53 |
|
#include "io/Globals.hpp" |
54 |
|
#include "nonbonded/SlaterIntegrals.hpp" |
55 |
|
#include "utils/PhysicalConstants.hpp" |
56 |
+ |
#include "math/erfc.hpp" |
57 |
+ |
#include "math/SquareMatrix.hpp" |
58 |
|
|
57 |
– |
|
59 |
|
namespace OpenMD { |
60 |
|
|
61 |
|
Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false), |
63 |
|
haveCutoffRadius_(false), |
64 |
|
haveDampingAlpha_(false), |
65 |
|
haveDielectric_(false), |
66 |
< |
haveElectroSpline_(false) |
66 |
> |
haveElectroSplines_(false) |
67 |
|
{} |
68 |
|
|
69 |
|
void Electrostatic::initialize() { |
89 |
|
// Charge-Dipole, assuming charges are measured in electrons, and |
90 |
|
// dipoles are measured in debyes |
91 |
|
pre12_ = 69.13373; |
92 |
< |
// Dipole-Dipole, assuming dipoles are measured in debyes |
92 |
> |
// Dipole-Dipole, assuming dipoles are measured in Debye |
93 |
|
pre22_ = 14.39325; |
94 |
|
// Charge-Quadrupole, assuming charges are measured in electrons, and |
95 |
|
// quadrupoles are measured in 10^-26 esu cm^2 |
96 |
< |
// This unit is also known affectionately as an esu centi-barn. |
96 |
> |
// This unit is also known affectionately as an esu centibarn. |
97 |
|
pre14_ = 69.13373; |
98 |
< |
|
98 |
> |
// Dipole-Quadrupole, assuming dipoles are measured in debyes and |
99 |
> |
// quadrupoles in esu centibarns: |
100 |
> |
pre24_ = 14.39325; |
101 |
> |
// Quadrupole-Quadrupole, assuming esu centibarns: |
102 |
> |
pre44_ = 14.39325; |
103 |
> |
|
104 |
|
// conversions for the simulation box dipole moment |
105 |
|
chargeToC_ = 1.60217733e-19; |
106 |
|
angstromToM_ = 1.0e-10; |
114 |
|
summationMethod_ = esm_HARD; |
115 |
|
screeningMethod_ = UNDAMPED; |
116 |
|
dielectric_ = 1.0; |
111 |
– |
one_third_ = 1.0 / 3.0; |
117 |
|
|
118 |
|
// check the summation method: |
119 |
|
if (simParams_->haveElectrostaticSummationMethod()) { |
221 |
|
|
222 |
|
if (at->isElectrostatic()) |
223 |
|
addType(at); |
224 |
+ |
} |
225 |
+ |
|
226 |
+ |
if (summationMethod_ == esm_REACTION_FIELD) { |
227 |
+ |
preRF_ = (dielectric_ - 1.0) / |
228 |
+ |
((2.0 * dielectric_ + 1.0) * pow(cutoffRadius_,3) ); |
229 |
|
} |
230 |
|
|
231 |
< |
cutoffRadius2_ = cutoffRadius_ * cutoffRadius_; |
232 |
< |
rcuti_ = 1.0 / cutoffRadius_; |
233 |
< |
rcuti2_ = rcuti_ * rcuti_; |
234 |
< |
rcuti3_ = rcuti2_ * rcuti_; |
235 |
< |
rcuti4_ = rcuti2_ * rcuti2_; |
236 |
< |
|
237 |
< |
if (screeningMethod_ == DAMPED) { |
238 |
< |
|
239 |
< |
alpha2_ = dampingAlpha_ * dampingAlpha_; |
240 |
< |
alpha4_ = alpha2_ * alpha2_; |
241 |
< |
alpha6_ = alpha4_ * alpha2_; |
242 |
< |
alpha8_ = alpha4_ * alpha4_; |
243 |
< |
|
244 |
< |
constEXP_ = exp(-alpha2_ * cutoffRadius2_); |
245 |
< |
invRootPi_ = 0.56418958354775628695; |
246 |
< |
alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_; |
247 |
< |
|
248 |
< |
c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_; |
249 |
< |
c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_; |
240 |
< |
c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_; |
241 |
< |
c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_; |
242 |
< |
c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_; |
243 |
< |
c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_; |
231 |
> |
RealType b0c, b1c, b2c, b3c, b4c, b5c; |
232 |
> |
RealType db0c_1, db0c_2, db0c_3, db0c_4, db0c_5; |
233 |
> |
RealType a2, expTerm, invArootPi; |
234 |
> |
|
235 |
> |
RealType r = cutoffRadius_; |
236 |
> |
RealType r2 = r * r; |
237 |
> |
|
238 |
> |
if (screeningMethod_ == DAMPED) { |
239 |
> |
a2 = dampingAlpha_ * dampingAlpha_; |
240 |
> |
invArootPi = 1.0 / (dampingAlpha_ * sqrt(M_PI)); |
241 |
> |
expTerm = exp(-a2 * r2); |
242 |
> |
// values of Smith's B_l functions at the cutoff radius: |
243 |
> |
b0c = erfc(dampingAlpha_ * r) / r; |
244 |
> |
b1c = ( b0c + 2.0*a2 * expTerm * invArootPi) / r2; |
245 |
> |
b2c = (3.0 * b1c + pow(2.0*a2, 2) * expTerm * invArootPi) / r2; |
246 |
> |
b3c = (5.0 * b2c + pow(2.0*a2, 3) * expTerm * invArootPi) / r2; |
247 |
> |
b4c = (7.0 * b3c + pow(2.0*a2, 4) * expTerm * invArootPi) / r2; |
248 |
> |
b5c = (9.0 * b4c + pow(2.0*a2, 5) * expTerm * invArootPi) / r2; |
249 |
> |
selfMult_ = b0c + 2.0 * a2 * invArootPi; |
250 |
|
} else { |
251 |
< |
c1c_ = rcuti_; |
252 |
< |
c2c_ = c1c_ * rcuti_; |
253 |
< |
c3c_ = 3.0 * c2c_ * rcuti_; |
254 |
< |
c4c_ = 5.0 * c3c_ * rcuti2_; |
255 |
< |
c5c_ = 7.0 * c4c_ * rcuti2_; |
256 |
< |
c6c_ = 9.0 * c5c_ * rcuti2_; |
251 |
> |
a2 = 0.0; |
252 |
> |
b0c = 1.0 / r; |
253 |
> |
b1c = ( b0c) / r2; |
254 |
> |
b2c = (3.0 * b1c) / r2; |
255 |
> |
b3c = (5.0 * b2c) / r2; |
256 |
> |
b4c = (7.0 * b3c) / r2; |
257 |
> |
b5c = (9.0 * b4c) / r2; |
258 |
> |
selfMult_ = b0c; |
259 |
|
} |
260 |
< |
|
261 |
< |
if (summationMethod_ == esm_REACTION_FIELD) { |
262 |
< |
preRF_ = (dielectric_ - 1.0) / |
263 |
< |
((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_); |
264 |
< |
preRF2_ = 2.0 * preRF_; |
265 |
< |
} |
260 |
> |
|
261 |
> |
// higher derivatives of B_0 at the cutoff radius: |
262 |
> |
db0c_1 = -r * b1c; |
263 |
> |
db0c_2 = -b1c + r2 * b2c; |
264 |
> |
db0c_3 = 3.0*r*b2c - r2*r*b3c; |
265 |
> |
db0c_4 = 3.0*b2c - 6.0*r2*b3c + r2*r2*b4c; |
266 |
> |
db0c_5 = -15.0*r*b3c + 10.0*r2*r*b4c - r2*r2*r*b5c; |
267 |
|
|
268 |
+ |
// working variables for the splines: |
269 |
+ |
RealType ri, ri2; |
270 |
+ |
RealType b0, b1, b2, b3, b4, b5; |
271 |
+ |
RealType db0_1, db0_2, db0_3, db0_4, db0_5; |
272 |
+ |
RealType f0; |
273 |
+ |
RealType g0, g1, g2, g3, g4; |
274 |
+ |
RealType h1, h2, h3, h4; |
275 |
+ |
RealType s2, s3, s4; |
276 |
+ |
RealType t3, t4; |
277 |
+ |
RealType u4; |
278 |
+ |
|
279 |
+ |
// working variables for Taylor expansion: |
280 |
+ |
RealType rmRc, rmRc2, rmRc3, rmRc4; |
281 |
+ |
|
282 |
|
// Add a 2 angstrom safety window to deal with cutoffGroups that |
283 |
|
// have charged atoms longer than the cutoffRadius away from each |
284 |
< |
// other. Splining may not be the best choice here. Direct calls |
285 |
< |
// to erfc might be preferrable. |
284 |
> |
// other. Splining is almost certainly the best choice here. |
285 |
> |
// Direct calls to erfc would be preferrable if it is a very fast |
286 |
> |
// implementation. |
287 |
|
|
288 |
< |
RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1); |
289 |
< |
RealType rval; |
290 |
< |
vector<RealType> rvals; |
291 |
< |
vector<RealType> yvals; |
292 |
< |
for (int i = 0; i < np_; i++) { |
293 |
< |
rval = RealType(i) * dx; |
294 |
< |
rvals.push_back(rval); |
295 |
< |
yvals.push_back(erfc(dampingAlpha_ * rval)); |
288 |
> |
RealType dx = (cutoffRadius_ + 2.0) / RealType(np_); |
289 |
> |
|
290 |
> |
// Storage vectors for the computed functions |
291 |
> |
vector<RealType> rv; |
292 |
> |
vector<RealType> v01v, v02v; |
293 |
> |
vector<RealType> v11v, v12v, v13v; |
294 |
> |
vector<RealType> v21v, v22v, v23v, v24v; |
295 |
> |
vector<RealType> v31v, v32v, v33v, v34v, v35v; |
296 |
> |
vector<RealType> v41v, v42v, v43v, v44v, v45v, v46v; |
297 |
> |
|
298 |
> |
for (int i = 1; i < np_ + 1; i++) { |
299 |
> |
r = RealType(i) * dx; |
300 |
> |
rv.push_back(r); |
301 |
> |
|
302 |
> |
ri = 1.0 / r; |
303 |
> |
ri2 = ri * ri; |
304 |
> |
|
305 |
> |
r2 = r * r; |
306 |
> |
expTerm = exp(-a2 * r2); |
307 |
> |
|
308 |
> |
// Taylor expansion factors (no need for factorials this way): |
309 |
> |
rmRc = r - cutoffRadius_; |
310 |
> |
rmRc2 = rmRc * rmRc / 2.0; |
311 |
> |
rmRc3 = rmRc2 * rmRc / 3.0; |
312 |
> |
