CubicSpline();
529 +    v22s->addPoints(rv, v22v);
530 +    v23s = new CubicSpline();
531 +    v23s->addPoints(rv, v23v);
532 +    v24s = new CubicSpline();
533 +    v24s->addPoints(rv, v24v);
534 +
535 +    v31s = new CubicSpline();
536 +    v31s->addPoints(rv, v31v);
537 +    v32s = new CubicSpline();
538 +    v32s->addPoints(rv, v32v);
539 +    v33s = new CubicSpline();
540 +    v33s->addPoints(rv, v33v);
541 +    v34s = new CubicSpline();
542 +    v34s->addPoints(rv, v34v);
543 +    v35s = new CubicSpline();
544 +    v35s->addPoints(rv, v35v);
545 +
546 +    v41s = new CubicSpline();
547 +    v41s->addPoints(rv, v41v);
548 +    v42s = new CubicSpline();
549 +    v42s->addPoints(rv, v42v);
550 +    v43s = new CubicSpline();
551 +    v43s->addPoints(rv, v43v);
552 +    v44s = new CubicSpline();
553 +    v44s->addPoints(rv, v44v);
554 +    v45s = new CubicSpline();
555 +    v45s->addPoints(rv, v45v);
556 +    v46s = new CubicSpline();
557 +    v46s->addPoints(rv, v46v);
558 +
559 +    haveElectroSplines_ = true;
560 +
561      initialized_ = true;
562    }
563        
# Line 183 | Line 566 | namespace OpenMD {
566      ElectrostaticAtomData electrostaticAtomData;
567      electrostaticAtomData.is_Charge = false;
568      electrostaticAtomData.is_Dipole = false;
186    electrostaticAtomData.is_SplitDipole = false;
569      electrostaticAtomData.is_Quadrupole = false;
570 +    electrostaticAtomData.is_Fluctuating = false;
571  
572 <    if (atomType->isCharge()) {
190 <      GenericData* data = atomType->getPropertyByName("Charge");
572 >    FixedChargeAdapter fca = FixedChargeAdapter(atomType);
573  
574 <      if (data == NULL) {
193 <        sprintf( painCave.errMsg, "Electrostatic::addType could not find "
194 <                 "Charge\n"
195 <                 "\tparameters for atomType %s.\n",
196 <                 atomType->getName().c_str());
197 <        painCave.severity = OPENMD_ERROR;
198 <        painCave.isFatal = 1;
199 <        simError();                  
200 <      }
201 <      
202 <      DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
203 <      if (doubleData == NULL) {
204 <        sprintf( painCave.errMsg,
205 <                 "Electrostatic::addType could not convert GenericData to "
206 <                 "Charge for\n"
207 <                 "\tatom type %s\n", atomType->getName().c_str());
208 <        painCave.severity = OPENMD_ERROR;
209 <        painCave.isFatal = 1;
210 <        simError();          
211 <      }
574 >    if (fca.isFixedCharge()) {
575        electrostaticAtomData.is_Charge = true;
576 <      electrostaticAtomData.charge = doubleData->getData();          
576 >      electrostaticAtomData.fixedCharge = fca.getCharge();
577      }
578  
579 <    if (atomType->isDirectional()) {
580 <      DirectionalAtomType* daType = dynamic_cast<DirectionalAtomType*>(atomType);
581 <      
219 <      if (daType->isDipole()) {
220 <        GenericData* data = daType->getPropertyByName("Dipole");
221 <        
222 <        if (data == NULL) {
223 <          sprintf( painCave.errMsg,
224 <                   "Electrostatic::addType could not find Dipole\n"
225 <                   "\tparameters for atomType %s.\n",
226 <                   daType->getName().c_str());
227 <          painCave.severity = OPENMD_ERROR;
228 <          painCave.isFatal = 1;
229 <          simError();                  
230 <        }
231 <      
232 <        DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
233 <        if (doubleData == NULL) {
234 <          sprintf( painCave.errMsg,
235 <                   "Electrostatic::addType could not convert GenericData to "
236 <                   "Dipole Moment\n"
237 <                   "\tfor atom type %s\n", daType->getName().c_str());
238 <          painCave.severity = OPENMD_ERROR;
239 <          painCave.isFatal = 1;
240 <          simError();          
241 <        }
579 >    MultipoleAdapter ma = MultipoleAdapter(atomType);
580 >    if (ma.isMultipole()) {
581 >      if (ma.isDipole()) {
582          electrostaticAtomData.is_Dipole = true;
583 <        electrostaticAtomData.dipole_moment = doubleData->getData();
583 >        electrostaticAtomData.dipole = ma.getDipole();
584        }
585 <
246 <      if (daType->isSplitDipole()) {
247 <        GenericData* data = daType->getPropertyByName("SplitDipoleDistance");
248 <        
249 <        if (data == NULL) {
250 <          sprintf(painCave.errMsg,
251 <                  "Electrostatic::addType could not find SplitDipoleDistance\n"
252 <                  "\tparameter for atomType %s.\n",
253 <                  daType->getName().c_str());
254 <          painCave.severity = OPENMD_ERROR;
255 <          painCave.isFatal = 1;
256 <          simError();                  
257 <        }
258 <      
259 <        DoubleGenericData* doubleData = dynamic_cast<DoubleGenericData*>(data);
260 <        if (doubleData == NULL) {
261 <          sprintf( painCave.errMsg,
262 <                   "Electrostatic::addType could not convert GenericData to "
263 <                   "SplitDipoleDistance for\n"
264 <                   "\tatom type %s\n", daType->getName().c_str());
265 <          painCave.severity = OPENMD_ERROR;
266 <          painCave.isFatal = 1;
267 <          simError();          
268 <        }
269 <        electrostaticAtomData.is_SplitDipole = true;
270 <        electrostaticAtomData.split_dipole_distance = doubleData->getData();
271 <      }
272 <
273 <      if (daType->isQuadrupole()) {
274 <        GenericData* data = daType->getPropertyByName("QuadrupoleMoments");
275 <        
276 <        if (data == NULL) {
277 <          sprintf( painCave.errMsg,
278 <                   "Electrostatic::addType could not find QuadrupoleMoments\n"
279 <                   "\tparameter for atomType %s.\n",
280 <                   daType->getName().c_str());
281 <          painCave.severity = OPENMD_ERROR;
282 <          painCave.isFatal = 1;
283 <          simError();                  
284 <        }
285 <        
286 <        Vector3dGenericData* v3dData = dynamic_cast<Vector3dGenericData*>(data);
287 <        if (v3dData == NULL) {
288 <          sprintf( painCave.errMsg,
289 <                   "Electrostatic::addType could not convert GenericData to "
290 <                   "Quadrupole Moments for\n"
291 <                   "\tatom type %s\n", daType->getName().c_str());
292 <          painCave.severity = OPENMD_ERROR;
293 <          painCave.isFatal = 1;
294 <          simError();          
295 <        }
585 >      if (ma.isQuadrupole()) {
586          electrostaticAtomData.is_Quadrupole = true;
587 <        electrostaticAtomData.quadrupole_moments = v3dData->getData();
587 >        electrostaticAtomData.quadrupole = ma.getQuadrupole();
588        }
589      }
590      
591 <    AtomTypeProperties atp = atomType->getATP();    
591 >    FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType);
592  
593 +    if (fqa.isFluctuatingCharge()) {
594 +      electrostaticAtomData.is_Fluctuating = true;
595 +      electrostaticAtomData.electronegativity = fqa.getElectronegativity();
596 +      electrostaticAtomData.hardness = fqa.getHardness();
597 +      electrostaticAtomData.slaterN = fqa.getSlaterN();
598 +      electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
599 +    }
600 +
601      pair<map<int,AtomType*>::iterator,bool> ret;    
602 <    ret = ElectrostaticList.insert( pair<int,AtomType*>(atp.ident, atomType) );
602 >    ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(),
603 >                                                        atomType) );
604      if (ret.second == false) {
605        sprintf( painCave.errMsg,
606                 "Electrostatic already had a previous entry with ident %d\n",
607 <               atp.ident);
607 >               atomType->getIdent() );
608        painCave.severity = OPENMD_INFO;
609        painCave.isFatal = 0;
610        simError();        
611      }
612      
613 <    ElectrostaticMap[atomType] = electrostaticAtomData;    
613 >    ElectrostaticMap[atomType] = electrostaticAtomData;  
614 >
615 >    // Now, iterate over all known types and add to the mixing map:
616 >    
617 >    map<AtomType*, ElectrostaticAtomData>::iterator it;
618 >    for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) {
619 >      AtomType* atype2 = (*it).first;
620 >      ElectrostaticAtomData eaData2 = (*it).second;
621 >      if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) {
622 >        
623 >        RealType a = electrostaticAtomData.slaterZeta;
624 >        RealType b = eaData2.slaterZeta;
625 >        int m = electrostaticAtomData.slaterN;
626 >        int n = eaData2.slaterN;
627 >
628 >        // Create the spline of the coulombic integral for s-type
629 >        // Slater orbitals.  Add a 2 angstrom safety window to deal
630 >        // with cutoffGroups that have charged atoms longer than the
631 >        // cutoffRadius away from each other.