rmRc4 = rmRc3 * rmRc / 4.0; |
313 |
> |
|
314 |
> |
// values of Smith's B_l functions at r: |
315 |
> |
if (screeningMethod_ == DAMPED) { |
316 |
> |
b0 = erfc(dampingAlpha_ * r) * ri; |
317 |
> |
b1 = ( b0 + 2.0*a2 * expTerm * invArootPi) * ri2; |
318 |
> |
b2 = (3.0 * b1 + pow(2.0*a2, 2) * expTerm * invArootPi) * ri2; |
319 |
> |
b3 = (5.0 * b2 + pow(2.0*a2, 3) * expTerm * invArootPi) * ri2; |
320 |
> |
b4 = (7.0 * b3 + pow(2.0*a2, 4) * expTerm * invArootPi) * ri2; |
321 |
> |
b5 = (9.0 * b4 + pow(2.0*a2, 5) * expTerm * invArootPi) * ri2; |
322 |
> |
} else { |
323 |
> |
b0 = ri; |
324 |
> |
b1 = ( b0) * ri2; |
325 |
> |
b2 = (3.0 * b1) * ri2; |
326 |
> |
b3 = (5.0 * b2) * ri2; |
327 |
> |
b4 = (7.0 * b3) * ri2; |
328 |
> |
b5 = (9.0 * b4) * ri2; |
329 |
> |
} |
330 |
> |
|
331 |
> |
// higher derivatives of B_0 at r: |
332 |
> |
db0_1 = -r * b1; |
333 |
> |
db0_2 = -b1 + r2 * b2; |
334 |
> |
db0_3 = 3.0*r*b2 - r2*r*b3; |
335 |
> |
db0_4 = 3.0*b2 - 6.0*r2*b3 + r2*r2*b4; |
336 |
> |
db0_5 = -15.0*r*b3 + 10.0*r2*r*b4 - r2*r2*r*b5; |
337 |
> |
|
338 |
> |
|
339 |
> |
switch (summationMethod_) { |
340 |
> |
case esm_SHIFTED_FORCE: |
341 |
> |
f0 = b0 - b0c - rmRc*db0c_1; |
342 |
> |
|
343 |
> |
g0 = db0_1 - db0c_1; |
344 |
> |
g1 = g0 - rmRc *db0c_2; |
345 |
> |
g2 = g1 - rmRc2*db0c_3; |
346 |
> |
g3 = g2 - rmRc3*db0c_4; |
347 |
> |
g4 = g3 - rmRc4*db0c_5; |
348 |
> |
|
349 |
> |
h1 = db0_2 - db0c_2; |
350 |
> |
h2 = h1 - rmRc *db0c_3; |
351 |
> |
h3 = h2 - rmRc2*db0c_4; |
352 |
> |
h4 = h3 - rmRc3*db0c_5; |
353 |
> |
|
354 |
> |
s2 = db0_3 - db0c_3; |
355 |
> |
s3 = s2 - rmRc *db0c_4; |
356 |
> |
s4 = s3 - rmRc2*db0c_5; |
357 |
> |
|
358 |
> |
t3 = db0_4 - db0c_4; |
359 |
> |
t4 = t3 - rmRc *db0c_5; |
360 |
> |
|
361 |
> |
u4 = db0_5 - db0c_5; |
362 |
> |
break; |
363 |
> |
|
364 |
> |
case esm_SHIFTED_POTENTIAL: |
365 |
> |
f0 = b0 - b0c; |
366 |
> |
|
367 |
> |
g0 = db0_1; |
368 |
> |
g1 = db0_1 - db0c_1; |
369 |
> |
g2 = g1 - rmRc *db0c_2; |
370 |
> |
g3 = g2 - rmRc2*db0c_3; |
371 |
> |
g4 = g3 - rmRc3*db0c_4; |
372 |
> |
|
373 |
> |
h1 = db0_2; |
374 |
> |
h2 = db0_2 - db0c_2; |
375 |
> |
h3 = h2 - rmRc *db0c_3; |
376 |
> |
h4 = h3 - rmRc2*db0c_4; |
377 |
> |
|
378 |
> |
s2 = db0_3; |
379 |
> |
s3 = db0_3 - db0c_3; |
380 |
> |
s4 = s3 - rmRc *db0c_4; |
381 |
> |
|
382 |
> |
t3 = db0_4; |
383 |
> |
t4 = db0_4 - db0c_4; |
384 |
> |
|
385 |
> |
u4 = db0_5; |
386 |
> |
break; |
387 |
> |
|
388 |
> |
case esm_SWITCHING_FUNCTION: |
389 |
> |
case esm_HARD: |
390 |
> |
f0 = b0; |
391 |
> |
|
392 |
> |
g0 = db0_1; |
393 |
> |
g1 = g0; |
394 |
> |
g2 = g1; |
395 |
> |
g3 = g2; |
396 |
> |
g4 = g3; |
397 |
> |
|
398 |
> |
h1 = db0_2; |
399 |
> |
h2 = h1; |
400 |
> |
h3 = h2; |
401 |
> |
h4 = h3; |
402 |
> |
|
403 |
> |
s2 = db0_3; |
404 |
> |
s3 = s2; |
405 |
> |
s4 = s3; |
406 |
> |
|
407 |
> |
t3 = db0_4; |
408 |
> |
t4 = t3; |
409 |
> |
|
410 |
> |
u4 = db0_5; |
411 |
> |
break; |
412 |
> |
|
413 |
> |
case esm_REACTION_FIELD: |
414 |
> |
|
415 |
> |
// following DL_POLY's lead for shifting the image charge potential: |
416 |
> |
f0 = b0 + preRF_ * r2 |
417 |
> |
- (b0c + preRF_ * cutoffRadius_ * cutoffRadius_); |
418 |
> |
|
419 |
> |
g0 = db0_1 + preRF_ * 2.0 * r; |
420 |
> |
g1 = g0; |
421 |
> |
g2 = g1; |
422 |
> |
g3 = g2; |
423 |
> |
g4 = g3; |
424 |
> |
|
425 |
> |
h1 = db0_2 + preRF_ * 2.0; |
426 |
> |
h2 = h1; |
427 |
> |
h3 = h2; |
428 |
> |
h4 = h3; |
429 |
> |
|
430 |
> |
s2 = db0_3; |
431 |
> |
s3 = s2; |
432 |
> |
s4 = s3; |
433 |
> |
|
434 |
> |
t3 = db0_4; |
435 |
> |
t4 = t3; |
436 |
> |
|
437 |
> |
u4 = db0_5; |
438 |
> |
break; |
439 |
> |
|
440 |
> |
case esm_EWALD_FULL: |
441 |
> |
case esm_EWALD_PME: |
442 |
> |
case esm_EWALD_SPME: |
443 |
> |
default : |
444 |
> |
map<string, ElectrostaticSummationMethod>::iterator i; |
445 |
> |
std::string meth; |
446 |
> |
for (i = summationMap_.begin(); i != summationMap_.end(); ++i) { |
447 |
> |
if ((*i).second == summationMethod_) meth = (*i).first; |
448 |
> |
} |
449 |
> |
sprintf( painCave.errMsg, |
450 |
> |
"Electrostatic::initialize: electrostaticSummationMethod %s \n" |
451 |
> |
"\thas not been implemented yet. Please select one of:\n" |
452 |
> |
"\t\"hard\", \"shifted_potential\", or \"shifted_force\"\n", |
453 |
> |
meth.c_str() ); |
454 |
> |
painCave.isFatal = 1; |
455 |
> |
simError(); |
456 |
> |
break; |
457 |
> |
} |
458 |
> |
|
459 |
> |
v01 = f0; |
460 |
> |
v02 = g0; |
461 |
> |
|
462 |
> |
v11 = g1; |
463 |
> |
v12 = g1 * ri; |
464 |
> |
v13 = h1 - v12; |
465 |
> |
|
466 |
> |
v21 = g2 * ri; |
467 |
> |
v22 = h2 - v21; |
468 |
> |
v23 = v22 * ri; |
469 |
> |
v24 = s2 - 3.0*v23; |
470 |
> |
|
471 |
> |
v31 = (h3 - g3 * ri) * ri; |
472 |
> |
v32 = s3 - 3.0*v31; |
473 |
> |
v33 = v31 * ri; |
474 |
> |
v34 = v32 * ri; |
475 |
> |
v35 = t3 - 6.0*v34 - 3.0*v33; |
476 |
> |
|
477 |
> |
v41 = (h4 - g4 * ri) * ri2; |
478 |
> |
v42 = s4 * ri - 3.0*v41; |
479 |
> |
v43 = t4 - 6.0*v42 - 3.0*v41; |
480 |
> |
v44 = v42 * ri; |
481 |
> |
v45 = v43 * ri; |
482 |
> |
v46 = u4 - 10.0*v45 - 15.0*v44; |
483 |
> |
|
484 |
> |
// Add these computed values to the storage vectors for spline creation: |
485 |
> |
v01v.push_back(v01); |
486 |
> |
v02v.push_back(v02); |
487 |
> |
|
488 |
> |
v11v.push_back(v11); |
489 |
> |
v12v.push_back(v12); |
490 |
> |
v13v.push_back(v13); |
491 |
> |
|
492 |
> |
v21v.push_back(v21); |
493 |
> |
v22v.push_back(v22); |
494 |
> |
v23v.push_back(v23); |
495 |
> |
v24v.push_back(v24); |
496 |
> |
|
497 |
> |
v31v.push_back(v31); |
498 |
> |
v32v.push_back(v32); |
499 |
> |
v33v.push_back(v33); |
500 |
> |
v34v.push_back(v34); |
501 |
> |
v35v.push_back(v35); |
502 |
> |
|
503 |
> |
v41v.push_back(v41); |
504 |
> |
v42v.push_back(v42); |
505 |
> |
v43v.push_back(v43); |
506 |
> |
v44v.push_back(v44); |
507 |
> |
v45v.push_back(v45); |
508 |
> |
v46v.push_back(v46); |
509 |
|
} |
273 |
– |
erfcSpline_ = new CubicSpline(); |
274 |
– |
erfcSpline_->addPoints(rvals, yvals); |
275 |
– |
haveElectroSpline_ = true; |
510 |
|
|
511 |
+ |
// construct the spline structures and fill them with the values we've |
512 |
+ |
// computed: |
513 |
+ |
|
514 |
+ |
v01s = new CubicSpline(); |
515 |
+ |
v01s->addPoints(rv, v01v); |
516 |
+ |
v02s = new CubicSpline(); |
517 |
+ |
v02s->addPoints(rv, v02v); |
518 |
+ |
|
519 |
+ |
v11s = new CubicSpline(); |
520 |
+ |
v11s->addPoints(rv, v11v); |
521 |
+ |
v12s = new CubicSpline(); |
522 |
+ |
v12s->addPoints(rv, v12v); |
523 |
+ |
v13s = new CubicSpline(); |
524 |
+ |
v13s->addPoints(rv, v13v); |
525 |
+ |
|
526 |
+ |
v21s = new CubicSpline(); |
527 |
+ |
v21s->addPoints(rv, v21v); |
528 |
+ |
v22s = new CubicSpline(); |
529 |
+ |
v22s->addPoints(rv, v22v); |
530 |
+ |
v23s = new CubicSpline(); |
531 |
+ |
v23s->addPoints(rv, v23v); |
532 |
+ |
v24s = new CubicSpline(); |
533 |
+ |
v24s->addPoints(rv, v24v); |
534 |
+ |
|
535 |
+ |
v31s = new CubicSpline(); |
536 |
+ |
v31s->addPoints(rv, v31v); |
537 |
+ |
v32s = new CubicSpline(); |
538 |
+ |
v32s->addPoints(rv, v32v); |
539 |
+ |
v33s = new CubicSpline(); |
540 |
+ |
v33s->addPoints(rv, v33v); |
541 |
+ |
v34s = new CubicSpline(); |
542 |
+ |
v34s->addPoints(rv, v34v); |
543 |
+ |
v35s = new CubicSpline(); |
544 |
+ |
v35s->addPoints(rv, v35v); |
545 |
+ |
|
546 |
+ |
v41s = new CubicSpline(); |
547 |
+ |
v41s->addPoints(rv, v41v); |
548 |
+ |
v42s = new CubicSpline(); |
549 |
+ |
v42s->addPoints(rv, v42v); |
550 |
+ |
v43s = new CubicSpline(); |
551 |
+ |
v43s->addPoints(rv, v43v); |
552 |
+ |
v44s = new CubicSpline(); |
553 |
+ |
v44s->addPoints(rv, v44v); |
554 |
+ |
v45s = new CubicSpline(); |
555 |
+ |
v45s->addPoints(rv, v45v); |
556 |
+ |
v46s = new CubicSpline(); |
557 |
+ |
v46s->addPoints(rv, v46v); |
558 |
+ |
|
559 |
+ |
haveElectroSplines_ = true; |
560 |
+ |
|
561 |
|
initialized_ = true; |
562 |
|
} |
563 |
|
|
566 |
|
ElectrostaticAtomData electrostaticAtomData; |
567 |
|
electrostaticAtomData.is_Charge = false; |
568 |
|
electrostaticAtomData.is_Dipole = false; |
285 |
– |
electrostaticAtomData.is_SplitDipole = false; |
569 |
|
electrostaticAtomData.is_Quadrupole = false; |
570 |
|
electrostaticAtomData.is_Fluctuating = false; |
571 |
|
|
580 |
|
if (ma.isMultipole()) { |
581 |
|
if (ma.isDipole()) { |
582 |
|
electrostaticAtomData.is_Dipole = true; |
583 |
< |
electrostaticAtomData.dipole_moment = ma.getDipoleMoment(); |
583 |
> |
electrostaticAtomData.dipole = ma.getDipole(); |
584 |
|
} |
302 |
– |
if (ma.isSplitDipole()) { |
303 |
– |
electrostaticAtomData.is_SplitDipole = true; |
304 |
– |
electrostaticAtomData.split_dipole_distance = ma.getSplitDipoleDistance(); |
305 |
– |
} |
585 |
|
if (ma.isQuadrupole()) { |
307 |
– |
// Quadrupoles in OpenMD are set as the diagonal elements |
308 |
– |
// of the diagonalized traceless quadrupole moment tensor. |
309 |
– |
// The column vectors of the unitary matrix that diagonalizes |
310 |
– |
// the quadrupole moment tensor become the eFrame (or the |
311 |
– |
// electrostatic version of the body-fixed frame. |
586 |
|
electrostaticAtomData.is_Quadrupole = true; |
587 |
< |
electrostaticAtomData.quadrupole_moments = ma.getQuadrupoleMoments(); |
587 |
> |
electrostaticAtomData.quadrupole = ma.getQuadrupole(); |
588 |
|
} |
589 |
|
} |
590 |
|
|
633 |
|
RealType rval; |
634 |
|
RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1); |
635 |
|
vector<RealType> rvals; |
636 |
< |
vector<RealType> J1vals; |
637 |
< |
vector<RealType> J2vals; |
638 |
< |
for (int i = 0; i < np_; i++) { |
636 |
> |
vector<RealType> Jvals; |
637 |
> |
// don't start at i = 0, as rval = 0 is undefined for the |
638 |
> |
// slater overlap integrals. |
639 |
> |
for (int i = 1; i < np_+1; i++) { |
640 |
|
rval = RealType(i) * dr; |
641 |
|
rvals.push_back(rval); |
642 |
< |
J1vals.push_back(electrostaticAtomData.hardness * sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromsToBohr ) ); |
643 |
< |
// may not be necessary if Slater coulomb integral is symmetric |
644 |
< |
J2vals.push_back(eaData2.hardness * sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromsToBohr ) ); |
642 |
> |
Jvals.push_back(sSTOCoulInt( a, b, m, n, rval * |
643 |
> |
PhysicalConstants::angstromToBohr ) * |
644 |
> |
PhysicalConstants::hartreeToKcal ); |
645 |
|
} |
371 |
– |
|
372 |
– |
CubicSpline* J1 = new CubicSpline(); |
373 |
– |
J1->addPoints(rvals, J1vals); |
374 |
– |
CubicSpline* J2 = new CubicSpline(); |
375 |
– |
J2->addPoints(rvals, J2vals); |
646 |
|
|
647 |
+ |
CubicSpline* J = new CubicSpline(); |
648 |
+ |
J->addPoints(rvals, Jvals); |
649 |
+ |
|
650 |
|
pair<AtomType*, AtomType*> key1, key2; |
651 |
|
key1 = make_pair(atomType, atype2); |
652 |
|
key2 = make_pair(atype2, atomType); |
653 |
|
|
654 |
< |
Jij[key1] = J1; |
655 |
< |
Jij[key2] = J2; |
654 |
> |
Jij[key1] = J; |
655 |
> |
Jij[key2] = J; |
656 |
|
} |
657 |
|
} |
658 |
|
|
661 |
|
|
662 |
|
void Electrostatic::setCutoffRadius( RealType rCut ) { |
663 |
|
cutoffRadius_ = rCut; |
391 |
– |
rrf_ = cutoffRadius_; |
664 |
|
haveCutoffRadius_ = true; |
665 |
|
} |
666 |
|
|
395 |
– |
void Electrostatic::setSwitchingRadius( RealType rSwitch ) { |
396 |
– |
rt_ = rSwitch; |
397 |
– |
} |
667 |
|
void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) { |
668 |
|
summationMethod_ = esm; |
669 |
|
} |
681 |
|
|
682 |
|
void Electrostatic::calcForce(InteractionData &idat) { |
683 |
|
|
684 |
< |
// utility variables. Should clean these up and use the Vector3d and |
685 |
< |
// Mat3x3d to replace as many as we can in future versions: |
684 |
> |
RealType C_a, C_b; // Charges |
685 |
> |
Vector3d D_a, D_b; // Dipoles (space-fixed) |
686 |
> |
Mat3x3d Q_a, Q_b; // Quadrupoles (space-fixed) |
687 |
|
|
688 |
< |
RealType q_i, q_j, mu_i, mu_j, d_i, d_j; |
689 |
< |
RealType qxx_i, qyy_i, qzz_i; |
690 |
< |
RealType qxx_j, qyy_j, qzz_j; |
691 |
< |
RealType cx_i, cy_i, cz_i; |
692 |
< |
RealType cx_j, cy_j, cz_j; |
693 |
< |
RealType cx2, cy2, cz2; |
424 |
< |
RealType ct_i, ct_j, ct_ij, a1; |
425 |
< |
RealType riji, ri, ri2, ri3, ri4; |
426 |
< |
RealType pref, vterm, epot, dudr; |
427 |
< |
RealType vpair(0.0); |
428 |
< |
RealType scale, sc2; |
429 |
< |
RealType pot_term, preVal, rfVal; |
430 |
< |
RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj; |
431 |
< |
RealType preSw, preSwSc; |
432 |
< |
RealType c1, c2, c3, c4; |
433 |
< |
RealType erfcVal(1.0), derfcVal(0.0); |
434 |
< |
RealType BigR; |
435 |
< |
RealType two(2.0), three(3.0); |
688 |
> |
RealType ri, ri2, ri3, ri4; // Distance utility scalars |
689 |
> |
RealType rdDa, rdDb; // Dipole utility scalars |
690 |
> |
Vector3d rxDa, rxDb; // Dipole utility vectors |
691 |
> |
RealType rdQar, rdQbr, trQa, trQb; // Quadrupole utility scalars |
692 |
> |
Vector3d Qar, Qbr, rQa, rQb, rxQar, rxQbr; // Quadrupole utility vectors |
693 |
> |
RealType pref; |
694 |
|
|
695 |
< |
Vector3d Q_i, Q_j; |
696 |
< |
Vector3d ux_i, uy_i, uz_i; |
697 |
< |
Vector3d ux_j, uy_j, uz_j; |
698 |
< |
Vector3d dudux_i, duduy_i, duduz_i; |
441 |
< |
Vector3d dudux_j, duduy_j, duduz_j; |
442 |
< |
Vector3d rhatdot2, rhatc4; |
443 |
< |
Vector3d dVdr; |
695 |
> |
RealType DadDb, trQaQb, DadQbr, DbdQar; // Cross-interaction scalars |
696 |
> |
Vector3d DaxDb, DadQb, DbdQa, DaxQbr, DbxQar; // Cross-interaction vectors |
697 |
> |
Vector3d rQaQb, QaQbr, QaxQb; |
698 |
> |
Mat3x3d QaQb; // Cross-interaction matrices |
699 |
|
|
700 |
< |
// variables for indirect (reaction field) interactions for excluded pairs: |
701 |
< |
RealType indirect_Pot(0.0); |
702 |
< |
RealType indirect_vpair(0.0); |
703 |
< |
Vector3d indirect_dVdr(V3Zero); |
704 |
< |
Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero); |
700 |
> |
RealType U(0.0); // Potential |
701 |
> |
Vector3d F(0.0); // Force |
702 |
> |
Vector3d Ta(0.0); // Torque on site a |
703 |
> |
Vector3d Tb(0.0); // Torque on site b |
704 |
> |
Vector3d Ea(0.0); // Electric field at site a |
705 |
> |
Vector3d Eb(0.0); // Electric field at site b |
706 |
> |
RealType dUdCa(0.0); // fluctuating charge force at site a |
707 |
> |
RealType dUdCb(0.0); // fluctuating charge force at site a |
708 |
> |
|
709 |
> |
// Indirect interactions mediated by the reaction field. |
710 |
> |
RealType indirect_Pot(0.0); // Potential |
711 |
> |
Vector3d indirect_F(0.0); // Force |
712 |
> |
Vector3d indirect_Ta(0.0); // Torque on site a |
713 |
> |
Vector3d indirect_Tb(0.0); // Torque on site b |
714 |
|
|
715 |
< |
RealType coulInt, vFluc1(0.0), vFluc2(0.0); |
716 |
< |
pair<RealType, RealType> res; |
715 |
> |
// Excluded potential that is still computed for fluctuating charges |
716 |
> |
RealType excluded_Pot(0.0); |
717 |
> |
|
718 |
> |
RealType rfContrib, coulInt; |
719 |
|
|
720 |
< |
// splines for coulomb integrals |
721 |
< |
CubicSpline* J1; |
722 |
< |
CubicSpline* J2; |
457 |
< |
|
720 |
> |
// spline for coulomb integral |
721 |
> |
CubicSpline* J; |
722 |
> |
|
723 |
|
if (!initialized_) initialize(); |
724 |
|
|
725 |
|
ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first]; |