632 >
633 >        RealType rval;
634 >        RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
635 >        vector<RealType> rvals;
636 >        vector<RealType> Jvals;
637 >        // don't start at i = 0, as rval = 0 is undefined for the
638 >        // slater overlap integrals.
639 >        for (int i = 1; i < np_+1; i++) {
640 >          rval = RealType(i) * dr;
641 >          rvals.push_back(rval);
642 >          Jvals.push_back(sSTOCoulInt( a, b, m, n, rval *
643 >                                       PhysicalConstants::angstromToBohr ) *
644 >                          PhysicalConstants::hartreeToKcal );
645 >        }
646 >        
647 >        CubicSpline* J = new CubicSpline();
648 >        J->addPoints(rvals, Jvals);
649 >        
650 >        pair<AtomType*, AtomType*> key1, key2;
651 >        key1 = make_pair(atomType, atype2);
652 >        key2 = make_pair(atype2, atomType);
653 >        
654 >        Jij[key1] = J;
655 >        Jij[key2] = J;
656 >      }
657 >    }
658 >
659      return;
660    }
661    
662 <  void Electrostatic::setElectrostaticCutoffRadius( RealType theECR,
663 <                                                    RealType theRSW ) {
664 <    defaultCutoff_ = theECR;
321 <    rrf_ = defaultCutoff_;
322 <    rt_ = theRSW;
323 <    haveDefaultCutoff_ = true;
662 >  void Electrostatic::setCutoffRadius( RealType rCut ) {
663 >    cutoffRadius_ = rCut;
664 >    haveCutoffRadius_ = true;
665    }
666 +
667    void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
668      summationMethod_ = esm;
669    }
# Line 337 | Line 679 | namespace OpenMD {
679      haveDielectric_ = true;
680    }
681  
682 <  void Electrostatic::calcForce(InteractionData idat) {
682 >  void Electrostatic::calcForce(InteractionData &idat) {
683  
684 <    // utility variables.  Should clean these up and use the Vector3d and
685 <    // Mat3x3d to replace as many as we can in future versions:
684 >    RealType C_a, C_b;  // Charges
685 >    Vector3d D_a, D_b;  // Dipoles (space-fixed)
686 >    Mat3x3d  Q_a, Q_b;  // Quadrupoles (space-fixed)
687  
688 <    RealType q_i, q_j, mu_i, mu_j, d_i, d_j;
689 <    RealType qxx_i, qyy_i, qzz_i;
690 <    RealType qxx_j, qyy_j, qzz_j;
691 <    RealType cx_i, cy_i, cz_i;
692 <    RealType cx_j, cy_j, cz_j;
693 <    RealType cx2, cy2, cz2;
351 <    RealType ct_i, ct_j, ct_ij, a1;
352 <    RealType riji, ri, ri2, ri3, ri4;
353 <    RealType pref, vterm, epot, dudr;
354 <    RealType scale, sc2;
355 <    RealType pot_term, preVal, rfVal;
356 <    RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
357 <    RealType preSw, preSwSc;
358 <    RealType c1, c2, c3, c4;
359 <    RealType erfcVal, derfcVal;
360 <    RealType BigR;
688 >    RealType ri, ri2, ri3, ri4;                  // Distance utility scalars
689 >    RealType rdDa, rdDb;                         // Dipole utility scalars
690 >    Vector3d rxDa, rxDb;                         // Dipole utility vectors
691 >    RealType rdQar, rdQbr, trQa, trQb;           // Quadrupole utility scalars
692 >    Vector3d Qar, Qbr, rQa, rQb, rxQar, rxQbr;   // Quadrupole utility vectors
693 >    RealType pref;
694  
695 <    Vector3d Q_i, Q_j;
696 <    Vector3d ux_i, uy_i, uz_i;
697 <    Vector3d ux_j, uy_j, uz_j;
698 <    Vector3d dudux_i, duduy_i, duduz_i;
366 <    Vector3d dudux_j, duduy_j, duduz_j;
367 <    Vector3d rhatdot2, rhatc4;
368 <    Vector3d dVdr;
695 >    RealType DadDb, trQaQb, DadQbr, DbdQar;       // Cross-interaction scalars
696 >    Vector3d DaxDb, DadQb, DbdQa, DaxQbr, DbxQar; // Cross-interaction vectors
697 >    Vector3d rQaQb, QaQbr, QaxQb;
698 >    Mat3x3d  QaQb;                                // Cross-interaction matrices
699  
700 <    pair<RealType, RealType> res;
700 >    RealType U(0.0);  // Potential
701 >    Vector3d F(0.0);  // Force
702 >    Vector3d Ta(0.0); // Torque on site a
703 >    Vector3d Tb(0.0); // Torque on site b
704 >    Vector3d Ea(0.0); // Electric field at site a
705 >    Vector3d Eb(0.0); // Electric field at site b
706 >    RealType dUdCa(0.0); // fluctuating charge force at site a
707 >    RealType dUdCb(0.0); // fluctuating charge force at site a
708      
709 +    // Indirect interactions mediated by the reaction field.