727 |
|
|
728 |
|
// some variables we'll need independent of electrostatic type: |
729 |
|
|
730 |
< |
riji = 1.0 / *(idat.rij) ; |
731 |
< |
Vector3d rhat = *(idat.d) * riji; |
732 |
< |
|
730 |
> |
ri = 1.0 / *(idat.rij); |
731 |
> |
Vector3d rhat = *(idat.d) * ri; |
732 |
> |
ri2 = ri * ri; |
733 |
> |
|
734 |
|
// logicals |
735 |
|
|
736 |
< |
bool i_is_Charge = data1.is_Charge; |
737 |
< |
bool i_is_Dipole = data1.is_Dipole; |
738 |
< |
bool i_is_SplitDipole = data1.is_SplitDipole; |
739 |
< |
bool i_is_Quadrupole = data1.is_Quadrupole; |
474 |
< |
bool i_is_Fluctuating = data1.is_Fluctuating; |
736 |
> |
bool a_is_Charge = data1.is_Charge; |
737 |
> |
bool a_is_Dipole = data1.is_Dipole; |
738 |
> |
bool a_is_Quadrupole = data1.is_Quadrupole; |
739 |
> |
bool a_is_Fluctuating = data1.is_Fluctuating; |
740 |
|
|
741 |
< |
bool j_is_Charge = data2.is_Charge; |
742 |
< |
bool j_is_Dipole = data2.is_Dipole; |
743 |
< |
bool j_is_SplitDipole = data2.is_SplitDipole; |
744 |
< |
bool j_is_Quadrupole = data2.is_Quadrupole; |
480 |
< |
bool j_is_Fluctuating = data2.is_Fluctuating; |
481 |
< |
|
482 |
< |
if (i_is_Charge) { |
483 |
< |
q_i = data1.fixedCharge; |
484 |
< |
|
485 |
< |
if (i_is_Fluctuating) { |
486 |
< |
q_i += *(idat.flucQ1); |
487 |
< |
} |
488 |
< |
|
489 |
< |
if (idat.excluded) { |
490 |
< |
*(idat.skippedCharge2) += q_i; |
491 |
< |
} |
492 |
< |
} |
493 |
< |
|
494 |
< |
if (i_is_Dipole) { |
495 |
< |
mu_i = data1.dipole_moment; |
496 |
< |
uz_i = idat.eFrame1->getColumn(2); |
497 |
< |
|
498 |
< |
ct_i = dot(uz_i, rhat); |
499 |
< |
|
500 |
< |
if (i_is_SplitDipole) |
501 |
< |
d_i = data1.split_dipole_distance; |
502 |
< |
|
503 |
< |
duduz_i = V3Zero; |
504 |
< |
} |
505 |
< |
|
506 |
< |
if (i_is_Quadrupole) { |
507 |
< |
Q_i = data1.quadrupole_moments; |
508 |
< |
qxx_i = Q_i.x(); |
509 |
< |
qyy_i = Q_i.y(); |
510 |
< |
qzz_i = Q_i.z(); |
511 |
< |
|
512 |
< |
ux_i = idat.eFrame1->getColumn(0); |
513 |
< |
uy_i = idat.eFrame1->getColumn(1); |
514 |
< |
uz_i = idat.eFrame1->getColumn(2); |
741 |
> |
bool b_is_Charge = data2.is_Charge; |
742 |
> |
bool b_is_Dipole = data2.is_Dipole; |
743 |
> |
bool b_is_Quadrupole = data2.is_Quadrupole; |
744 |
> |
bool b_is_Fluctuating = data2.is_Fluctuating; |
745 |
|
|
746 |
< |
cx_i = dot(ux_i, rhat); |
747 |
< |
cy_i = dot(uy_i, rhat); |
748 |
< |
cz_i = dot(uz_i, rhat); |
749 |
< |
|
750 |
< |
dudux_i = V3Zero; |
751 |
< |
duduy_i = V3Zero; |
522 |
< |
duduz_i = V3Zero; |
746 |
> |
// Obtain all of the required radial function values from the |
747 |
> |
// spline structures: |
748 |
> |
|
749 |
> |
// needed for fields (and forces): |
750 |
> |
if (a_is_Charge || b_is_Charge) { |
751 |
> |
v02 = v02s->getValueAt( *(idat.rij) ); |
752 |
|
} |
753 |
+ |
if (a_is_Dipole || b_is_Dipole) { |
754 |
+ |
v12 = v12s->getValueAt( *(idat.rij) ); |
755 |
+ |
v13 = v13s->getValueAt( *(idat.rij) ); |
756 |
+ |
} |
757 |
+ |
if (a_is_Quadrupole || b_is_Quadrupole) { |
758 |
+ |
v23 = v23s->getValueAt( *(idat.rij) ); |
759 |
+ |
v24 = v24s->getValueAt( *(idat.rij) ); |
760 |
+ |
} |
761 |
|
|
762 |
< |
if (j_is_Charge) { |
763 |
< |
q_j = data2.fixedCharge; |
764 |
< |
|
528 |
< |
if (j_is_Fluctuating) |
529 |
< |
q_j += *(idat.flucQ2); |
530 |
< |
|
531 |
< |
if (idat.excluded) { |
532 |
< |
*(idat.skippedCharge1) += q_j; |
533 |
< |
} |
762 |
> |
// needed for potentials (and torques): |
763 |
> |
if (a_is_Charge && b_is_Charge) { |
764 |
> |
v01 = v01s->getValueAt( *(idat.rij) ); |
765 |
|
} |
766 |
+ |
if ((a_is_Charge && b_is_Dipole) || (b_is_Charge && a_is_Dipole)) { |
767 |
+ |
v11 = v11s->getValueAt( *(idat.rij) ); |
768 |
+ |
} |
769 |
+ |
if ((a_is_Charge && b_is_Quadrupole) || (b_is_Charge && a_is_Quadrupole)) { |
770 |
+ |
v21 = v21s->getValueAt( *(idat.rij) ); |
771 |
+ |
v22 = v22s->getValueAt( *(idat.rij) ); |
772 |
+ |
} else if (a_is_Dipole && b_is_Dipole) { |
773 |
+ |
v21 = v21s->getValueAt( *(idat.rij) ); |
774 |
+ |
v22 = v22s->getValueAt( *(idat.rij) ); |
775 |
+ |
v23 = v23s->getValueAt( *(idat.rij) ); |
776 |
+ |
v24 = v24s->getValueAt( *(idat.rij) ); |
777 |
+ |
} |
778 |
+ |
if ((a_is_Dipole && b_is_Quadrupole) || |
779 |
+ |
(b_is_Dipole && a_is_Quadrupole)) { |
780 |
+ |
v31 = v31s->getValueAt( *(idat.rij) ); |
781 |
+ |
v32 = v32s->getValueAt( *(idat.rij) ); |
782 |
+ |
v33 = v33s->getValueAt( *(idat.rij) ); |
783 |
+ |
v34 = v34s->getValueAt( *(idat.rij) ); |
784 |
+ |
v35 = v35s->getValueAt( *(idat.rij) ); |
785 |
+ |
} |
786 |
+ |
if (a_is_Quadrupole && b_is_Quadrupole) { |
787 |
+ |
v41 = v41s->getValueAt( *(idat.rij) ); |
788 |
+ |
v42 = v42s->getValueAt( *(idat.rij) ); |
789 |
+ |
v43 = v43s->getValueAt( *(idat.rij) ); |
790 |
+ |
v44 = v44s->getValueAt( *(idat.rij) ); |
791 |
+ |
v45 = v45s->getValueAt( *(idat.rij) ); |
792 |
+ |
v46 = v46s->getValueAt( *(idat.rij) ); |
793 |
+ |
} |
794 |
|
|
795 |
|
|
796 |
< |
if (j_is_Dipole) { |
797 |
< |
mu_j = data2.dipole_moment; |
798 |
< |
uz_j = idat.eFrame2->getColumn(2); |
796 |
> |
// calculate the single-site contributions (fields, etc). |
797 |
> |
|
798 |
> |
if (a_is_Charge) { |
799 |
> |
C_a = data1.fixedCharge; |
800 |
|
|
801 |
< |
ct_j = dot(uz_j, rhat); |
802 |
< |
|
803 |
< |
if (j_is_SplitDipole) |
544 |
< |
d_j = data2.split_dipole_distance; |
801 |
> |
if (a_is_Fluctuating) { |
802 |
> |
C_a += *(idat.flucQ1); |
803 |
> |
} |
804 |
|
|
805 |
< |
duduz_j = V3Zero; |
805 |
> |
if (idat.excluded) { |
806 |
> |
*(idat.skippedCharge2) += C_a; |
807 |
> |
} |
808 |
> |
Eb -= C_a * pre11_ * v02 * rhat; |
809 |
|
} |
810 |
|
|
811 |
< |
if (j_is_Quadrupole) { |
812 |
< |
Q_j = data2.quadrupole_moments; |
813 |
< |
qxx_j = Q_j.x(); |
814 |
< |
qyy_j = Q_j.y(); |
815 |
< |
qzz_j = Q_j.z(); |
554 |
< |
|
555 |
< |
ux_j = idat.eFrame2->getColumn(0); |
556 |
< |
uy_j = idat.eFrame2->getColumn(1); |
557 |
< |
uz_j = idat.eFrame2->getColumn(2); |
558 |
< |
|
559 |
< |
cx_j = dot(ux_j, rhat); |
560 |
< |
cy_j = dot(uy_j, rhat); |
561 |
< |
cz_j = dot(uz_j, rhat); |
562 |
< |
|
563 |
< |
dudux_j = V3Zero; |
564 |
< |
duduy_j = V3Zero; |
565 |
< |
duduz_j = V3Zero; |
811 |
> |
if (a_is_Dipole) { |
812 |
> |
D_a = *(idat.dipole1); |
813 |
> |
rdDa = dot(rhat, D_a); |
814 |
> |
rxDa = cross(rhat, D_a); |
815 |
> |
Eb -= pre12_ * (v13 * rdDa * rhat + v12 * D_a); |
816 |
|
} |
817 |
|
|
818 |
< |
if (i_is_Fluctuating && j_is_Fluctuating) { |
819 |
< |
J1 = Jij[idat.atypes]; |
820 |
< |
J2 = Jij[make_pair(idat.atypes.second, idat.atypes.first)]; |
818 |
> |
if (a_is_Quadrupole) { |
819 |
> |
Q_a = *(idat.quadrupole1); |
820 |
> |
trQa = Q_a.trace(); |
821 |
> |
Qar = Q_a * rhat; |
822 |
> |
rQa = rhat * Q_a; |
823 |
> |
rdQar = dot(rhat, Qar); |
824 |
> |
rxQar = cross(rhat, Qar); |
825 |
> |
Eb -= pre14_ * ((trQa * rhat + 2.0 * Qar) * v23 + rdQar * rhat * v24); |
826 |
|
} |
572 |
– |
|
573 |
– |
epot = 0.0; |
574 |
– |
dVdr = V3Zero; |
827 |
|
|
828 |
< |
if (i_is_Charge) { |
828 |
> |
if (b_is_Charge) { |
829 |
> |
C_b = data2.fixedCharge; |
830 |
|
|
831 |
< |
if (j_is_Charge) { |
832 |
< |
if (screeningMethod_ == DAMPED) { |
833 |
< |
// assemble the damping variables |
834 |
< |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
835 |
< |
//erfcVal = res.first; |
836 |
< |
//derfcVal = res.second; |
837 |
< |
|
838 |
< |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
839 |
< |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
840 |
< |
|
841 |
< |
c1 = erfcVal * riji; |
842 |
< |
c2 = (-derfcVal + c1) * riji; |
843 |