710 +    RealType indirect_Pot(0.0);  // Potential
711 +    Vector3d indirect_F(0.0);    // Force
712 +    Vector3d indirect_Ta(0.0);   // Torque on site a
713 +    Vector3d indirect_Tb(0.0);   // Torque on site b
714 +
715 +    // Excluded potential that is still computed for fluctuating charges
716 +    RealType excluded_Pot(0.0);
717 +
718 +    RealType rfContrib, coulInt;
719 +    
720 +    // spline for coulomb integral
721 +    CubicSpline* J;
722 +
723      if (!initialized_) initialize();
724      
725 <    ElectrostaticAtomData data1 = ElectrostaticMap[idat.atype1];
726 <    ElectrostaticAtomData data2 = ElectrostaticMap[idat.atype2];
725 >    ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
726 >    ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
727      
728      // some variables we'll need independent of electrostatic type:
729  
730 <    riji = 1.0 / idat.rij;
731 <    Vector3d rhat = idat.d  * riji;
732 <
730 >    ri = 1.0 /  *(idat.rij);
731 >    Vector3d rhat =  *(idat.d)  * ri;
732 >    ri2 = ri * ri;
733 >      
734      // logicals
735  
736 <    bool i_is_Charge = data1.is_Charge;
737 <    bool i_is_Dipole = data1.is_Dipole;
738 <    bool i_is_SplitDipole = data1.is_SplitDipole;
739 <    bool i_is_Quadrupole = data1.is_Quadrupole;
736 >    bool a_is_Charge = data1.is_Charge;
737 >    bool a_is_Dipole = data1.is_Dipole;
738 >    bool a_is_Quadrupole = data1.is_Quadrupole;
739 >    bool a_is_Fluctuating = data1.is_Fluctuating;
740  
741 <    bool j_is_Charge = data2.is_Charge;
742 <    bool j_is_Dipole = data2.is_Dipole;
743 <    bool j_is_SplitDipole = data2.is_SplitDipole;
744 <    bool j_is_Quadrupole = data2.is_Quadrupole;
741 >    bool b_is_Charge = data2.is_Charge;
742 >    bool b_is_Dipole = data2.is_Dipole;
743 >    bool b_is_Quadrupole = data2.is_Quadrupole;
744 >    bool b_is_Fluctuating = data2.is_Fluctuating;
745 >
746 >    // Obtain all of the required radial function values from the
747 >    // spline structures:
748      
749 <    if (i_is_Charge)
750 <      q_i = data1.charge;
749 >    // needed for fields (and forces):
750 >    if (a_is_Charge || b_is_Charge) {
751 >      v02 = v02s->getValueAt( *(idat.rij) );
752 >    }
753 >    if (a_is_Dipole || b_is_Dipole) {
754 >      v12 = v12s->getValueAt( *(idat.rij) );
755 >      v13 = v13s->getValueAt( *(idat.rij) );
756 >    }
757 >    if (a_is_Quadrupole || b_is_Quadrupole) {
758 >      v23 = v23s->getValueAt( *(idat.rij) );
759 >      v24 = v24s->getValueAt( *(idat.rij) );
760 >    }
761  
762 <    if (i_is_Dipole) {
763 <      mu_i = data1.dipole_moment;
764 <      uz_i = idat.eFrame1.getColumn(2);
765 <      
766 <      ct_i = dot(uz_i, rhat);
762 >    // needed for potentials (and torques):
763 >    if (a_is_Charge && b_is_Charge) {
764 >      v01 = v01s->getValueAt( *(idat.rij) );
765 >    }
766 >    if ((a_is_Charge && b_is_Dipole) || (b_is_Charge && a_is_Dipole)) {
767 >      v11 = v11s->getValueAt( *(idat.rij) );
768 >    }
769 >    if ((a_is_Charge && b_is_Quadrupole) || (b_is_Charge && a_is_Quadrupole)) {
770 >      v21 = v21s->getValueAt( *(idat.rij) );
771 >      v22 = v22s->getValueAt( *(idat.rij) );
772 >    } else if (a_is_Dipole && b_is_Dipole) {
773 >      v21 = v21s->getValueAt( *(idat.rij) );
774 >      v22 = v22s->getValueAt( *(idat.rij) );
775 >      v23 = v23s->getValueAt( *(idat.rij) );
776 >      v24 = v24s->getValueAt( *(idat.rij) );
777 >    }
778 >    if ((a_is_Dipole && b_is_Quadrupole) ||
779 >        (b_is_Dipole && a_is_Quadrupole)) {
780 >      v31 = v31s->getValueAt( *(idat.rij) );
781 >      v32 = v32s->getValueAt( *(idat.rij) );
782 >      v33 = v33s->getValueAt( *(idat.rij) );
783 >      v34 = v34s->getValueAt( *(idat.rij) );
784 >      v35 = v35s->getValueAt( *(idat.rij) );
785 >    }
786 >    if (a_is_Quadrupole && b_is_Quadrupole) {
787 >      v41 = v41s->getValueAt( *(idat.rij) );
788 >      v42 = v42s->getValueAt( *(idat.rij) );
789 >      v43 = v43s->getValueAt( *(idat.rij) );
790 >      v44 = v44s->getValueAt( *(idat.rij) );
791 >      v45 = v45s->getValueAt( *(idat.rij) );
792 >      v46 = v46s->getValueAt( *(idat.rij) );
793 >    }
794  
795 <      if (i_is_SplitDipole)
796 <        d_i = data1.split_dipole_distance;
797 <      
798 <      duduz_i = V3Zero;
795 >
796 >    // calculate the single-site contributions (fields, etc).
797 >    
798 >    if (a_is_Charge) {
799 >      C_a = data1.fixedCharge;
800 >      
801 >      if (a_is_Fluctuating) {
802 >        C_a += *(idat.flucQ1);
803 >      }
804 >      
805 >      if (idat.excluded) {
806 >        *(idat.skippedCharge2) += C_a;
807 >      }
808 >      Eb -= C_a *  pre11_ * v02 * rhat;
809      }
810      
811 <    if (i_is_Quadrupole) {
812 <      Q_i = data1.quadrupole_moments;
813 <      qxx_i = Q_i.x();
814 <      qyy_i = Q_i.y();
815 <      qzz_i = Q_i.z();
414 <      
415 <      ux_i = idat.eFrame1.getColumn(0);
416 <      uy_i = idat.eFrame1.getColumn(1);
417 <      uz_i = idat.eFrame1.getColumn(2);
418 <
419 <      cx_i = dot(ux_i, rhat);
420 <      cy_i = dot(uy_i, rhat);
421 <      cz_i = dot(uz_i, rhat);
422 <
423 <      dudux_i = V3Zero;
424 <      duduy_i = V3Zero;
425 <      duduz_i = V3Zero;
811 >    if (a_is_Dipole) {
812 >      D_a = *(idat.dipole1);
813 >      rdDa = dot(rhat, D_a);
814 >      rxDa = cross(rhat, D_a);
815 >      Eb -=  pre12_ * (v13 * rdDa * rhat + v12 * D_a);
816      }
817 <
818 <    if (j_is_Charge)
819 <      q_j = data2.charge;
820 <
821 <    if (j_is_Dipole) {
822 <      mu_j = data2.dipole_moment;
823 <      uz_j = idat.eFrame2.getColumn(2);
817 >    
818 >    if (a_is_Quadrupole) {
819 >      Q_a = *(idat.quadrupole1);
820 >      trQa =  Q_a.trace();
821 >      Qar =   Q_a * rhat;
822 >      rQa = rhat * Q_a;
823 >      rdQar = dot(rhat, Qar);
824 >      rxQar = cross(rhat, Qar);
825 >      Eb -= pre14_ * ((trQa * rhat + 2.0 * Qar) * v23 + rdQar * rhat * v24);
826 >    }
827 >    
828 >    if (b_is_Charge) {
829 >      C_b = data2.fixedCharge;
830        
831 <      ct_j = dot(uz_j, rhat);
832 <
437 <      if (j_is_SplitDipole)
438 <        d_j = data2.split_dipole_distance;
831 >      if (b_is_Fluctuating)
832 >        C_b += *(idat.flucQ2);
833        
834 <      duduz_j = V3Zero;
834 >      if (idat.excluded) {
835 >        *(idat.skippedCharge1) += C_b;
836 >      }
837 >      Ea += C_b *  pre11_ * v02 * rhat;
838      }
839      
840 <    if (j_is_Quadrupole) {
841 <      Q_j = data2.quadrupole_moments;
842 <      qxx_j = Q_j.x();
843 <      qyy_j = Q_j.y();
844 <      qzz_j = Q_j.z();
448 <      
449 <      ux_j = idat.eFrame2.getColumn(0);
450 <      uy_j = idat.eFrame2.getColumn(1);
451 <      uz_j = idat.eFrame2.getColumn(2);
452 <
453 <      cx_j = dot(ux_j, rhat);
454 <      cy_j = dot(uy_j, rhat);
455 <      cz_j = dot(uz_j, rhat);
456 <
457 <      dudux_j = V3Zero;
458 <      duduy_j = V3Zero;
459 <      duduz_j = V3Zero;
840 >    if (b_is_Dipole) {
841 >      D_b = *(idat.dipole2);
842 >      rdDb = dot(rhat, D_b);
843 >      rxDb = cross(rhat, D_b);
844 >      Ea += pre12_ * (v13 * rdDb * rhat + v12 * D_b);
845      }
846      
847 <    epot = 0.0;
848 <    dVdr = V3Zero;
847 >    if (b_is_Quadrupole) {
848 >      Q_b = *(idat.quadrupole2);
849 >      trQb =  Q_b.trace();
850 >      Qbr =   Q_b * rhat;
851 >      rQb = rhat * Q_b;
852 >      rdQbr = dot(rhat, Qbr);
853 >      rxQbr = cross(rhat, Qbr);
854 >      Ea += pre14_ * ((trQb * rhat + 2.0 * Qbr) * v23 + rdQbr * rhat * v24);
855 >    }
856      
857 <    if (i_is_Charge) {
857 >    if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) {
858 >      J = Jij[idat.atypes];
859 >    }    
860 >    
861 >    if (a_is_Charge) {    
862        
863 <      if (j_is_Charge) {
864 <        if (screeningMethod_ == DAMPED) {
865 <          // assemble the damping variables
866 <          res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
867 <          erfcVal = res.first;
868 <          derfcVal = res.second;
869 <          c1 = erfcVal * riji;
474 <          c2 = (-derfcVal + c1) * riji;
475 <        } else {
476 <          c1 = riji;
477 <          c2 = c1 * riji;
478 <        }
863 >      if (b_is_Charge) {
864 >        pref =  pre11_ * *(idat.electroMult);          
865 >        U  += C_a * C_b * pref * v01;
866 >        F  += C_a * C_b * pref * v02 * rhat;
867 >        
868 >        // If this is an excluded pair, there are still indirect
869 >        // interactions via the reaction field we must worry about:
870  
871 <        preVal = idat.electroMult * pre11_ * q_i * q_j;
871 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
872 >          rfContrib = preRF_ * pref * C_a * C_b * *(idat.r2);
873 >          indirect_Pot += rfContrib;
874 >          indirect_F   += rfContrib * 2.0 * ri * rhat;
875 >        }
876          
877 <        if (summationMethod_ == SHIFTED_POTENTIAL) {
878 <          vterm = preVal * (c1 - c1c_);
879 <          dudr  = -idat.sw * preVal * c2;
877 >        // Fluctuating charge forces are handled via Coulomb integrals
878 >        // for excluded pairs (i.e. those connected via bonds) and
879 >        // with the standard charge-charge interaction otherwise.
880  
881 <        } else if (summationMethod_ == SHIFTED_FORCE)  {
882 <          vterm = preVal * ( c1 - c1c_ + c2c_*(idat.rij - defaultCutoff_) );
883 <          dudr  = idat.sw * preVal * (c2c_ - c2);
881 >        if (idat.excluded) {          
882 >          if (a_is_Fluctuating || b_is_Fluctuating) {
883 >            coulInt = J->getValueAt( *(idat.rij) );
884 >            if (a_is_Fluctuating)  dUdCa += coulInt * C_b;
885 >            if (b_is_Fluctuating)  dUdCb += coulInt * C_a;
886 >            excluded_Pot += C_a * C_b * coulInt;
887 >          }          
888 >        } else {
889 >          if (a_is_Fluctuating) dUdCa += C_b * pref * v01;
890 >          if (a_is_Fluctuating) dUdCb += C_a * pref * v01;
891 >        }
892 >      }
893  
894 <        } else if (summationMethod_ == REACTION_FIELD) {
895 <          rfVal = idat.electroMult * preRF_ * idat.rij * idat.rij;
896 <          vterm = preVal * ( riji + rfVal );            
897 <          dudr  = idat.sw * preVal * ( 2.0 * rfVal - riji ) * riji;
894 >      if (b_is_Dipole) {
895 >        pref =  pre12_ * *(idat.electroMult);        
896 >        U  += C_a * pref * v11 * rdDb;
897 >        F  += C_a * pref * (v13 * rdDb * rhat + v12 * D_b);
898 >        Tb += C_a * pref * v11 * rxDb;
899  
900 <        } else {
496 <          vterm = preVal * riji * erfcVal;            
900 >        if (a_is_Fluctuating) dUdCa += pref * v11 * rdDb;
901  
902 <          dudr  = - idat.sw * preVal * c2;
902 >        // Even if we excluded this pair from direct interactions, we
903 >        // still have the reaction-field-mediated charge-dipole
904 >        // interaction:
905  
906 +        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
907 +          rfContrib = C_a * pref * preRF_ * 2.0 * *(idat.rij);
908 +          indirect_Pot += rfContrib * rdDb;
909 +          indirect_F   += rfContrib * D_b / (*idat.rij);
910 +          indirect_Tb  += C_a * pref * preRF_ * rxDb;
911          }
501
502        idat.vpair += vterm;
503        epot += idat.sw * vterm;
504
505        dVdr += dudr * rhat;      
912        }