< |
} else { |
844 |
< |
c1 = riji; |
845 |
< |
c2 = c1 * riji; |
846 |
< |
} |
831 |
> |
if (b_is_Fluctuating) |
832 |
> |
C_b += *(idat.flucQ2); |
833 |
> |
|
834 |
> |
if (idat.excluded) { |
835 |
> |
*(idat.skippedCharge1) += C_b; |
836 |
> |
} |
837 |
> |
Ea += C_b * pre11_ * v02 * rhat; |
838 |
> |
} |
839 |
> |
|
840 |
> |
if (b_is_Dipole) { |
841 |
> |
D_b = *(idat.dipole2); |
842 |
> |
rdDb = dot(rhat, D_b); |
843 |
> |
rxDb = cross(rhat, D_b); |
844 |
> |
Ea += pre12_ * (v13 * rdDb * rhat + v12 * D_b); |
845 |
> |
} |
846 |
> |
|
847 |
> |
if (b_is_Quadrupole) { |
848 |
> |
Q_b = *(idat.quadrupole2); |
849 |
> |
trQb = Q_b.trace(); |
850 |
> |
Qbr = Q_b * rhat; |
851 |
> |
rQb = rhat * Q_b; |
852 |
> |
rdQbr = dot(rhat, Qbr); |
853 |
> |
rxQbr = cross(rhat, Qbr); |
854 |
> |
Ea += pre14_ * ((trQb * rhat + 2.0 * Qbr) * v23 + rdQbr * rhat * v24); |
855 |
> |
} |
856 |
> |
|
857 |
> |
if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) { |
858 |
> |
J = Jij[idat.atypes]; |
859 |
> |
} |
860 |
> |
|
861 |
> |
if (a_is_Charge) { |
862 |
> |
|
863 |
> |
if (b_is_Charge) { |
864 |
> |
pref = pre11_ * *(idat.electroMult); |
865 |
> |
U += C_a * C_b * pref * v01; |
866 |
> |
F += C_a * C_b * pref * v02 * rhat; |
867 |
> |
|
868 |
> |
// If this is an excluded pair, there are still indirect |
869 |
> |
// interactions via the reaction field we must worry about: |
870 |
|
|
871 |
< |
preVal = *(idat.electroMult) * pre11_; |
871 |
> |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
872 |
> |
rfContrib = preRF_ * pref * C_a * C_b * *(idat.r2); |
873 |
> |
indirect_Pot += rfContrib; |
874 |
> |
indirect_F += rfContrib * 2.0 * ri * rhat; |
875 |
> |
} |
876 |
|
|
877 |
< |
if (summationMethod_ == esm_SHIFTED_POTENTIAL) { |
878 |
< |
vterm = preVal * (c1 - c1c_); |
879 |
< |
dudr = - *(idat.sw) * preVal * c2; |
877 |
> |
// Fluctuating charge forces are handled via Coulomb integrals |
878 |
> |
// for excluded pairs (i.e. those connected via bonds) and |
879 |
> |
// with the standard charge-charge interaction otherwise. |
880 |
|
|
881 |
< |
} else if (summationMethod_ == esm_SHIFTED_FORCE) { |
882 |
< |
vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij) - cutoffRadius_) ); |
883 |
< |
dudr = *(idat.sw) * preVal * (c2c_ - c2); |
881 |
> |
if (idat.excluded) { |
882 |
> |
if (a_is_Fluctuating || b_is_Fluctuating) { |
883 |
> |
coulInt = J->getValueAt( *(idat.rij) ); |
884 |
> |
if (a_is_Fluctuating) dUdCa += coulInt * C_b; |
885 |
> |
if (b_is_Fluctuating) dUdCb += coulInt * C_a; |
886 |
> |
excluded_Pot += C_a * C_b * coulInt; |
887 |
> |
} |
888 |
> |
} else { |
889 |
> |
if (a_is_Fluctuating) dUdCa += C_b * pref * v01; |
890 |
> |
if (a_is_Fluctuating) dUdCb += C_a * pref * v01; |
891 |
> |
} |
892 |
> |
} |
893 |
|
|
894 |
< |
} else if (summationMethod_ == esm_REACTION_FIELD) { |
895 |
< |
rfVal = preRF_ * *(idat.rij) * *(idat.rij); |
894 |
> |
if (b_is_Dipole) { |
895 |
> |
pref = pre12_ * *(idat.electroMult); |
896 |
> |
U += C_a * pref * v11 * rdDb; |
897 |
> |
F += C_a * pref * (v13 * rdDb * rhat + v12 * D_b); |
898 |
> |
Tb += C_a * pref * v11 * rxDb; |
899 |
|
|
900 |
< |
vterm = preVal * ( riji + rfVal ); |
609 |
< |
dudr = *(idat.sw) * preVal * ( 2.0 * rfVal - riji ) * riji; |
610 |
< |
|
611 |
< |
// if this is an excluded pair, there are still indirect |
612 |
< |
// interactions via the reaction field we must worry about: |
900 |
> |
if (a_is_Fluctuating) dUdCa += pref * v11 * rdDb; |
901 |
|
|
902 |
< |
if (idat.excluded) { |
903 |
< |
indirect_vpair += preVal * rfVal; |
904 |
< |
indirect_Pot += *(idat.sw) * preVal * rfVal; |
617 |
< |
indirect_dVdr += *(idat.sw) * preVal * two * rfVal * riji * rhat; |
618 |
< |
} |
619 |
< |
|
620 |
< |
} else { |
902 |
> |
// Even if we excluded this pair from direct interactions, we |
903 |
> |
// still have the reaction-field-mediated charge-dipole |
904 |
> |
// interaction: |
905 |
|
|
906 |
< |
vterm = preVal * riji * erfcVal; |
907 |
< |
dudr = - *(idat.sw) * preVal * c2; |
908 |
< |
|
906 |
> |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
907 |
> |
rfContrib = C_a * pref * preRF_ * 2.0 * *(idat.rij); |
908 |
> |
indirect_Pot += rfContrib * rdDb; |
909 |
> |
indirect_F += rfContrib * D_b / (*idat.rij); |
910 |
> |
indirect_Tb += C_a * pref * preRF_ * rxDb; |
911 |
|
} |
912 |
< |
|
627 |
< |
vpair += vterm * q_i * q_j; |
628 |
< |
epot += *(idat.sw) * vterm * q_i * q_j; |
629 |
< |
dVdr += dudr * rhat * q_i * q_j; |
912 |
> |
} |
913 |
|
|
914 |
< |
if (i_is_Fluctuating) { |
915 |
< |
if (idat.excluded) { |
916 |
< |
// vFluc1 is the difference between the direct coulomb integral |
917 |
< |
// and the normal 1/r-like interaction between point charges. |
918 |
< |
coulInt = J1->getValueAt( *(idat.rij) ); |
919 |
< |
vFluc1 = coulInt - (*(idat.sw) * vterm); |
637 |
< |
} else { |
638 |
< |
vFluc1 = 0.0; |
639 |
< |
} |
640 |
< |
*(idat.dVdFQ1) += ( *(idat.sw) * vterm + vFluc1 ) * q_j; |
641 |
< |
} |
914 |
> |
if (b_is_Quadrupole) { |
915 |
> |
pref = pre14_ * *(idat.electroMult); |
916 |
> |
U += C_a * pref * (v21 * trQb + v22 * rdQbr); |
917 |
> |
F += C_a * pref * (trQb * rhat + 2.0 * Qbr) * v23; |
918 |
> |
F += C_a * pref * rdQbr * rhat * v24; |
919 |
> |
Tb += C_a * pref * 2.0 * rxQbr * v22; |
920 |
|
|
921 |
< |
if (j_is_Fluctuating) { |
644 |
< |
if (idat.excluded) { |
645 |
< |
// vFluc2 is the difference between the direct coulomb integral |
646 |
< |
// and the normal 1/r-like interaction between point charges. |
647 |
< |
coulInt = J2->getValueAt( *(idat.rij) ); |
648 |
< |
vFluc2 = coulInt - (*(idat.sw) * vterm); |
649 |
< |
} else { |
650 |
< |
vFluc2 = 0.0; |
651 |
< |
} |
652 |
< |
*(idat.dVdFQ2) += ( *(idat.sw) * vterm + vFluc2 ) * q_i; |
653 |
< |
} |
654 |
< |
|
655 |
< |
|
921 |
> |
if (a_is_Fluctuating) dUdCa += pref * (v21 * trQb + v22 * rdQbr); |
922 |
|
} |
923 |
+ |
} |
924 |
|
|
925 |
< |
if (j_is_Dipole) { |
659 |
< |
// pref is used by all the possible methods |
660 |
< |
pref = *(idat.electroMult) * pre12_ * q_i * mu_j; |
661 |
< |
preSw = *(idat.sw) * pref; |
925 |
> |
if (a_is_Dipole) { |
926 |
|
|
927 |
< |
if (summationMethod_ == esm_REACTION_FIELD) { |
928 |
< |
ri2 = riji * riji; |
665 |
< |
ri3 = ri2 * riji; |
666 |
< |
|
667 |
< |
vterm = - pref * ct_j * ( ri2 - preRF2_ * *(idat.rij) ); |
668 |
< |
vpair += vterm; |
669 |
< |
epot += *(idat.sw) * vterm; |
927 |
> |
if (b_is_Charge) { |
928 |
> |
pref = pre12_ * *(idat.electroMult); |
929 |
|
|
930 |
< |
dVdr += -preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j); |
931 |
< |
duduz_j += -preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
930 |
> |
U -= C_b * pref * v11 * rdDa; |
931 |
> |
F -= C_b * pref * (v13 * rdDa * rhat + v12 * D_a); |
932 |
> |
Ta -= C_b * pref * v11 * rxDa; |
933 |
|
|
934 |
< |
// Even if we excluded this pair from direct interactions, |
675 |
< |
// we still have the reaction-field-mediated charge-dipole |
676 |
< |
// interaction: |
934 |
> |
if (b_is_Fluctuating) dUdCb -= pref * v11 * rdDa; |
935 |
|
|
936 |
< |
if (idat.excluded) { |
937 |
< |
indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij); |
938 |
< |
indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij); |
939 |
< |
indirect_dVdr += preSw * preRF2_ * uz_j; |
940 |
< |
indirect_duduz_j += preSw * rhat * preRF2_ * *(idat.rij); |
941 |
< |
} |
942 |
< |
|
943 |
< |
} else { |
944 |
< |
// determine the inverse r used if we have split dipoles |
945 |
< |
if (j_is_SplitDipole) { |
688 |
< |
BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j); |
689 |
< |
ri = 1.0 / BigR; |
690 |
< |
scale = *(idat.rij) * ri; |
691 |
< |
} else { |
692 |
< |
ri = riji; |
693 |
< |
scale = 1.0; |
694 |
< |
} |
695 |
< |
|
696 |
< |
sc2 = scale * scale; |
936 |
> |
// Even if we excluded this pair from direct interactions, |
937 |
> |
// we still have the reaction-field-mediated charge-dipole |
938 |
> |
// interaction: |
939 |
> |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
940 |
> |
rfContrib = C_b * pref * preRF_ * 2.0 * *(idat.rij); |
941 |
> |
indirect_Pot -= rfContrib * rdDa; |
942 |
> |
indirect_F -= rfContrib * D_a / (*idat.rij); |
943 |
> |
indirect_Ta -= C_b * pref * preRF_ * rxDa; |
944 |
> |
} |
945 |
> |
} |
946 |
|
|
947 |
< |
if (screeningMethod_ == DAMPED) { |
948 |
< |
// assemble the damping variables |
949 |
< |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
950 |
< |
//erfcVal = res.first; |
702 |
< |
//derfcVal = res.second; |
703 |
< |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
704 |
< |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
705 |
< |
c1 = erfcVal * ri; |
706 |
< |
c2 = (-derfcVal + c1) * ri; |
707 |
< |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
708 |
< |
} else { |
709 |
< |
c1 = ri; |
710 |
< |
c2 = c1 * ri; |
711 |
< |
c3 = 3.0 * c2 * ri; |
712 |
< |
} |
713 |
< |
|
714 |
< |
c2ri = c2 * ri; |
947 |
> |
if (b_is_Dipole) { |
948 |
> |
pref = pre22_ * *(idat.electroMult); |
949 |
> |
DadDb = dot(D_a, D_b); |
950 |
> |
DaxDb = cross(D_a, D_b); |
951 |
|
|
952 |
< |
// calculate the potential |
953 |
< |
pot_term = scale * c2; |
954 |
< |
vterm = -pref * ct_j * pot_term; |
955 |
< |
vpair += vterm; |
956 |
< |
epot += *(idat.sw) * vterm; |
721 |
< |
|
722 |
< |
// calculate derivatives for forces and torques |
952 |
> |
U -= pref * (DadDb * v21 + rdDa * rdDb * v22); |
953 |
> |
F -= pref * (DadDb * rhat + rdDb * D_a + rdDa * D_b)*v23; |
954 |
> |
F -= pref * (rdDa * rdDb) * v24 * rhat; |
955 |
> |
Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa); |
956 |
> |
Tb += pref * (-v21 * DaxDb + v22 * rdDa * rxDb); |
957 |
|
|
958 |
< |
dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3); |
959 |
< |
duduz_j += -preSw * pot_term * rhat; |
960 |
< |
|
958 |
> |
// Even if we excluded this pair from direct interactions, we |
959 |
> |
// still have the reaction-field-mediated dipole-dipole |
960 |
> |
// interaction: |
961 |
> |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
962 |
> |
rfContrib = -pref * preRF_ * 2.0; |
963 |
> |
indirect_Pot += rfContrib * DadDb; |
964 |
> |
indirect_Ta += rfContrib * DaxDb; |
965 |
> |
indirect_Tb -= rfContrib * DaxDb; |
966 |
|
} |
967 |
< |
if (i_is_Fluctuating) { |
729 |
< |
*(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i; |
730 |
< |
} |
967 |
> |
|
968 |
|
} |
969 |
|
|
970 |
< |
if (j_is_Quadrupole) { |
971 |
< |
// first precalculate some necessary variables |
972 |
< |
cx2 = cx_j * cx_j; |
973 |
< |
cy2 = cy_j * cy_j; |
974 |
< |
cz2 = cz_j * cz_j; |
738 |
< |
pref = *(idat.electroMult) * pre14_ * q_i * one_third_; |
739 |
< |
|
740 |
< |
if (screeningMethod_ == DAMPED) { |
741 |
< |
// assemble the damping variables |
742 |
< |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
743 |
< |
//erfcVal = res.first; |
744 |
< |
//derfcVal = res.second; |
745 |
< |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
746 |
< |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
747 |
< |
c1 = erfcVal * riji; |
748 |
< |
c2 = (-derfcVal + c1) * riji; |
749 |
< |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji; |
750 |
< |
c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji; |
751 |
< |
} else { |
752 |
< |
c1 = riji; |
753 |
< |
c2 = c1 * riji; |
754 |
< |
c3 = 3.0 * c2 * riji; |
755 |
< |
c4 = 5.0 * c3 * riji * riji; |
756 |
< |
} |
970 |
> |
if (b_is_Quadrupole) { |
971 |
> |
pref = pre24_ * *(idat.electroMult); |
972 |
> |
DadQb = D_a * Q_b; |
973 |
> |
DadQbr = dot(D_a, Qbr); |
974 |
> |
DaxQbr = cross(D_a, Qbr); |
975 |
|
|
976 |
< |
// precompute variables for convenience |
977 |
< |
preSw = *(idat.sw) * pref; |
978 |
< |
c2ri = c2 * riji; |
979 |
< |
c3ri = c3 * riji; |
980 |
< |
c4rij = c4 * *(idat.rij) ; |
981 |
< |
rhatdot2 = two * rhat * c3; |
982 |
< |
rhatc4 = rhat * c4rij; |
976 |
> |
U -= pref * ((trQb*rdDa + 2.0*DadQbr)*v31 + rdDa*rdQbr*v32); |
977 |
> |
F -= pref * (trQb*D_a + 2.0*DadQb) * v33; |
978 |
> |
F -= pref * (trQb*rdDa*rhat + 2.0*DadQbr*rhat + D_a*rdQbr |
979 |
> |
+ 2.0*rdDa*rQb)*v34; |
980 |
> |
F -= pref * (rdDa * rdQbr * rhat * v35); |
981 |
> |
Ta += pref * ((-trQb*rxDa + 2.0 * DaxQbr)*v31 - rxDa*rdQbr*v32); |
982 |
> |
Tb += pref * ((2.0*cross(DadQb, rhat) - 2.0*DaxQbr)*v31 |
983 |
> |
- 2.0*rdDa*rxQbr*v32); |
984 |
> |
} |
985 |
> |
} |
986 |
|
|
987 |
< |
// calculate the potential |
988 |
< |
pot_term = ( qxx_j * (cx2*c3 - c2ri) + |
989 |
< |
qyy_j * (cy2*c3 - c2ri) + |
990 |
< |
qzz_j * (cz2*c3 - c2ri) ); |
991 |
< |
vterm = pref * pot_term; |
992 |
< |
vpair += vterm; |
993 |
< |
epot += *(idat.sw) * vterm; |
773 |
< |
|
774 |
< |
// calculate derivatives for the forces and torques |
987 |
> |
if (a_is_Quadrupole) { |
988 |
> |
if (b_is_Charge) { |
989 |
> |
pref = pre14_ * *(idat.electroMult); |
990 |
> |
U += C_b * pref * (v21 * trQa + v22 * rdQar); |
991 |
> |
F += C_b * pref * (trQa * rhat + 2.0 * Qar) * v23; |
992 |
> |
F += C_b * pref * rdQar * rhat * v24; |
993 |
> |
Ta += C_b * pref * 2.0 * rxQar * v22; |
994 |
|
|
995 |
< |
dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (two*cx_j*ux_j + rhat)*c3ri) + |
996 |
< |
qyy_j* (cy2*rhatc4 - (two*cy_j*uy_j + rhat)*c3ri) + |
997 |
< |
qzz_j* (cz2*rhatc4 - (two*cz_j*uz_j + rhat)*c3ri)); |
998 |
< |
|
999 |
< |
dudux_j += preSw * qxx_j * cx_j * rhatdot2; |
1000 |
< |
duduy_j += preSw * qyy_j * cy_j * rhatdot2; |
1001 |
< |
duduz_j += preSw * qzz_j * cz_j * rhatdot2; |
783 |
< |
if (i_is_Fluctuating) { |
784 |
< |
*(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i; |
785 |
< |
} |
995 |
> |
if (b_is_Fluctuating) dUdCb += pref * (v21 * trQa + v22 * rdQar); |
996 |
> |
} |
997 |
> |
if (b_is_Dipole) { |
998 |
> |
pref = pre24_ * *(idat.electroMult); |
999 |
> |
DbdQa = D_b * Q_a; |
1000 |
> |
DbdQar = dot(D_b, Qar); |
1001 |
> |
DbxQar = cross(D_b, Qar); |
1002 |
|
|
1003 |
+ |
U += pref * ((trQa*rdDb + 2.0*DbdQar)*v31 + rdDb*rdQar*v32); |
1004 |
+ |
F += pref * (trQa*D_b + 2.0*DbdQa) * v33; |
1005 |
+ |
F += pref * (trQa*rdDb*rhat + 2.0*DbdQar*rhat + D_b*rdQar |
1006 |
+ |
+ 2.0*rdDb*rQa)*v34; |
1007 |
+ |
F += pref * (rdDb * rdQar * rhat * v35); |
1008 |
+ |
Ta += pref * ((-2.0*cross(DbdQa, rhat) + 2.0*DbxQar)*v31 |
1009 |
+ |
+ 2.0*rdDb*rxQar*v32); |
1010 |
+ |
Tb += pref * ((trQa*rxDb + 2.0 * DbxQar)*v31 + rxDb*rdQar*v32); |
1011 |
|
} |
1012 |
< |
} |
1013 |
< |
|
1014 |
< |
if (i_is_Dipole) { |
1012 |
> |
if (b_is_Quadrupole) { |
1013 |
> |
pref = pre44_ * *(idat.electroMult); |
1014 |
> |
QaQb = Q_a * Q_b; |
1015 |
> |
trQaQb = QaQb.trace(); |
1016 |
> |
rQaQb = rhat * QaQb; |
1017 |
> |
QaQbr = QaQb * rhat; |
1018 |
> |
QaxQb = cross(Q_a, Q_b); |
1019 |
|
|
1020 |
< |
if (j_is_Charge) { |
1021 |
< |
// variables used by all the methods |
1022 |
< |
pref = *(idat.electroMult) * pre12_ * q_j * mu_i; |
795 |
< |
preSw = *(idat.sw) * pref; |
1020 |
> |
U += pref * (trQa * trQb + 2.0*trQaQb) * v41; |
1021 |
> |
U += pref * (trQa*rdQbr + trQb*rdQar + 4.0*dot(rQa, Qbr)) * v42; |
1022 |
> |
U += pref * (rdQar * rdQbr) * v43; |
1023 |
|
|
1024 |
< |
if (summationMethod_ == esm_REACTION_FIELD) { |
1024 |
> |
F += pref * (trQa*trQb*rhat + 2.0*trQaQb*rhat)*v44; |
1025 |
> |
F += pref * (2.0*trQb*rQa + 2.0*trQa*rQb)*v44; |
1026 |
> |
F += pref * (4.0* QaQb * rhat + 4.0 * rhat * QaQb)*v44; |
1027 |
> |
F += pref * (trQa*rdQbr*rhat + trQb*rdQar*rhat |
1028 |
> |
+ 4.0*dot(rQa, Qbr)*rhat)*v45; |
1029 |
> |
F += pref * (2.0*rQa*rdQbr + 2.0*rdQar*rQb)*v45; |
1030 |
> |
F += pref * (rdQar*rdQbr*rhat) * v46; |
1031 |
|
|
1032 |
< |
ri2 = riji * riji; |
1033 |
< |
ri3 = ri2 * riji; |
1032 |
> |
Ta += pref * (-4.0 * QaxQb * v41); |
1033 |
> |
Ta += pref * (-2.0*trQb*cross(rQa, rhat) |
1034 |
> |
+ 4.0*cross(rhat, QaQbr) |
1035 |
> |
- 4.0*cross(rQa, Qbr)) * v42; |
1036 |
> |
Ta += pref * 2.0 * cross(rhat,Qar) * rdQbr * v43; |
1037 |
|
|
1038 |
< |
vterm = pref * ct_i * ( ri2 - preRF2_ * *(idat.rij) ); |
1039 |
< |
vpair += vterm; |
1040 |
< |
epot += *(idat.sw) * vterm; |
1041 |
< |
|
1042 |
< |
dVdr += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_ * uz_i); |
807 |
< |
|
808 |
< |
duduz_i += preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
1038 |
> |
Tb += pref * (4.0 * QaxQb * v41); |
1039 |
> |
Tb += pref * (-2.0*trQa*cross(rQb, rhat) |
1040 |
> |
- 4.0*cross(rQaQb, rhat) |
1041 |
> |
+ 4.0*cross(rQa, Qbr))*v42; |
1042 |
> |
Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43; |
1043 |
|
|
810 |
– |
// Even if we excluded this pair from direct interactions, |
811 |
– |
// we still have the reaction-field-mediated charge-dipole |
812 |
– |
// interaction: |
813 |
– |
|
814 |
– |
if (idat.excluded) { |
815 |
– |
indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij); |
816 |
– |
indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij); |
817 |
– |
indirect_dVdr += -preSw * preRF2_ * uz_i; |
818 |
– |
indirect_duduz_i += -preSw * rhat * preRF2_ * *(idat.rij); |
819 |
– |
} |
820 |
– |
|
821 |
– |
} else { |
822 |
– |
|
823 |
– |
// determine inverse r if we are using split dipoles |
824 |
– |
if (i_is_SplitDipole) { |
825 |
– |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i); |
826 |
– |
ri = 1.0 / BigR; |
827 |
– |
scale = *(idat.rij) * ri; |
828 |
– |
} else { |
829 |
– |
ri = riji; |
830 |
– |
scale = 1.0; |
831 |
– |
} |
832 |
– |
|
833 |
– |
sc2 = scale * scale; |
834 |
– |
|
835 |
– |
if (screeningMethod_ == DAMPED) { |
836 |
– |
// assemble the damping variables |
837 |
– |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
838 |
– |
//erfcVal = res.first; |
839 |
– |
//derfcVal = res.second; |
840 |
– |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
841 |
– |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
842 |
– |
c1 = erfcVal * ri; |
843 |
– |
c2 = (-derfcVal + c1) * ri; |
844 |
– |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
845 |
– |
} else { |
846 |
– |
c1 = ri; |
847 |
– |
c2 = c1 * ri; |
848 |
– |
c3 = 3.0 * c2 * ri; |
849 |
– |
} |
850 |
– |
|
851 |
– |
c2ri = c2 * ri; |
852 |
– |
|
853 |
– |
// calculate the potential |
854 |
– |
pot_term = c2 * scale; |
855 |
– |
vterm = pref * ct_i * pot_term; |
856 |
– |
vpair += vterm; |
857 |
– |
epot += *(idat.sw) * vterm; |
858 |
– |
|
859 |
– |
// calculate derivatives for the forces and torques |
860 |
– |
dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3); |
861 |
– |
duduz_i += preSw * pot_term * rhat; |
862 |
– |
} |
863 |
– |
|
864 |
– |
if (j_is_Fluctuating) { |
865 |
– |
*(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j; |
866 |
– |
} |
867 |
– |
|
1044 |
|
} |
869 |
– |
|
870 |
– |
if (j_is_Dipole) { |
871 |
– |
// variables used by all methods |
872 |
– |
ct_ij = dot(uz_i, uz_j); |
873 |
– |
|
874 |
– |
pref = *(idat.electroMult) * pre22_ * mu_i * mu_j; |
875 |
– |
preSw = *(idat.sw) * pref; |
876 |
– |
|
877 |
– |
if (summationMethod_ == esm_REACTION_FIELD) { |
878 |
– |
ri2 = riji * riji; |
879 |
– |
ri3 = ri2 * riji; |
880 |
– |
ri4 = ri2 * ri2; |
881 |
– |
|
882 |
– |
vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) - |
883 |
– |
preRF2_ * ct_ij ); |
884 |
– |
vpair += vterm; |
885 |
– |
epot += *(idat.sw) * vterm; |
886 |
– |
|
887 |
– |
a1 = 5.0 * ct_i * ct_j - ct_ij; |
888 |
– |
|
889 |
– |
dVdr += preSw * three * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i); |
890 |
– |
|
891 |
– |
duduz_i += preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j); |
892 |
– |
duduz_j += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_*uz_i); |
893 |
– |
|
894 |
– |
if (idat.excluded) { |
895 |
– |
indirect_vpair += - pref * preRF2_ * ct_ij; |
896 |
– |
indirect_Pot += - preSw * preRF2_ * ct_ij; |
897 |
– |
indirect_duduz_i += -preSw * preRF2_ * uz_j; |
898 |
– |
indirect_duduz_j += -preSw * preRF2_ * uz_i; |
899 |
– |
} |
900 |
– |
|
901 |
– |
} else { |
902 |
– |
|
903 |
– |
if (i_is_SplitDipole) { |
904 |
– |
if (j_is_SplitDipole) { |
905 |
– |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j); |
906 |
– |
} else { |
907 |
– |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i); |
908 |
– |
} |
909 |
– |
ri = 1.0 / BigR; |
910 |
– |
scale = *(idat.rij) * ri; |
911 |
– |
} else { |
912 |
– |
if (j_is_SplitDipole) { |
913 |
– |
BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j); |
914 |
– |
ri = 1.0 / BigR; |
915 |
– |
scale = *(idat.rij) * ri; |
916 |
– |
} else { |
917 |
– |
ri = riji; |
918 |
– |
scale = 1.0; |
919 |
– |
} |
920 |
– |
} |
921 |
– |
if (screeningMethod_ == DAMPED) { |
922 |
– |
// assemble damping variables |
923 |
– |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
924 |
– |
//erfcVal = res.first; |
925 |
– |
//derfcVal = res.second; |
926 |
– |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
927 |
– |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
928 |
– |
c1 = erfcVal * ri; |
929 |
– |
c2 = (-derfcVal + c1) * ri; |
930 |
– |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
931 |
– |
c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri; |
932 |
– |
} else { |
933 |
– |
c1 = ri; |
934 |
– |
c2 = c1 * ri; |
935 |
– |
c3 = 3.0 * c2 * ri; |
936 |
– |
c4 = 5.0 * c3 * ri * ri; |
937 |
– |
} |
938 |
– |
|
939 |
– |
// precompute variables for convenience |
940 |
– |
sc2 = scale * scale; |
941 |
– |
cti3 = ct_i * sc2 * c3; |
942 |
– |
ctj3 = ct_j * sc2 * c3; |
943 |
– |
ctidotj = ct_i * ct_j * sc2; |
944 |
– |
preSwSc = preSw * scale; |
945 |
– |
c2ri = c2 * ri; |
946 |
– |
c3ri = c3 * ri; |
947 |
– |
c4rij = c4 * *(idat.rij) ; |
948 |
– |
|
949 |
– |
// calculate the potential |
950 |
– |
pot_term = (ct_ij * c2ri - ctidotj * c3); |
951 |
– |
vterm = pref * pot_term; |
952 |
– |
vpair += vterm; |
953 |
– |
epot += *(idat.sw) * vterm; |
954 |
– |
|
955 |
– |
// calculate derivatives for the forces and torques |
956 |
– |
dVdr += preSwSc * ( ctidotj * rhat * c4rij - |
957 |
– |
(ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri); |
958 |
– |
|
959 |
– |
duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat); |
960 |
– |
duduz_j += preSw * (uz_i * c2ri - cti3 * rhat); |
961 |
– |
} |
962 |
– |
} |
1045 |
|
} |
1046 |
|
|
1047 |
< |
if (i_is_Quadrupole) { |
1048 |
< |
if (j_is_Charge) { |
1049 |
< |
// precompute some necessary variables |
968 |
< |
cx2 = cx_i * cx_i; |
969 |
< |
cy2 = cy_i * cy_i; |
970 |
< |
cz2 = cz_i * cz_i; |
971 |
< |
|
972 |
< |
pref = *(idat.electroMult) * pre14_ * q_j * one_third_; |
973 |
< |
|
974 |
< |
if (screeningMethod_ == DAMPED) { |
975 |
< |
// assemble the damping variables |
976 |
< |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
977 |
< |
//erfcVal = res.first; |
978 |
< |
//derfcVal = res.second; |
979 |
< |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
980 |
< |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
981 |
< |
c1 = erfcVal * riji; |
982 |
< |
c2 = (-derfcVal + c1) * riji; |
983 |
< |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji; |
984 |
< |
c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji; |
985 |
< |
} else { |
986 |
< |
c1 = riji; |
987 |
< |
c2 = c1 * riji; |
988 |
< |
c3 = 3.0 * c2 * riji; |
989 |
< |
c4 = 5.0 * c3 * riji * riji; |
990 |
< |
} |
991 |
< |
|
992 |
< |
// precompute some variables for convenience |
993 |
< |
preSw = *(idat.sw) * pref; |
994 |
< |
c2ri = c2 * riji; |
995 |
< |
c3ri = c3 * riji; |
996 |
< |
c4rij = c4 * *(idat.rij) ; |
997 |
< |
rhatdot2 = two * rhat * c3; |
998 |
< |
rhatc4 = rhat * c4rij; |
999 |
< |
|
1000 |
< |
// calculate the potential |
1001 |
< |
pot_term = ( qxx_i * (cx2 * c3 - c2ri) + |
1002 |
< |
qyy_i * (cy2 * c3 - c2ri) + |
1003 |
< |
qzz_i * (cz2 * c3 - c2ri) ); |
1004 |
< |
|
1005 |
< |
vterm = pref * pot_term; |
1006 |
< |
vpair += vterm; |
1007 |
< |
epot += *(idat.sw) * vterm; |
1008 |
< |
|
1009 |
< |
// calculate the derivatives for the forces and torques |
1010 |
< |
|
1011 |
< |
dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (two*cx_i*ux_i + rhat)*c3ri) + |
1012 |
< |
qyy_i* (cy2*rhatc4 - (two*cy_i*uy_i + rhat)*c3ri) + |
1013 |
< |
qzz_i* (cz2*rhatc4 - (two*cz_i*uz_i + rhat)*c3ri)); |
1014 |
< |
|
1015 |
< |
dudux_i += preSw * qxx_i * cx_i * rhatdot2; |
1016 |
< |
duduy_i += preSw * qyy_i * cy_i * rhatdot2; |
1017 |
< |
duduz_i += preSw * qzz_i * cz_i * rhatdot2; |
1018 |
< |
|
1019 |
< |
if (j_is_Fluctuating) { |
1020 |
< |
*(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j; |
1021 |
< |
} |
1022 |
< |
|
1023 |
< |
} |
1047 |
> |
if (idat.doElectricField) { |
1048 |
> |
*(idat.eField1) += Ea * *(idat.electroMult); |
1049 |
> |
*(idat.eField2) += Eb * *(idat.electroMult); |
1050 |
|
} |
1051 |
|
|
1052 |
+ |
if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw); |
1053 |
+ |
if (b_is_Fluctuating) *(idat.dVdFQ2) += dUdCb * *(idat.sw); |
1054 |
|
|
1055 |
|
if (!idat.excluded) { |
1028 |
– |
*(idat.vpair) += vpair; |
1029 |
– |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += epot; |
1030 |
– |
*(idat.f1) += dVdr; |
1056 |
|
|
1057 |
< |
if (i_is_Dipole || i_is_Quadrupole) |
1058 |
< |
*(idat.t1) -= cross(uz_i, duduz_i); |
1059 |
< |
if (i_is_Quadrupole) { |
1035 |
< |
*(idat.t1) -= cross(ux_i, dudux_i); |
1036 |
< |
*(idat.t1) -= cross(uy_i, duduy_i); |
1037 |
< |
} |
1057 |
> |
*(idat.vpair) += U; |
1058 |
> |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += U * *(idat.sw); |
1059 |
> |
*(idat.f1) += F * *(idat.sw); |
1060 |
|
|
1061 |
< |
if (j_is_Dipole || j_is_Quadrupole) |
1062 |
< |
*(idat.t2) -= cross(uz_j, duduz_j); |
1041 |
< |
if (j_is_Quadrupole) { |
1042 |
< |
*(idat.t2) -= cross(uz_j, dudux_j); |
1043 |
< |
*(idat.t2) -= cross(uz_j, duduy_j); |
1044 |
< |
} |
1061 |
> |
if (a_is_Dipole || a_is_Quadrupole) |
1062 |
> |
*(idat.t1) += Ta * *(idat.sw); |
1063 |
|
|
1064 |
+ |
if (b_is_Dipole || b_is_Quadrupole) |
1065 |
+ |
*(idat.t2) += Tb * *(idat.sw); |
1066 |
+ |
|
1067 |
|
} else { |
1068 |
|
|
1069 |
|
// only accumulate the forces and torques resulting from the |
1070 |
|
// indirect reaction field terms. |
1071 |
|
|
1072 |
< |
*(idat.vpair) += indirect_vpair; |
1073 |
< |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot; |
1074 |
< |
*(idat.f1) += indirect_dVdr; |
1072 |
> |
*(idat.vpair) += indirect_Pot; |
1073 |
> |
(*(idat.excludedPot))[ELECTROSTATIC_FAMILY] += excluded_Pot; |
1074 |
> |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += *(idat.sw) * indirect_Pot; |
1075 |
> |
*(idat.f1) += *(idat.sw) * indirect_F; |
1076 |
|
|
1077 |
< |
if (i_is_Dipole) |
1078 |
< |
*(idat.t1) -= cross(uz_i, indirect_duduz_i); |
1079 |
< |
if (j_is_Dipole) |
1080 |
< |
*(idat.t2) -= cross(uz_j, indirect_duduz_j); |
1077 |
> |
if (a_is_Dipole || a_is_Quadrupole) |
1078 |
> |
*(idat.t1) += *(idat.sw) * indirect_Ta; |
1079 |
> |
|
1080 |
> |
if (b_is_Dipole || b_is_Quadrupole) |
1081 |
> |
*(idat.t2) += *(idat.sw) * indirect_Tb; |
1082 |
|
} |
1060 |
– |
|
1083 |
|
return; |
1084 |
|
} |
1085 |
|
|
1086 |
|
void Electrostatic::calcSelfCorrection(SelfData &sdat) { |
1087 |
< |
RealType mu1, preVal, self; |
1087 |
> |
|
1088 |
|
if (!initialized_) initialize(); |
1089 |
|
|
1090 |
|
ElectrostaticAtomData data = ElectrostaticMap[sdat.atype]; |
1091 |
< |
|
1091 |
> |
|
1092 |
|
// logicals |
1093 |
|
bool i_is_Charge = data.is_Charge; |
1094 |
|
bool i_is_Dipole = data.is_Dipole; |
1095 |
|
bool i_is_Fluctuating = data.is_Fluctuating; |
1096 |
< |
RealType chg1 = data.fixedCharge; |
1096 |
> |
RealType C_a = data.fixedCharge; |
1097 |
> |
RealType self, preVal, DadDa; |
1098 |
|
|
1099 |
|
if (i_is_Fluctuating) { |
1100 |
< |
chg1 += *(sdat.flucQ); |
1100 |
> |
C_a += *(sdat.flucQ); |
1101 |
|
// dVdFQ is really a force, so this is negative the derivative |
1102 |
|
*(sdat.dVdFQ) -= *(sdat.flucQ) * data.hardness + data.electronegativity; |
1103 |
+ |
(*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) * |
1104 |
+ |
(*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity); |
1105 |
|
} |
1106 |
|
|
1107 |
< |
if (summationMethod_ == esm_REACTION_FIELD) { |
1108 |
< |
if (i_is_Dipole) { |
1109 |
< |
mu1 = data.dipole_moment; |
1110 |
< |
preVal = pre22_ * preRF2_ * mu1 * mu1; |
1111 |
< |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal; |
1112 |
< |
|
1113 |
< |
// The self-correction term adds into the reaction field vector |
1114 |
< |
Vector3d uz_i = sdat.eFrame->getColumn(2); |
1115 |
< |
Vector3d ei = preVal * uz_i; |
1107 |
> |
switch (summationMethod_) { |
1108 |
> |
case esm_REACTION_FIELD: |
1109 |
> |
|
1110 |
> |
if (i_is_Charge) { |
1111 |
> |
// Self potential [see Wang and Hermans, "Reaction Field |
1112 |
> |
// Molecular Dynamics Simulation with Friedman’s Image Charge |
1113 |
> |
// Method," J. Phys. Chem. 99, 12001-12007 (1995).] |
1114 |
> |
preVal = pre11_ * preRF_ * C_a * C_a; |
1115 |
> |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal / cutoffRadius_; |
1116 |
> |
} |
1117 |
|
|
1118 |
< |
// This looks very wrong. A vector crossed with itself is zero. |
1119 |
< |
*(sdat.t) -= cross(uz_i, ei); |
1118 |
> |
if (i_is_Dipole) { |
1119 |
> |
DadDa = data.dipole.lengthSquare(); |
1120 |
> |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] -= pre22_ * preRF_ * DadDa; |
1121 |
|
} |
1122 |
< |
} else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) { |
1122 |
> |
|
1123 |
> |
break; |
1124 |
> |
|
1125 |
> |
case esm_SHIFTED_FORCE: |
1126 |
> |
case esm_SHIFTED_POTENTIAL: |
1127 |
|
if (i_is_Charge) { |
1128 |
< |
if (screeningMethod_ == DAMPED) { |
1098 |
< |
self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_; |
1099 |
< |
} else { |
1100 |
< |
self = - 0.5 * rcuti_ * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_; |
1101 |
< |
} |
1128 |
> |
self = -0.5 * selfMult_ * C_a * (C_a + *(sdat.skippedCharge)) * pre11_; |
1129 |
|
(*(sdat.pot))[ELECTROSTATIC_FAMILY] += self; |
1130 |
|
} |
1131 |
+ |
break; |
1132 |
+ |
default: |
1133 |
+ |
break; |
1134 |
|
} |
1135 |
|
} |
1136 |
< |
|
1136 |
> |
|
1137 |
|
RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
1138 |
|
// This seems to work moderately well as a default. There's no |
1139 |
|
// inherent scale for 1/r interactions that we can standardize. |