913  
914 <      if (j_is_Dipole) {
915 <        // pref is used by all the possible methods
916 <        pref = idat.electroMult * pre12_ * q_i * mu_j;
917 <        preSw = idat.sw * pref;
914 >      if (b_is_Quadrupole) {
915 >        pref = pre14_ * *(idat.electroMult);
916 >        U  +=  C_a * pref * (v21 * trQb + v22 * rdQbr);
917 >        F  +=  C_a * pref * (trQb * rhat + 2.0 * Qbr) * v23;
918 >        F  +=  C_a * pref * rdQbr * rhat * v24;
919 >        Tb +=  C_a * pref * 2.0 * rxQbr * v22;
920  
921 <        if (summationMethod_ == REACTION_FIELD) {
922 <          ri2 = riji * riji;
923 <          ri3 = ri2 * riji;
516 <    
517 <          vterm = - pref * ct_j * ( ri2 - preRF2_ * idat.rij );
518 <          idat.vpair += vterm;
519 <          epot += idat.sw * vterm;
921 >        if (a_is_Fluctuating) dUdCa += pref * (v21 * trQb + v22 * rdQbr);
922 >      }
923 >    }
924  
925 <          dVdr +=  -preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
522 <          duduz_j += -preSw * rhat * (ri2 - preRF2_ * idat.rij);  
925 >    if (a_is_Dipole) {
926  
927 <        } else {
928 <          // determine the inverse r used if we have split dipoles
526 <          if (j_is_SplitDipole) {
527 <            BigR = sqrt(idat.r2 + 0.25 * d_j * d_j);
528 <            ri = 1.0 / BigR;
529 <            scale = idat.rij * ri;
530 <          } else {
531 <            ri = riji;
532 <            scale = 1.0;
533 <          }
534 <          
535 <          sc2 = scale * scale;
927 >      if (b_is_Charge) {
928 >        pref = pre12_ * *(idat.electroMult);
929  
930 <          if (screeningMethod_ == DAMPED) {
931 <            // assemble the damping variables
932 <            res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
540 <            erfcVal = res.first;
541 <            derfcVal = res.second;
542 <            c1 = erfcVal * ri;
543 <            c2 = (-derfcVal + c1) * ri;
544 <            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
545 <          } else {
546 <            c1 = ri;
547 <            c2 = c1 * ri;
548 <            c3 = 3.0 * c2 * ri;
549 <          }
550 <            
551 <          c2ri = c2 * ri;
930 >        U  -= C_b * pref * v11 * rdDa;
931 >        F  -= C_b * pref * (v13 * rdDa * rhat + v12 * D_a);
932 >        Ta -= C_b * pref * v11 * rxDa;
933  
934 <          // calculate the potential
554 <          pot_term =  scale * c2;
555 <          vterm = -pref * ct_j * pot_term;
556 <          idat.vpair += vterm;
557 <          epot += idat.sw * vterm;
558 <            
559 <          // calculate derivatives for forces and torques
934 >        if (b_is_Fluctuating) dUdCb -= pref * v11 * rdDa;
935  
936 <          dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3);
937 <          duduz_j += -preSw * pot_term * rhat;
938 <
936 >        // Even if we excluded this pair from direct interactions,
937 >        // we still have the reaction-field-mediated charge-dipole
938 >        // interaction:
939 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
940 >          rfContrib = C_b * pref * preRF_ * 2.0 * *(idat.rij);
941 >          indirect_Pot -= rfContrib * rdDa;
942 >          indirect_F   -= rfContrib * D_a / (*idat.rij);
943 >          indirect_Ta  -= C_b * pref * preRF_ * rxDa;
944          }
945        }
946  
947 <      if (j_is_Quadrupole) {
948 <        // first precalculate some necessary variables
949 <        cx2 = cx_j * cx_j;
950 <        cy2 = cy_j * cy_j;
951 <        cz2 = cz_j * cz_j;
952 <        pref =  idat.electroMult * pre14_ * q_i * one_third_;
953 <          
954 <        if (screeningMethod_ == DAMPED) {
955 <          // assemble the damping variables
956 <          res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
957 <          erfcVal = res.first;
958 <          derfcVal = res.second;
959 <          c1 = erfcVal * riji;
960 <          c2 = (-derfcVal + c1) * riji;
961 <          c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
962 <          c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
963 <        } else {
964 <          c1 = riji;
965 <          c2 = c1 * riji;
586 <          c3 = 3.0 * c2 * riji;
587 <          c4 = 5.0 * c3 * riji * riji;
947 >      if (b_is_Dipole) {
948 >        pref = pre22_ * *(idat.electroMult);
949 >        DadDb = dot(D_a, D_b);
950 >        DaxDb = cross(D_a, D_b);
951 >
952 >        U  -= pref * (DadDb * v21 + rdDa * rdDb * v22);
953 >        F  -= pref * (DadDb * rhat + rdDb * D_a + rdDa * D_b)*v23;
954 >        F  -= pref * (rdDa * rdDb) * v24 * rhat;
955 >        Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa);
956 >        Tb += pref * (-v21 * DaxDb + v22 * rdDa * rxDb);
957 >
958 >        // Even if we excluded this pair from direct interactions, we
959 >        // still have the reaction-field-mediated dipole-dipole
960 >        // interaction:
961 >        if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
962 >          rfContrib = -pref * preRF_ * 2.0;
963 >          indirect_Pot += rfContrib * DadDb;
964 >          indirect_Ta  += rfContrib * DaxDb;
965 >          indirect_Tb  -= rfContrib * DaxDb;
966          }
967  
968 <        // precompute variables for convenience
591 <        preSw = idat.sw * pref;
592 <        c2ri = c2 * riji;
593 <        c3ri = c3 * riji;
594 <        c4rij = c4 * idat.rij;
595 <        rhatdot2 = 2.0 * rhat * c3;
596 <        rhatc4 = rhat * c4rij;
968 >      }
969  
970 <        // calculate the potential
971 <        pot_term = ( qxx_j * (cx2*c3 - c2ri) +
972 <                     qyy_j * (cy2*c3 - c2ri) +
973 <                     qzz_j * (cz2*c3 - c2ri) );
974 <        vterm = pref * pot_term;
603 <        idat.vpair += vterm;
604 <        epot += idat.sw * vterm;
605 <                
606 <        // calculate derivatives for the forces and torques
970 >      if (b_is_Quadrupole) {
971 >        pref = pre24_ * *(idat.electroMult);
972 >        DadQb = D_a * Q_b;
973 >        DadQbr = dot(D_a, Qbr);
974 >        DaxQbr = cross(D_a, Qbr);
975  
976 <        dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (2.0*cx_j*ux_j + rhat)*c3ri) +
977 <                           qyy_j* (cy2*rhatc4 - (2.0*cy_j*uy_j + rhat)*c3ri) +
978 <                           qzz_j* (cz2*rhatc4 - (2.0*cz_j*uz_j + rhat)*c3ri));
979 <                          
980 <        dudux_j += preSw * qxx_j * cx_j * rhatdot2;
981 <        duduy_j += preSw * qyy_j * cy_j * rhatdot2;
982 <        duduz_j += preSw * qzz_j * cz_j * rhatdot2;
976 >        U  -= pref * ((trQb*rdDa + 2.0*DadQbr)*v31 + rdDa*rdQbr*v32);
977 >        F  -= pref * (trQb*D_a + 2.0*DadQb) * v33;
978 >        F  -= pref * (trQb*rdDa*rhat + 2.0*DadQbr*rhat + D_a*rdQbr
979 >                      + 2.0*rdDa*rQb)*v34;
980 >        F  -= pref * (rdDa * rdQbr * rhat * v35);
981 >        Ta += pref * ((-trQb*rxDa + 2.0 * DaxQbr)*v31 - rxDa*rdQbr*v32);
982 >        Tb += pref * ((2.0*cross(DadQb, rhat) - 2.0*DaxQbr)*v31
983 >                      - 2.0*rdDa*rxQbr*v32);
984        }
985      }
617    
618    if (i_is_Dipole) {
986  
987 <      if (j_is_Charge) {
988 <        // variables used by all the methods
989 <        pref = idat.electroMult * pre12_ * q_j * mu_i;
990 <        preSw = idat.sw * pref;
987 >    if (a_is_Quadrupole) {
988 >      if (b_is_Charge) {
989 >        pref = pre14_ * *(idat.electroMult);
990 >        U  += C_b * pref * (v21 * trQa + v22 * rdQar);
991 >        F  += C_b * pref * (trQa * rhat + 2.0 * Qar) * v23;
992 >        F  += C_b * pref * rdQar * rhat * v24;
993 >        Ta += C_b * pref * 2.0 * rxQar * v22;
994  
995 <        if (summationMethod_ == REACTION_FIELD) {
995 >        if (b_is_Fluctuating) dUdCb += pref * (v21 * trQa + v22 * rdQar);
996 >      }
997 >      if (b_is_Dipole) {
998 >        pref = pre24_ * *(idat.electroMult);
999 >        DbdQa = D_b * Q_a;
1000 >        DbdQar = dot(D_b, Qar);
1001 >        DbxQar = cross(D_b, Qar);
1002  
1003 <          ri2 = riji * riji;
1004 <          ri3 = ri2 * riji;
1003 >        U  += pref * ((trQa*rdDb + 2.0*DbdQar)*v31 + rdDb*rdQar*v32);
1004 >        F  += pref * (trQa*D_b + 2.0*DbdQa) * v33;
1005 >        F  += pref * (trQa*rdDb*rhat + 2.0*DbdQar*rhat + D_b*rdQar
1006 >                      + 2.0*rdDb*rQa)*v34;
1007 >        F  += pref * (rdDb * rdQar * rhat * v35);
1008 >        Ta += pref * ((-2.0*cross(DbdQa, rhat) + 2.0*DbxQar)*v31
1009 >                      + 2.0*rdDb*rxQar*v32);
1010 >        Tb += pref * ((trQa*rxDb + 2.0 * DbxQar)*v31 + rxDb*rdQar*v32);
1011 >      }
1012 >      if (b_is_Quadrupole) {
1013 >        pref = pre44_ * *(idat.electroMult);
1014 >        QaQb = Q_a * Q_b;
1015 >        trQaQb = QaQb.trace();
1016 >        rQaQb = rhat * QaQb;
1017 >        QaQbr = QaQb * rhat;        
1018 >        QaxQb = cross(Q_a, Q_b);
1019  
1020 <          vterm = pref * ct_i * ( ri2 - preRF2_ * idat.rij );
1021 <          idat.vpair += vterm;
1022 <          epot += idat.sw * vterm;
633 <          
634 <          dVdr += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);
635 <          
636 <          duduz_i += preSw * rhat * (ri2 - preRF2_ * idat.rij);
637 <            
638 <        } else {
639 <          
640 <          // determine inverse r if we are using split dipoles
641 <          if (i_is_SplitDipole) {
642 <            BigR = sqrt(idat.r2 + 0.25 * d_i * d_i);
643 <            ri = 1.0 / BigR;
644 <            scale = idat.rij * ri;
645 <          } else {
646 <            ri = riji;
647 <            scale = 1.0;
648 <          }
649 <          
650 <          sc2 = scale * scale;
651 <            
652 <          if (screeningMethod_ == DAMPED) {
653 <            // assemble the damping variables
654 <            res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
655 <            erfcVal = res.first;
656 <            derfcVal = res.second;
657 <            c1 = erfcVal * ri;
658 <            c2 = (-derfcVal + c1) * ri;
659 <            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
660 <          } else {
661 <            c1 = ri;
662 <            c2 = c1 * ri;
663 <            c3 = 3.0 * c2 * ri;
664 <          }
665 <          
666 <          c2ri = c2 * ri;
667 <              
668 <          // calculate the potential
669 <          pot_term = c2 * scale;
670 <          vterm = pref * ct_i * pot_term;
671 <          idat.vpair += vterm;
672 <          epot += idat.sw * vterm;
1020 >        U  += pref * (trQa * trQb + 2.0*trQaQb) * v41;
1021 >        U  += pref * (trQa*rdQbr + trQb*rdQar  + 4.0*dot(rQa, Qbr)) * v42;
1022 >        U  += pref * (rdQar * rdQbr) * v43;
1023  
1024 <          // calculate derivatives for the forces and torques
1025 <          dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3);
1026 <          duduz_i += preSw * pot_term * rhat;
1027 <        }
1028 <      }
1024 >        F  += pref * (trQa*trQb*rhat + 2.0*trQaQb*rhat)*v44;
1025 >        F  += pref * (2.0*trQb*rQa + 2.0*trQa*rQb)*v44;
1026 >        F  += pref * (4.0* QaQb * rhat + 4.0 * rhat * QaQb)*v44;
1027 >        F  += pref * (trQa*rdQbr*rhat + trQb*rdQar*rhat
1028 >                      + 4.0*dot(rQa, Qbr)*rhat)*v45;
1029 >        F  += pref * (2.0*rQa*rdQbr + 2.0*rdQar*rQb)*v45;
1030 >        F  += pref * (rdQar*rdQbr*rhat) * v46;
1031  
1032 <      if (j_is_Dipole) {
1033 <        // variables used by all methods
1034 <        ct_ij = dot(uz_i, uz_j);
1032 >        Ta += pref * (-4.0 * QaxQb  * v41);
1033 >        Ta += pref * (-2.0*trQb*cross(rQa, rhat)
1034 >                      + 4.0*cross(rhat, QaQbr)
1035 >                      - 4.0*cross(rQa, Qbr)) * v42;
1036 >        Ta += pref * 2.0 * cross(rhat,Qar) * rdQbr * v43;
1037  
1038 <        pref = idat.electroMult * pre22_ * mu_i * mu_j;
1039 <        preSw = idat.sw * pref;
1038 >        Tb += pref * (4.0 * QaxQb * v41);
1039 >        Tb += pref * (-2.0*trQa*cross(rQb, rhat)
1040 >                      - 4.0*cross(rQaQb, rhat)
1041 >                      + 4.0*cross(rQa, Qbr))*v42;
1042 >        Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43;        
1043  
687        if (summationMethod_ == REACTION_FIELD) {
688          ri2 = riji * riji;
689          ri3 = ri2 * riji;
690          ri4 = ri2 * ri2;
691
692          vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
693                           preRF2_ * ct_ij );
694          idat.vpair += vterm;
695          epot += idat.sw * vterm;
696            
697          a1 = 5.0 * ct_i * ct_j - ct_ij;
698            
699          dVdr += preSw * 3.0 * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
700
701          duduz_i += preSw * (ri3 * (uz_j - 3.0 * ct_j * rhat) - preRF2_*uz_j);
702          duduz_j += preSw * (ri3 * (uz_i - 3.0 * ct_i * rhat) - preRF2_*uz_i);
703
704        } else {
705          
706          if (i_is_SplitDipole) {
707            if (j_is_SplitDipole) {
708              BigR = sqrt(idat.r2 + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
709            } else {
710              BigR = sqrt(idat.r2 + 0.25 * d_i * d_i);
711            }
712            ri = 1.0 / BigR;
713            scale = idat.rij * ri;
714          } else {
715            if (j_is_SplitDipole) {
716              BigR = sqrt(idat.r2 + 0.25 * d_j * d_j);
717              ri = 1.0 / BigR;
718              scale = idat.rij * ri;
719            } else {
720              ri = riji;
721              scale = 1.0;
722            }
723          }
724          if (screeningMethod_ == DAMPED) {
725            // assemble damping variables
726            res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
727            erfcVal = res.first;
728            derfcVal = res.second;
729            c1 = erfcVal * ri;
730            c2 = (-derfcVal + c1) * ri;
731            c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
732            c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri;
733          } else {
734            c1 = ri;
735            c2 = c1 * ri;
736            c3 = 3.0 * c2 * ri;
737            c4 = 5.0 * c3 * ri * ri;
738          }
739
740          // precompute variables for convenience
741          sc2 = scale * scale;
742          cti3 = ct_i * sc2 * c3;
743          ctj3 = ct_j * sc2 * c3;
744          ctidotj = ct_i * ct_j * sc2;
745          preSwSc = preSw * scale;
746          c2ri = c2 * ri;
747          c3ri = c3 * ri;
748          c4rij = c4 * idat.rij;
749
750          // calculate the potential
751          pot_term = (ct_ij * c2ri - ctidotj * c3);
752          vterm = pref * pot_term;
753          idat.vpair += vterm;
754          epot += idat.sw * vterm;
755
756          // calculate derivatives for the forces and torques
757          dVdr += preSwSc * ( ctidotj * rhat * c4rij  -
758                              (ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri);
759          
760          duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat);
761          duduz_j += preSw * (uz_i * c2ri - cti3 * rhat);
762        }
1044        }
1045      }
1046  
1047 <    if (i_is_Quadrupole) {
1048 <      if (j_is_Charge) {
1049 <        // precompute some necessary variables
1050 <        cx2 = cx_i * cx_i;
770 <        cy2 = cy_i * cy_i;
771 <        cz2 = cz_i * cz_i;
1047 >    if (idat.doElectricField) {
1048 >      *(idat.eField1) += Ea * *(idat.electroMult);
1049 >      *(idat.eField2) += Eb * *(idat.electroMult);
1050 >    }
1051  
1052 <        pref = idat.electroMult * pre14_ * q_j * one_third_;
1052 >    if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw);
1053 >    if (b_is_Fluctuating) *(idat.dVdFQ2) += dUdCb * *(idat.sw);
1054  
1055 <        if (screeningMethod_ == DAMPED) {
1056 <          // assemble the damping variables
1057 <          res = erfcSpline_->getValueAndDerivativeAt(idat.rij);
1058 <          erfcVal = res.first;
1059 <          derfcVal = res.second;
1060 <          c1 = erfcVal * riji;
1061 <          c2 = (-derfcVal + c1) * riji;
1062 <          c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
783 <          c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
784 <        } else {
785 <          c1 = riji;
786 <          c2 = c1 * riji;
787 <          c3 = 3.0 * c2 * riji;
788 <          c4 = 5.0 * c3 * riji * riji;
789 <        }
790 <          
791 <        // precompute some variables for convenience
792 <        preSw = idat.sw * pref;
793 <        c2ri = c2 * riji;
794 <        c3ri = c3 * riji;
795 <        c4rij = c4 * idat.rij;
796 <        rhatdot2 = 2.0 * rhat * c3;
797 <        rhatc4 = rhat * c4rij;
1055 >    if (!idat.excluded) {
1056 >      
1057 >      *(idat.vpair) += U;
1058 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += U * *(idat.sw);
1059 >      *(idat.f1) += F * *(idat.sw);
1060 >      
1061 >      if (a_is_Dipole || a_is_Quadrupole)
1062 >        *(idat.t1) += Ta * *(idat.sw);
1063  
1064 <        // calculate the potential
1065 <        pot_term = ( qxx_i * (cx2 * c3 - c2ri) +
1066 <                     qyy_i * (cy2 * c3 - c2ri) +
1067 <                     qzz_i * (cz2 * c3 - c2ri) );
803 <        
804 <        vterm = pref * pot_term;
805 <        idat.vpair += vterm;
806 <        epot += idat.sw * vterm;
1064 >      if (b_is_Dipole || b_is_Quadrupole)
1065 >        *(idat.t2) += Tb * *(idat.sw);
1066 >      
1067 >    } else {
1068  
1069 <        // calculate the derivatives for the forces and torques
1069 >      // only accumulate the forces and torques resulting from the
1070 >      // indirect reaction field terms.
1071  
1072 <        dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (2.0*cx_i*ux_i + rhat)*c3ri) +
1073 <                          qyy_i* (cy2*rhatc4 - (2.0*cy_i*uy_i + rhat)*c3ri) +
1074 <                          qzz_i* (cz2*rhatc4 - (2.0*cz_i*uz_i + rhat)*c3ri));
1075 <
1076 <        dudux_i += preSw * qxx_i * cx_i *  rhatdot2;
1077 <        duduy_i += preSw * qyy_i * cy_i *  rhatdot2;
1078 <        duduz_i += preSw * qzz_i * cz_i *  rhatdot2;
1079 <      }
1072 >      *(idat.vpair) += indirect_Pot;      
1073 >      (*(idat.excludedPot))[ELECTROSTATIC_FAMILY] +=  excluded_Pot;
1074 >      (*(idat.pot))[ELECTROSTATIC_FAMILY] += *(idat.sw) * indirect_Pot;
1075 >      *(idat.f1) += *(idat.sw) * indirect_F;
1076 >      
1077 >      if (a_is_Dipole || a_is_Quadrupole)
1078 >        *(idat.t1) += *(idat.sw) * indirect_Ta;
1079 >            
1080 >      if (b_is_Dipole || b_is_Quadrupole)
1081 >        *(idat.t2) += *(idat.sw) * indirect_Tb;
1082      }
819
820    idat.pot += epot;
821    idat.f1 += dVdr;
822
823    if (i_is_Dipole || i_is_Quadrupole)
824      idat.t1 -= cross(uz_i, duduz_i);
825    if (i_is_Quadrupole) {
826      idat.t1 -= cross(ux_i, dudux_i);
827      idat.t1 -= cross(uy_i, duduy_i);
828    }
829
830    if (j_is_Dipole || j_is_Quadrupole)
831      idat.t2 -= cross(uz_j, duduz_j);
832    if (j_is_Quadrupole) {
833      idat.t2 -= cross(uz_j, dudux_j);
834      idat.t2 -= cross(uz_j, duduy_j);
835    }
836
1083      return;
1084    }  
1085 +    
1086 +  void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1087  
840  void Electrostatic::calcSkipCorrection(SkipCorrectionData skdat) {
841
1088      if (!initialized_) initialize();
1089 +
1090 +    ElectrostaticAtomData data = ElectrostaticMap[sdat.atype];
1091      
844    ElectrostaticAtomData data1 = ElectrostaticMap[skdat.atype1];
845    ElectrostaticAtomData data2 = ElectrostaticMap[skdat.atype2];
846    
1092      // logicals
1093 <
1094 <    bool i_is_Charge = data1.is_Charge;
1095 <    bool i_is_Dipole = data1.is_Dipole;
1096 <
1097 <    bool j_is_Charge = data2.is_Charge;
853 <    bool j_is_Dipole = data2.is_Dipole;
854 <
855 <    RealType q_i, q_j;
1093 >    bool i_is_Charge = data.is_Charge;
1094 >    bool i_is_Dipole = data.is_Dipole;
1095 >    bool i_is_Fluctuating = data.is_Fluctuating;
1096 >    RealType C_a = data.fixedCharge;  
1097 >    RealType self, preVal, DadDa;
1098      
1099 <    // The skippedCharge computation is needed by the real-space cutoff methods
1100 <    // (i.e. shifted force and shifted potential)
1101 <
1102 <    if (i_is_Charge) {
1103 <      q_i = data1.charge;
1104 <      skdat.skippedCharge2 += q_i;
1099 >    if (i_is_Fluctuating) {
1100 >      C_a += *(sdat.flucQ);
1101 >      // dVdFQ is really a force, so this is negative the derivative
1102 >      *(sdat.dVdFQ) -=  *(sdat.flucQ) * data.hardness + data.electronegativity;
1103 >      (*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) *
1104 >        (*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity);
1105      }
1106  
1107 <    if (j_is_Charge) {
1108 <      q_j = data2.charge;
867 <      skdat.skippedCharge1 += q_j;
868 <    }
869 <
870 <    // the rest of this function should only be necessary for reaction field.
871 <
872 <    if (summationMethod_ == REACTION_FIELD) {
873 <      RealType riji, ri2, ri3;
874 <      RealType q_i, mu_i, ct_i;
875 <      RealType q_j, mu_j, ct_j;
876 <      RealType preVal, rfVal, vterm, dudr, pref, myPot;
877 <      Vector3d dVdr, uz_i, uz_j, duduz_i, duduz_j, rhat;
878 <
879 <      // some variables we'll need independent of electrostatic type:
1107 >    switch (summationMethod_) {
1108 >    case esm_REACTION_FIELD:
1109        
881      riji = 1.0 / skdat.rij;
882      rhat = skdat.d  * riji;
883
884      if (i_is_Dipole) {
885        mu_i = data1.dipole_moment;
886        uz_i = skdat.eFrame1.getColumn(2);      
887        ct_i = dot(uz_i, rhat);
888        duduz_i = V3Zero;
889      }
890            
891      if (j_is_Dipole) {
892        mu_j = data2.dipole_moment;
893        uz_j = skdat.eFrame2.getColumn(2);      
894        ct_j = dot(uz_j, rhat);
895        duduz_j = V3Zero;
896      }
897    
1110        if (i_is_Charge) {
1111 <        if (j_is_Charge) {
1112 <          preVal = skdat.electroMult * pre11_ * q_i * q_j;
1113 <          rfVal = preRF_ * skdat.rij * skdat.rij;
1114 <          vterm = preVal * rfVal;
1115 <          myPot += skdat.sw * vterm;        
904 <          dudr  = skdat.sw * preVal * 2.0 * rfVal * riji;        
905 <          dVdr += dudr * rhat;
906 <        }
907 <        
908 <        if (j_is_Dipole) {
909 <          ri2 = riji * riji;
910 <          ri3 = ri2 * riji;        
911 <          pref = skdat.electroMult * pre12_ * q_i * mu_j;
912 <          vterm = - pref * ct_j * ( ri2 - preRF2_ * skdat.rij );
913 <          myPot += skdat.sw * vterm;        
914 <          dVdr += -skdat.sw * pref * ( ri3 * ( uz_j - 3.0 * ct_j * rhat) - preRF2_ * uz_j);
915 <          duduz_j += -skdat.sw * pref * rhat * (ri2 - preRF2_ * skdat.rij);
916 <        }
1111 >        // Self potential [see Wang and Hermans, "Reaction Field
1112 >        // Molecular Dynamics Simulation with Friedman’s Image Charge
1113 >        // Method," J. Phys. Chem. 99, 12001-12007 (1995).]
1114 >        preVal = pre11_ * preRF_ * C_a * C_a;
1115 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal / cutoffRadius_;
1116        }
1117 +
1118        if (i_is_Dipole) {
1119 <        if (j_is_Charge) {
1120 <          ri2 = riji * riji;
921 <          ri3 = ri2 * riji;        
922 <          pref = skdat.electroMult * pre12_ * q_j * mu_i;
923 <          vterm = - pref * ct_i * ( ri2 - preRF2_ * skdat.rij );
924 <          myPot += skdat.sw * vterm;        
925 <          dVdr += skdat.sw * pref * ( ri3 * ( uz_i - 3.0 * ct_i * rhat) - preRF2_ * uz_i);      
926 <          duduz_i += skdat.sw * pref * rhat * (ri2 - preRF2_ * skdat.rij);
927 <        }
1119 >        DadDa = data.dipole.lengthSquare();
1120 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= pre22_ * preRF_ * DadDa;
1121        }
1122        
1123 <      // accumulate the forces and torques resulting from the self term
931 <      skdat.pot += myPot;
932 <      skdat.f1 += dVdr;
1123 >      break;
1124        
1125 <      if (i_is_Dipole)
1126 <        skdat.t1 -= cross(uz_i, duduz_i);
936 <      if (j_is_Dipole)
937 <        skdat.t2 -= cross(uz_j, duduz_j);
938 <    }
939 <  }
940 <    
941 <  void Electrostatic::calcSelfCorrection(SelfCorrectionData scdat) {
942 <    RealType mu1, preVal, chg1, self;
943 <    
944 <    if (!initialized_) initialize();
945 <    
946 <    ElectrostaticAtomData data = ElectrostaticMap[scdat.atype];
947 <  
948 <    // logicals
949 <
950 <    bool i_is_Charge = data.is_Charge;
951 <    bool i_is_Dipole = data.is_Dipole;
952 <
953 <    if (summationMethod_ == REACTION_FIELD) {
954 <      if (i_is_Dipole) {
955 <        mu1 = data.dipole_moment;          
956 <        preVal = pre22_ * preRF2_ * mu1 * mu1;
957 <        scdat.pot -= 0.5 * preVal;
958 <        
959 <        // The self-correction term adds into the reaction field vector
960 <        Vector3d uz_i = scdat.eFrame.getColumn(2);
961 <        Vector3d ei = preVal * uz_i;
962 <
963 <        // This looks very wrong.  A vector crossed with itself is zero.
964 <        scdat.t -= cross(uz_i, ei);
965 <      }
966 <    } else if (summationMethod_ == SHIFTED_FORCE || summationMethod_ == SHIFTED_POTENTIAL) {
1125 >    case esm_SHIFTED_FORCE:
1126 >    case esm_SHIFTED_POTENTIAL:
1127        if (i_is_Charge) {        
1128 <        chg1 = data.charge;
1129 <        if (screeningMethod_ == DAMPED) {
970 <          self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + scdat.skippedCharge) * pre11_;
971 <        } else {        
972 <          self = - 0.5 * rcuti_ * chg1 * (chg1 + scdat.skippedCharge) * pre11_;
973 <        }
974 <        scdat.pot += self;
1128 >        self = -0.5 * selfMult_ * C_a * (C_a + *(sdat.skippedCharge)) * pre11_;
1129 >        (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1130        }
1131 +      break;
1132 +    default:
1133 +      break;
1134      }
1135    }
1136 +  
1137 +  RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1138 +    // This seems to work moderately well as a default.  There's no
1139 +    // inherent scale for 1/r interactions that we can standardize.
1140 +    // 12 angstroms seems to be a reasonably good guess for most
1141 +    // cases.
1142 +    return 12.0;
1143 +  }
1144   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines