1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <stdio.h> |
44 |
#include <string.h> |
45 |
|
46 |
#include <cmath> |
47 |
#include "nonbonded/Electrostatic.hpp" |
48 |
#include "utils/simError.h" |
49 |
#include "types/NonBondedInteractionType.hpp" |
50 |
#include "types/FixedChargeAdapter.hpp" |
51 |
#include "types/FluctuatingChargeAdapter.hpp" |
52 |
#include "types/MultipoleAdapter.hpp" |
53 |
#include "io/Globals.hpp" |
54 |
#include "nonbonded/SlaterIntegrals.hpp" |
55 |
#include "utils/PhysicalConstants.hpp" |
56 |
#include "math/erfc.hpp" |
57 |
#include "math/SquareMatrix.hpp" |
58 |
|
59 |
namespace OpenMD { |
60 |
|
61 |
Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false), |
62 |
forceField_(NULL), info_(NULL), |
63 |
haveCutoffRadius_(false), |
64 |
haveDampingAlpha_(false), |
65 |
haveDielectric_(false), |
66 |
haveElectroSplines_(false) |
67 |
{} |
68 |
|
69 |
void Electrostatic::initialize() { |
70 |
|
71 |
Globals* simParams_ = info_->getSimParams(); |
72 |
|
73 |
summationMap_["HARD"] = esm_HARD; |
74 |
summationMap_["NONE"] = esm_HARD; |
75 |
summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION; |
76 |
summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL; |
77 |
summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE; |
78 |
summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD; |
79 |
summationMap_["EWALD_FULL"] = esm_EWALD_FULL; |
80 |
summationMap_["EWALD_PME"] = esm_EWALD_PME; |
81 |
summationMap_["EWALD_SPME"] = esm_EWALD_SPME; |
82 |
screeningMap_["DAMPED"] = DAMPED; |
83 |
screeningMap_["UNDAMPED"] = UNDAMPED; |
84 |
|
85 |
// these prefactors convert the multipole interactions into kcal / mol |
86 |
// all were computed assuming distances are measured in angstroms |
87 |
// Charge-Charge, assuming charges are measured in electrons |
88 |
pre11_ = 332.0637778; |
89 |
// Charge-Dipole, assuming charges are measured in electrons, and |
90 |
// dipoles are measured in debyes |
91 |
pre12_ = 69.13373; |
92 |
// Dipole-Dipole, assuming dipoles are measured in Debye |
93 |
pre22_ = 14.39325; |
94 |
// Charge-Quadrupole, assuming charges are measured in electrons, and |
95 |
// quadrupoles are measured in 10^-26 esu cm^2 |
96 |
// This unit is also known affectionately as an esu centibarn. |
97 |
pre14_ = 69.13373; |
98 |
// Dipole-Quadrupole, assuming dipoles are measured in debyes and |
99 |
// quadrupoles in esu centibarns: |
100 |
pre24_ = 14.39325; |
101 |
// Quadrupole-Quadrupole, assuming esu centibarns: |
102 |
pre44_ = 14.39325; |
103 |
|
104 |
// conversions for the simulation box dipole moment |
105 |
chargeToC_ = 1.60217733e-19; |
106 |
angstromToM_ = 1.0e-10; |
107 |
debyeToCm_ = 3.33564095198e-30; |
108 |
|
109 |
// number of points for electrostatic splines |
110 |
np_ = 1000; |
111 |
|
112 |
// variables to handle different summation methods for long-range |
113 |
// electrostatics: |
114 |
summationMethod_ = esm_HARD; |
115 |
screeningMethod_ = UNDAMPED; |
116 |
dielectric_ = 1.0; |
117 |
|
118 |
// check the summation method: |
119 |
if (simParams_->haveElectrostaticSummationMethod()) { |
120 |
string myMethod = simParams_->getElectrostaticSummationMethod(); |
121 |
toUpper(myMethod); |
122 |
map<string, ElectrostaticSummationMethod>::iterator i; |
123 |
i = summationMap_.find(myMethod); |
124 |
if ( i != summationMap_.end() ) { |
125 |
summationMethod_ = (*i).second; |
126 |
} else { |
127 |
// throw error |
128 |
sprintf( painCave.errMsg, |
129 |
"Electrostatic::initialize: Unknown electrostaticSummationMethod.\n" |
130 |
"\t(Input file specified %s .)\n" |
131 |
"\telectrostaticSummationMethod must be one of: \"hard\",\n" |
132 |
"\t\"shifted_potential\", \"shifted_force\", or \n" |
133 |
"\t\"reaction_field\".\n", myMethod.c_str() ); |
134 |
painCave.isFatal = 1; |
135 |
simError(); |
136 |
} |
137 |
} else { |
138 |
// set ElectrostaticSummationMethod to the cutoffMethod: |
139 |
if (simParams_->haveCutoffMethod()){ |
140 |
string myMethod = simParams_->getCutoffMethod(); |
141 |
toUpper(myMethod); |
142 |
map<string, ElectrostaticSummationMethod>::iterator i; |
143 |
i = summationMap_.find(myMethod); |
144 |
if ( i != summationMap_.end() ) { |
145 |
summationMethod_ = (*i).second; |
146 |
} |
147 |
} |
148 |
} |
149 |
|
150 |
if (summationMethod_ == esm_REACTION_FIELD) { |
151 |
if (!simParams_->haveDielectric()) { |
152 |
// throw warning |
153 |
sprintf( painCave.errMsg, |
154 |
"SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" |
155 |
"\tA default value of %f will be used for the dielectric.\n", dielectric_); |
156 |
painCave.isFatal = 0; |
157 |
painCave.severity = OPENMD_INFO; |
158 |
simError(); |
159 |
} else { |
160 |
dielectric_ = simParams_->getDielectric(); |
161 |
} |
162 |
haveDielectric_ = true; |
163 |
} |
164 |
|
165 |
if (simParams_->haveElectrostaticScreeningMethod()) { |
166 |
string myScreen = simParams_->getElectrostaticScreeningMethod(); |
167 |
toUpper(myScreen); |
168 |
map<string, ElectrostaticScreeningMethod>::iterator i; |
169 |
i = screeningMap_.find(myScreen); |
170 |
if ( i != screeningMap_.end()) { |
171 |
screeningMethod_ = (*i).second; |
172 |
} else { |
173 |
sprintf( painCave.errMsg, |
174 |
"SimInfo error: Unknown electrostaticScreeningMethod.\n" |
175 |
"\t(Input file specified %s .)\n" |
176 |
"\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
177 |
"or \"damped\".\n", myScreen.c_str() ); |
178 |
painCave.isFatal = 1; |
179 |
simError(); |
180 |
} |
181 |
} |
182 |
|
183 |
// check to make sure a cutoff value has been set: |
184 |
if (!haveCutoffRadius_) { |
185 |
sprintf( painCave.errMsg, "Electrostatic::initialize has no Default " |
186 |
"Cutoff value!\n"); |
187 |
painCave.severity = OPENMD_ERROR; |
188 |
painCave.isFatal = 1; |
189 |
simError(); |
190 |
} |
191 |
|
192 |
if (screeningMethod_ == DAMPED) { |
193 |
if (!simParams_->haveDampingAlpha()) { |
194 |
// first set a cutoff dependent alpha value |
195 |
// we assume alpha depends linearly with rcut from 0 to 20.5 ang |
196 |
dampingAlpha_ = 0.425 - cutoffRadius_* 0.02; |
197 |
if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0; |
198 |
|
199 |
// throw warning |
200 |
sprintf( painCave.errMsg, |
201 |
"Electrostatic::initialize: dampingAlpha was not specified in the\n" |
202 |
"\tinput file. A default value of %f (1/ang) will be used for the\n" |
203 |
"\tcutoff of %f (ang).\n", |
204 |
dampingAlpha_, cutoffRadius_); |
205 |
painCave.severity = OPENMD_INFO; |
206 |
painCave.isFatal = 0; |
207 |
simError(); |
208 |
} else { |
209 |
dampingAlpha_ = simParams_->getDampingAlpha(); |
210 |
} |
211 |
haveDampingAlpha_ = true; |
212 |
} |
213 |
|
214 |
// find all of the Electrostatic atom Types: |
215 |
ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes(); |
216 |
ForceField::AtomTypeContainer::MapTypeIterator i; |
217 |
AtomType* at; |
218 |
|
219 |
for (at = atomTypes->beginType(i); at != NULL; |
220 |
at = atomTypes->nextType(i)) { |
221 |
|
222 |
if (at->isElectrostatic()) |
223 |
addType(at); |
224 |
} |
225 |
|
226 |
if (summationMethod_ == esm_REACTION_FIELD) { |
227 |
preRF_ = (dielectric_ - 1.0) / |
228 |
((2.0 * dielectric_ + 1.0) * pow(cutoffRadius_,3) ); |
229 |
} |
230 |
|
231 |
RealType b0c, b1c, b2c, b3c, b4c, b5c; |
232 |
RealType db0c_1, db0c_2, db0c_3, db0c_4, db0c_5; |
233 |
RealType a2, expTerm, invArootPi; |
234 |
|
235 |
RealType r = cutoffRadius_; |
236 |
RealType r2 = r * r; |
237 |
|
238 |
if (screeningMethod_ == DAMPED) { |
239 |
a2 = dampingAlpha_ * dampingAlpha_; |
240 |
invArootPi = 1.0 / (dampingAlpha_ * sqrt(M_PI)); |
241 |
expTerm = exp(-a2 * r2); |
242 |
// values of Smith's B_l functions at the cutoff radius: |
243 |
b0c = erfc(dampingAlpha_ * r) / r; |
244 |
b1c = ( b0c + 2.0*a2 * expTerm * invArootPi) / r2; |
245 |
b2c = (3.0 * b1c + pow(2.0*a2, 2) * expTerm * invArootPi) / r2; |
246 |
b3c = (5.0 * b2c + pow(2.0*a2, 3) * expTerm * invArootPi) / r2; |
247 |
b4c = (7.0 * b3c + pow(2.0*a2, 4) * expTerm * invArootPi) / r2; |
248 |
b5c = (9.0 * b4c + pow(2.0*a2, 5) * expTerm * invArootPi) / r2; |
249 |
selfMult_ = b0c + 2.0 * a2 * invArootPi; |
250 |
} else { |
251 |
a2 = 0.0; |
252 |
b0c = 1.0 / r; |
253 |
b1c = ( b0c) / r2; |
254 |
b2c = (3.0 * b1c) / r2; |
255 |
b3c = (5.0 * b2c) / r2; |
256 |
b4c = (7.0 * b3c) / r2; |
257 |
b5c = (9.0 * b4c) / r2; |
258 |
selfMult_ = b0c; |
259 |
} |
260 |
|
261 |
// higher derivatives of B_0 at the cutoff radius: |
262 |
db0c_1 = -r * b1c; |
263 |
db0c_2 = -b1c + r2 * b2c; |
264 |
db0c_3 = 3.0*r*b2c - r2*r*b3c; |
265 |
db0c_4 = 3.0*b2c - 6.0*r2*b3c + r2*r2*b4c; |
266 |
db0c_5 = -15.0*r*b3c + 10.0*r2*r*b4c - r2*r2*r*b5c; |
267 |
|
268 |
// working variables for the splines: |
269 |
RealType ri, ri2; |
270 |
RealType b0, b1, b2, b3, b4, b5; |
271 |
RealType db0_1, db0_2, db0_3, db0_4, db0_5; |
272 |
RealType f0; |
273 |
RealType g0, g1, g2, g3, g4; |
274 |
RealType h1, h2, h3, h4; |
275 |
RealType s2, s3, s4; |
276 |
RealType t3, t4; |
277 |
RealType u4; |
278 |
|
279 |
// working variables for Taylor expansion: |
280 |
RealType rmRc, rmRc2, rmRc3, rmRc4; |
281 |
|
282 |
// Add a 2 angstrom safety window to deal with cutoffGroups that |
283 |
// have charged atoms longer than the cutoffRadius away from each |
284 |
// other. Splining is almost certainly the best choice here. |
285 |
// Direct calls to erfc would be preferrable if it is a very fast |
286 |
// implementation. |
287 |
|
288 |
RealType dx = (cutoffRadius_ + 2.0) / RealType(np_); |
289 |
|
290 |
// Storage vectors for the computed functions |
291 |
vector<RealType> rv; |
292 |
vector<RealType> v01v, v02v; |
293 |
vector<RealType> v11v, v12v, v13v; |
294 |
vector<RealType> v21v, v22v, v23v, v24v; |
295 |
vector<RealType> v31v, v32v, v33v, v34v, v35v; |
296 |
vector<RealType> v41v, v42v, v43v, v44v, v45v, v46v; |
297 |
|
298 |
for (int i = 1; i < np_ + 1; i++) { |
299 |
r = RealType(i) * dx; |
300 |
rv.push_back(r); |
301 |
|
302 |
ri = 1.0 / r; |
303 |
ri2 = ri * ri; |
304 |
|
305 |
r2 = r * r; |
306 |
expTerm = exp(-a2 * r2); |
307 |
|
308 |
// Taylor expansion factors (no need for factorials this way): |
309 |
rmRc = r - cutoffRadius_; |
310 |
rmRc2 = rmRc * rmRc / 2.0; |
311 |
rmRc3 = rmRc2 * rmRc / 3.0; |
312 |
rmRc4 = rmRc3 * rmRc / 4.0; |
313 |
|
314 |
// values of Smith's B_l functions at r: |
315 |
if (screeningMethod_ == DAMPED) { |
316 |
b0 = erfc(dampingAlpha_ * r) * ri; |
317 |
b1 = ( b0 + 2.0*a2 * expTerm * invArootPi) * ri2; |
318 |
b2 = (3.0 * b1 + pow(2.0*a2, 2) * expTerm * invArootPi) * ri2; |
319 |
b3 = (5.0 * b2 + pow(2.0*a2, 3) * expTerm * invArootPi) * ri2; |
320 |
b4 = (7.0 * b3 + pow(2.0*a2, 4) * expTerm * invArootPi) * ri2; |
321 |
b5 = (9.0 * b4 + pow(2.0*a2, 5) * expTerm * invArootPi) * ri2; |
322 |
} else { |
323 |
b0 = ri; |
324 |
b1 = ( b0) * ri2; |
325 |
b2 = (3.0 * b1) * ri2; |
326 |
b3 = (5.0 * b2) * ri2; |
327 |
b4 = (7.0 * b3) * ri2; |
328 |
b5 = (9.0 * b4) * ri2; |
329 |
} |
330 |
|
331 |
// higher derivatives of B_0 at r: |
332 |
db0_1 = -r * b1; |
333 |
db0_2 = -b1 + r2 * b2; |
334 |
db0_3 = 3.0*r*b2 - r2*r*b3; |
335 |
db0_4 = 3.0*b2 - 6.0*r2*b3 + r2*r2*b4; |
336 |
db0_5 = -15.0*r*b3 + 10.0*r2*r*b4 - r2*r2*r*b5; |
337 |
|
338 |
|
339 |
switch (summationMethod_) { |
340 |
case esm_SHIFTED_FORCE: |
341 |
f0 = b0 - b0c - rmRc*db0c_1; |
342 |
|
343 |
g0 = db0_1 - db0c_1; |
344 |
g1 = g0 - rmRc *db0c_2; |
345 |
g2 = g1 - rmRc2*db0c_3; |
346 |
g3 = g2 - rmRc3*db0c_4; |
347 |
g4 = g3 - rmRc4*db0c_5; |
348 |
|
349 |
h1 = db0_2 - db0c_2; |
350 |
h2 = h1 - rmRc *db0c_3; |
351 |
h3 = h2 - rmRc2*db0c_4; |
352 |
h4 = h3 - rmRc3*db0c_5; |
353 |
|
354 |
s2 = db0_3 - db0c_3; |
355 |
s3 = s2 - rmRc *db0c_4; |
356 |
s4 = s3 - rmRc2*db0c_5; |
357 |
|
358 |
t3 = db0_4 - db0c_4; |
359 |
t4 = t3 - rmRc *db0c_5; |
360 |
|
361 |
u4 = db0_5 - db0c_5; |
362 |
break; |
363 |
|
364 |
case esm_SHIFTED_POTENTIAL: |
365 |
f0 = b0 - b0c; |
366 |
|
367 |
g0 = db0_1; |
368 |
g1 = db0_1 - db0c_1; |
369 |
g2 = g1 - rmRc *db0c_2; |
370 |
g3 = g2 - rmRc2*db0c_3; |
371 |
g4 = g3 - rmRc3*db0c_4; |
372 |
|
373 |
h1 = db0_2; |
374 |
h2 = db0_2 - db0c_2; |
375 |
h3 = h2 - rmRc *db0c_3; |
376 |
h4 = h3 - rmRc2*db0c_4; |
377 |
|
378 |
s2 = db0_3; |
379 |
s3 = db0_3 - db0c_3; |
380 |
s4 = s3 - rmRc *db0c_4; |
381 |
|
382 |
t3 = db0_4; |
383 |
t4 = db0_4 - db0c_4; |
384 |
|
385 |
u4 = db0_5; |
386 |
break; |
387 |
|
388 |
case esm_SWITCHING_FUNCTION: |
389 |
case esm_HARD: |
390 |
f0 = b0; |
391 |
|
392 |
g0 = db0_1; |
393 |
g1 = g0; |
394 |
g2 = g1; |
395 |
g3 = g2; |
396 |
g4 = g3; |
397 |
|
398 |
h1 = db0_2; |
399 |
h2 = h1; |
400 |
h3 = h2; |
401 |
h4 = h3; |
402 |
|
403 |
s2 = db0_3; |
404 |
s3 = s2; |
405 |
s4 = s3; |
406 |
|
407 |
t3 = db0_4; |
408 |
t4 = t3; |
409 |
|
410 |
u4 = db0_5; |
411 |
break; |
412 |
|
413 |
case esm_REACTION_FIELD: |
414 |
|
415 |
// following DL_POLY's lead for shifting the image charge potential: |
416 |
f0 = b0 + preRF_ * r2 |
417 |
- (b0c + preRF_ * cutoffRadius_ * cutoffRadius_); |
418 |
|
419 |
g0 = db0_1 + preRF_ * 2.0 * r; |
420 |
g1 = g0; |
421 |
g2 = g1; |
422 |
g3 = g2; |
423 |
g4 = g3; |
424 |
|
425 |
h1 = db0_2 + preRF_ * 2.0; |
426 |
h2 = h1; |
427 |
h3 = h2; |
428 |
h4 = h3; |
429 |
|
430 |
s2 = db0_3; |
431 |
s3 = s2; |
432 |
s4 = s3; |
433 |
|
434 |
t3 = db0_4; |
435 |
t4 = t3; |
436 |
|
437 |
u4 = db0_5; |
438 |
break; |
439 |
|
440 |
case esm_EWALD_FULL: |
441 |
case esm_EWALD_PME: |
442 |
case esm_EWALD_SPME: |
443 |
default : |
444 |
map<string, ElectrostaticSummationMethod>::iterator i; |
445 |
std::string meth; |
446 |
for (i = summationMap_.begin(); i != summationMap_.end(); ++i) { |
447 |
if ((*i).second == summationMethod_) meth = (*i).first; |
448 |
} |
449 |
sprintf( painCave.errMsg, |
450 |
"Electrostatic::initialize: electrostaticSummationMethod %s \n" |
451 |
"\thas not been implemented yet. Please select one of:\n" |
452 |
"\t\"hard\", \"shifted_potential\", or \"shifted_force\"\n", |
453 |
meth.c_str() ); |
454 |
painCave.isFatal = 1; |
455 |
simError(); |
456 |
break; |
457 |
} |
458 |
|
459 |
v01 = f0; |
460 |
v02 = g0; |
461 |
|
462 |
v11 = g1; |
463 |
v12 = g1 * ri; |
464 |
v13 = h1 - v12; |
465 |
|
466 |
v21 = g2 * ri; |
467 |
v22 = h2 - v21; |
468 |
v23 = v22 * ri; |
469 |
v24 = s2 - 3.0*v23; |
470 |
|
471 |
v31 = (h3 - g3 * ri) * ri; |
472 |
v32 = s3 - 3.0*v31; |
473 |
v33 = v31 * ri; |
474 |
v34 = v32 * ri; |
475 |
v35 = t3 - 6.0*v34 - 3.0*v33; |
476 |
|
477 |
v41 = (h4 - g4 * ri) * ri2; |
478 |
v42 = s4 * ri - 3.0*v41; |
479 |
v43 = t4 - 6.0*v42 - 3.0*v41; |
480 |
v44 = v42 * ri; |
481 |
v45 = v43 * ri; |
482 |
v46 = u4 - 10.0*v45 - 15.0*v44; |
483 |
|
484 |
// Add these computed values to the storage vectors for spline creation: |
485 |
v01v.push_back(v01); |
486 |
v02v.push_back(v02); |
487 |
|
488 |
v11v.push_back(v11); |
489 |
v12v.push_back(v12); |
490 |
v13v.push_back(v13); |
491 |
|
492 |
v21v.push_back(v21); |
493 |
v22v.push_back(v22); |
494 |
v23v.push_back(v23); |
495 |
v24v.push_back(v24); |
496 |
|
497 |
v31v.push_back(v31); |
498 |
v32v.push_back(v32); |
499 |
v33v.push_back(v33); |
500 |
v34v.push_back(v34); |
501 |
v35v.push_back(v35); |
502 |
|
503 |
v41v.push_back(v41); |
504 |
v42v.push_back(v42); |
505 |
v43v.push_back(v43); |
506 |
v44v.push_back(v44); |
507 |
v45v.push_back(v45); |
508 |
v46v.push_back(v46); |
509 |
} |
510 |
|
511 |
// construct the spline structures and fill them with the values we've |
512 |
// computed: |
513 |
|
514 |
v01s = new CubicSpline(); |
515 |
v01s->addPoints(rv, v01v); |
516 |
v02s = new CubicSpline(); |
517 |
v02s->addPoints(rv, v02v); |
518 |
|
519 |
v11s = new CubicSpline(); |
520 |
v11s->addPoints(rv, v11v); |
521 |
v12s = new CubicSpline(); |
522 |
v12s->addPoints(rv, v12v); |
523 |
v13s = new CubicSpline(); |
524 |
v13s->addPoints(rv, v13v); |
525 |
|
526 |
v21s = new CubicSpline(); |
527 |
v21s->addPoints(rv, v21v); |
528 |
v22s = new CubicSpline(); |
529 |
v22s->addPoints(rv, v22v); |
530 |
v23s = new CubicSpline(); |
531 |
v23s->addPoints(rv, v23v); |
532 |
v24s = new CubicSpline(); |
533 |
v24s->addPoints(rv, v24v); |
534 |
|
535 |
v31s = new CubicSpline(); |
536 |
v31s->addPoints(rv, v31v); |
537 |
v32s = new CubicSpline(); |
538 |
v32s->addPoints(rv, v32v); |
539 |
v33s = new CubicSpline(); |
540 |
v33s->addPoints(rv, v33v); |
541 |
v34s = new CubicSpline(); |
542 |
v34s->addPoints(rv, v34v); |
543 |
v35s = new CubicSpline(); |
544 |
v35s->addPoints(rv, v35v); |
545 |
|
546 |
v41s = new CubicSpline(); |
547 |
v41s->addPoints(rv, v41v); |
548 |
v42s = new CubicSpline(); |
549 |
v42s->addPoints(rv, v42v); |
550 |
v43s = new CubicSpline(); |
551 |
v43s->addPoints(rv, v43v); |
552 |
v44s = new CubicSpline(); |
553 |
v44s->addPoints(rv, v44v); |
554 |
v45s = new CubicSpline(); |
555 |
v45s->addPoints(rv, v45v); |
556 |
v46s = new CubicSpline(); |
557 |
v46s->addPoints(rv, v46v); |
558 |
|
559 |
haveElectroSplines_ = true; |
560 |
|
561 |
initialized_ = true; |
562 |
} |
563 |
|
564 |
void Electrostatic::addType(AtomType* atomType){ |
565 |
|
566 |
ElectrostaticAtomData electrostaticAtomData; |
567 |
electrostaticAtomData.is_Charge = false; |
568 |
electrostaticAtomData.is_Dipole = false; |
569 |
electrostaticAtomData.is_Quadrupole = false; |
570 |
electrostaticAtomData.is_Fluctuating = false; |
571 |
|
572 |
FixedChargeAdapter fca = FixedChargeAdapter(atomType); |
573 |
|
574 |
if (fca.isFixedCharge()) { |
575 |
electrostaticAtomData.is_Charge = true; |
576 |
electrostaticAtomData.fixedCharge = fca.getCharge(); |
577 |
} |
578 |
|
579 |
MultipoleAdapter ma = MultipoleAdapter(atomType); |
580 |
if (ma.isMultipole()) { |
581 |
if (ma.isDipole()) { |
582 |
electrostaticAtomData.is_Dipole = true; |
583 |
electrostaticAtomData.dipole = ma.getDipole(); |
584 |
} |
585 |
if (ma.isQuadrupole()) { |
586 |
electrostaticAtomData.is_Quadrupole = true; |
587 |
electrostaticAtomData.quadrupole = ma.getQuadrupole(); |
588 |
} |
589 |
} |
590 |
|
591 |
FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType); |
592 |
|
593 |
if (fqa.isFluctuatingCharge()) { |
594 |
electrostaticAtomData.is_Fluctuating = true; |
595 |
electrostaticAtomData.electronegativity = fqa.getElectronegativity(); |
596 |
electrostaticAtomData.hardness = fqa.getHardness(); |
597 |
electrostaticAtomData.slaterN = fqa.getSlaterN(); |
598 |
electrostaticAtomData.slaterZeta = fqa.getSlaterZeta(); |
599 |
} |
600 |
|
601 |
pair<map<int,AtomType*>::iterator,bool> ret; |
602 |
ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(), |
603 |
atomType) ); |
604 |
if (ret.second == false) { |
605 |
sprintf( painCave.errMsg, |
606 |
"Electrostatic already had a previous entry with ident %d\n", |
607 |
atomType->getIdent() ); |
608 |
painCave.severity = OPENMD_INFO; |
609 |
painCave.isFatal = 0; |
610 |
simError(); |
611 |
} |
612 |
|
613 |
ElectrostaticMap[atomType] = electrostaticAtomData; |
614 |
|
615 |
// Now, iterate over all known types and add to the mixing map: |
616 |
|
617 |
map<AtomType*, ElectrostaticAtomData>::iterator it; |
618 |
for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) { |
619 |
AtomType* atype2 = (*it).first; |
620 |
ElectrostaticAtomData eaData2 = (*it).second; |
621 |
if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) { |
622 |
|
623 |
RealType a = electrostaticAtomData.slaterZeta; |
624 |
RealType b = eaData2.slaterZeta; |
625 |
int m = electrostaticAtomData.slaterN; |
626 |
int n = eaData2.slaterN; |
627 |
|
628 |
// Create the spline of the coulombic integral for s-type |
629 |
// Slater orbitals. Add a 2 angstrom safety window to deal |
630 |
// with cutoffGroups that have charged atoms longer than the |
631 |
// cutoffRadius away from each other. |
632 |
|
633 |
RealType rval; |
634 |
RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1); |
635 |
vector<RealType> rvals; |
636 |
vector<RealType> Jvals; |
637 |
// don't start at i = 0, as rval = 0 is undefined for the |
638 |
// slater overlap integrals. |
639 |
for (int i = 1; i < np_+1; i++) { |
640 |
rval = RealType(i) * dr; |
641 |
rvals.push_back(rval); |
642 |
Jvals.push_back(sSTOCoulInt( a, b, m, n, rval * |
643 |
PhysicalConstants::angstromToBohr ) * |
644 |
PhysicalConstants::hartreeToKcal ); |
645 |
} |
646 |
|
647 |
CubicSpline* J = new CubicSpline(); |
648 |
J->addPoints(rvals, Jvals); |
649 |
|
650 |
pair<AtomType*, AtomType*> key1, key2; |
651 |
key1 = make_pair(atomType, atype2); |
652 |
key2 = make_pair(atype2, atomType); |
653 |
|
654 |
Jij[key1] = J; |
655 |
Jij[key2] = J; |
656 |
} |
657 |
} |
658 |
|
659 |
return; |
660 |
} |
661 |
|
662 |
void Electrostatic::setCutoffRadius( RealType rCut ) { |
663 |
cutoffRadius_ = rCut; |
664 |
haveCutoffRadius_ = true; |
665 |
} |
666 |
|
667 |
void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) { |
668 |
summationMethod_ = esm; |
669 |
} |
670 |
void Electrostatic::setElectrostaticScreeningMethod( ElectrostaticScreeningMethod sm ) { |
671 |
screeningMethod_ = sm; |
672 |
} |
673 |
void Electrostatic::setDampingAlpha( RealType alpha ) { |
674 |
dampingAlpha_ = alpha; |
675 |
haveDampingAlpha_ = true; |
676 |
} |
677 |
void Electrostatic::setReactionFieldDielectric( RealType dielectric ){ |
678 |
dielectric_ = dielectric; |
679 |
haveDielectric_ = true; |
680 |
} |
681 |
|
682 |
void Electrostatic::calcForce(InteractionData &idat) { |
683 |
|
684 |
RealType C_a, C_b; // Charges |
685 |
Vector3d D_a, D_b; // Dipoles (space-fixed) |
686 |
Mat3x3d Q_a, Q_b; // Quadrupoles (space-fixed) |
687 |
|
688 |
RealType ri, ri2, ri3, ri4; // Distance utility scalars |
689 |
RealType rdDa, rdDb; // Dipole utility scalars |
690 |
Vector3d rxDa, rxDb; // Dipole utility vectors |
691 |
RealType rdQar, rdQbr, trQa, trQb; // Quadrupole utility scalars |
692 |
Vector3d Qar, Qbr, rQa, rQb, rxQar, rxQbr; // Quadrupole utility vectors |
693 |
RealType pref; |
694 |
|
695 |
RealType DadDb, trQaQb, DadQbr, DbdQar; // Cross-interaction scalars |
696 |
RealType rQaQbr; |
697 |
Vector3d DaxDb, DadQb, DbdQa, DaxQbr, DbxQar; // Cross-interaction vectors |
698 |
Vector3d rQaQb, QaQbr, QaxQb, rQaxQbr; |
699 |
Mat3x3d QaQb; // Cross-interaction matrices |
700 |
|
701 |
RealType U(0.0); // Potential |
702 |
Vector3d F(0.0); // Force |
703 |
Vector3d Ta(0.0); // Torque on site a |
704 |
Vector3d Tb(0.0); // Torque on site b |
705 |
Vector3d Ea(0.0); // Electric field at site a |
706 |
Vector3d Eb(0.0); // Electric field at site b |
707 |
RealType dUdCa(0.0); // fluctuating charge force at site a |
708 |
RealType dUdCb(0.0); // fluctuating charge force at site a |
709 |
|
710 |
// Indirect interactions mediated by the reaction field. |
711 |
RealType indirect_Pot(0.0); // Potential |
712 |
Vector3d indirect_F(0.0); // Force |
713 |
Vector3d indirect_Ta(0.0); // Torque on site a |
714 |
Vector3d indirect_Tb(0.0); // Torque on site b |
715 |
|
716 |
// Excluded potential that is still computed for fluctuating charges |
717 |
RealType excluded_Pot(0.0); |
718 |
|
719 |
RealType rfContrib, coulInt; |
720 |
|
721 |
// spline for coulomb integral |
722 |
CubicSpline* J; |
723 |
|
724 |
if (!initialized_) initialize(); |
725 |
|
726 |
ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first]; |
727 |
ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second]; |
728 |
|
729 |
// some variables we'll need independent of electrostatic type: |
730 |
|
731 |
ri = 1.0 / *(idat.rij); |
732 |
Vector3d rhat = *(idat.d) * ri; |
733 |
ri2 = ri * ri; |
734 |
|
735 |
// logicals |
736 |
|
737 |
bool a_is_Charge = data1.is_Charge; |
738 |
bool a_is_Dipole = data1.is_Dipole; |
739 |
bool a_is_Quadrupole = data1.is_Quadrupole; |
740 |
bool a_is_Fluctuating = data1.is_Fluctuating; |
741 |
|
742 |
bool b_is_Charge = data2.is_Charge; |
743 |
bool b_is_Dipole = data2.is_Dipole; |
744 |
bool b_is_Quadrupole = data2.is_Quadrupole; |
745 |
bool b_is_Fluctuating = data2.is_Fluctuating; |
746 |
|
747 |
// Obtain all of the required radial function values from the |
748 |
// spline structures: |
749 |
|
750 |
// needed for fields (and forces): |
751 |
if (a_is_Charge || b_is_Charge) { |
752 |
v02 = v02s->getValueAt( *(idat.rij) ); |
753 |
} |
754 |
if (a_is_Dipole || b_is_Dipole) { |
755 |
v12 = v12s->getValueAt( *(idat.rij) ); |
756 |
v13 = v13s->getValueAt( *(idat.rij) ); |
757 |
} |
758 |
if (a_is_Quadrupole || b_is_Quadrupole) { |
759 |
v23 = v23s->getValueAt( *(idat.rij) ); |
760 |
v24 = v24s->getValueAt( *(idat.rij) ); |
761 |
} |
762 |
|
763 |
// needed for potentials (and torques): |
764 |
if (a_is_Charge && b_is_Charge) { |
765 |
v01 = v01s->getValueAt( *(idat.rij) ); |
766 |
} |
767 |
if ((a_is_Charge && b_is_Dipole) || (b_is_Charge && a_is_Dipole)) { |
768 |
v11 = v11s->getValueAt( *(idat.rij) ); |
769 |
} |
770 |
if ((a_is_Charge && b_is_Quadrupole) || (b_is_Charge && a_is_Quadrupole)) { |
771 |
v21 = v21s->getValueAt( *(idat.rij) ); |
772 |
v22 = v22s->getValueAt( *(idat.rij) ); |
773 |
} else if (a_is_Dipole && b_is_Dipole) { |
774 |
v21 = v21s->getValueAt( *(idat.rij) ); |
775 |
v22 = v22s->getValueAt( *(idat.rij) ); |
776 |
v23 = v23s->getValueAt( *(idat.rij) ); |
777 |
v24 = v24s->getValueAt( *(idat.rij) ); |
778 |
} |
779 |
if ((a_is_Dipole && b_is_Quadrupole) || |
780 |
(b_is_Dipole && a_is_Quadrupole)) { |
781 |
v31 = v31s->getValueAt( *(idat.rij) ); |
782 |
v32 = v32s->getValueAt( *(idat.rij) ); |
783 |
v33 = v33s->getValueAt( *(idat.rij) ); |
784 |
v34 = v34s->getValueAt( *(idat.rij) ); |
785 |
v35 = v35s->getValueAt( *(idat.rij) ); |
786 |
} |
787 |
if (a_is_Quadrupole && b_is_Quadrupole) { |
788 |
v41 = v41s->getValueAt( *(idat.rij) ); |
789 |
v42 = v42s->getValueAt( *(idat.rij) ); |
790 |
v43 = v43s->getValueAt( *(idat.rij) ); |
791 |
v44 = v44s->getValueAt( *(idat.rij) ); |
792 |
v45 = v45s->getValueAt( *(idat.rij) ); |
793 |
v46 = v46s->getValueAt( *(idat.rij) ); |
794 |
} |
795 |
|
796 |
// calculate the single-site contributions (fields, etc). |
797 |
|
798 |
if (a_is_Charge) { |
799 |
C_a = data1.fixedCharge; |
800 |
|
801 |
if (a_is_Fluctuating) { |
802 |
C_a += *(idat.flucQ1); |
803 |
} |
804 |
|
805 |
if (idat.excluded) { |
806 |
*(idat.skippedCharge2) += C_a; |
807 |
} |
808 |
Eb -= C_a * pre11_ * v02 * rhat; |
809 |
} |
810 |
|
811 |
if (a_is_Dipole) { |
812 |
D_a = *(idat.dipole1); |
813 |
rdDa = dot(rhat, D_a); |
814 |
rxDa = cross(rhat, D_a); |
815 |
Eb -= pre12_ * (v13 * rdDa * rhat + v12 * D_a); |
816 |
} |
817 |
|
818 |
if (a_is_Quadrupole) { |
819 |
Q_a = *(idat.quadrupole1); |
820 |
trQa = Q_a.trace(); |
821 |
Qar = Q_a * rhat; |
822 |
rQa = rhat * Q_a; |
823 |
rdQar = dot(rhat, Qar); |
824 |
rxQar = cross(rhat, Qar); |
825 |
Eb -= pre14_ * ((trQa * rhat + 2.0 * Qar) * v23 + rdQar * rhat * v24); |
826 |
} |
827 |
|
828 |
if (b_is_Charge) { |
829 |
C_b = data2.fixedCharge; |
830 |
|
831 |
if (b_is_Fluctuating) |
832 |
C_b += *(idat.flucQ2); |
833 |
|
834 |
if (idat.excluded) { |
835 |
*(idat.skippedCharge1) += C_b; |
836 |
} |
837 |
Ea += C_b * pre11_ * v02 * rhat; |
838 |
} |
839 |
|
840 |
if (b_is_Dipole) { |
841 |
D_b = *(idat.dipole2); |
842 |
rdDb = dot(rhat, D_b); |
843 |
rxDb = cross(rhat, D_b); |
844 |
Ea += pre12_ * (v13 * rdDb * rhat + v12 * D_b); |
845 |
} |
846 |
|
847 |
if (b_is_Quadrupole) { |
848 |
Q_b = *(idat.quadrupole2); |
849 |
trQb = Q_b.trace(); |
850 |
Qbr = Q_b * rhat; |
851 |
rQb = rhat * Q_b; |
852 |
rdQbr = dot(rhat, Qbr); |
853 |
rxQbr = cross(rhat, Qbr); |
854 |
Ea += pre14_ * ((trQb * rhat + 2.0 * Qbr) * v23 + rdQbr * rhat * v24); |
855 |
} |
856 |
|
857 |
if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) { |
858 |
J = Jij[idat.atypes]; |
859 |
} |
860 |
|
861 |
if (a_is_Charge) { |
862 |
|
863 |
if (b_is_Charge) { |
864 |
pref = pre11_ * *(idat.electroMult); |
865 |
U += C_a * C_b * pref * v01; |
866 |
F += C_a * C_b * pref * v02 * rhat; |
867 |
|
868 |
// If this is an excluded pair, there are still indirect |
869 |
// interactions via the reaction field we must worry about: |
870 |
|
871 |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
872 |
rfContrib = preRF_ * pref * C_a * C_b * *(idat.r2); |
873 |
indirect_Pot += rfContrib; |
874 |
indirect_F += rfContrib * 2.0 * ri * rhat; |
875 |
} |
876 |
|
877 |
// Fluctuating charge forces are handled via Coulomb integrals |
878 |
// for excluded pairs (i.e. those connected via bonds) and |
879 |
// with the standard charge-charge interaction otherwise. |
880 |
|
881 |
if (idat.excluded) { |
882 |
if (a_is_Fluctuating || b_is_Fluctuating) { |
883 |
coulInt = J->getValueAt( *(idat.rij) ); |
884 |
if (a_is_Fluctuating) dUdCa += coulInt * C_b; |
885 |
if (b_is_Fluctuating) dUdCb += coulInt * C_a; |
886 |
excluded_Pot += C_a * C_b * coulInt; |
887 |
} |
888 |
} else { |
889 |
if (a_is_Fluctuating) dUdCa += C_b * pref * v01; |
890 |
if (a_is_Fluctuating) dUdCb += C_a * pref * v01; |
891 |
} |
892 |
} |
893 |
|
894 |
if (b_is_Dipole) { |
895 |
pref = pre12_ * *(idat.electroMult); |
896 |
U += C_a * pref * v11 * rdDb; |
897 |
F += C_a * pref * (v13 * rdDb * rhat + v12 * D_b); |
898 |
Tb += C_a * pref * v11 * rxDb; |
899 |
|
900 |
if (a_is_Fluctuating) dUdCa += pref * v11 * rdDb; |
901 |
|
902 |
// Even if we excluded this pair from direct interactions, we |
903 |
// still have the reaction-field-mediated charge-dipole |
904 |
// interaction: |
905 |
|
906 |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
907 |
rfContrib = C_a * pref * preRF_ * 2.0 * *(idat.rij); |
908 |
indirect_Pot += rfContrib * rdDb; |
909 |
indirect_F += rfContrib * D_b / (*idat.rij); |
910 |
indirect_Tb += C_a * pref * preRF_ * rxDb; |
911 |
} |
912 |
} |
913 |
|
914 |
if (b_is_Quadrupole) { |
915 |
pref = pre14_ * *(idat.electroMult); |
916 |
U += C_a * pref * (v21 * trQb + v22 * rdQbr); |
917 |
F += C_a * pref * (trQb * rhat + 2.0 * Qbr) * v23; |
918 |
F += C_a * pref * rdQbr * rhat * v24; |
919 |
Tb += C_a * pref * 2.0 * rxQbr * v22; |
920 |
|
921 |
if (a_is_Fluctuating) dUdCa += pref * (v21 * trQb + v22 * rdQbr); |
922 |
} |
923 |
} |
924 |
|
925 |
if (a_is_Dipole) { |
926 |
|
927 |
if (b_is_Charge) { |
928 |
pref = pre12_ * *(idat.electroMult); |
929 |
|
930 |
U -= C_b * pref * v11 * rdDa; |
931 |
F -= C_b * pref * (v13 * rdDa * rhat + v12 * D_a); |
932 |
Ta -= C_b * pref * v11 * rxDa; |
933 |
|
934 |
if (b_is_Fluctuating) dUdCb -= pref * v11 * rdDa; |
935 |
|
936 |
// Even if we excluded this pair from direct interactions, |
937 |
// we still have the reaction-field-mediated charge-dipole |
938 |
// interaction: |
939 |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
940 |
rfContrib = C_b * pref * preRF_ * 2.0 * *(idat.rij); |
941 |
indirect_Pot -= rfContrib * rdDa; |
942 |
indirect_F -= rfContrib * D_a / (*idat.rij); |
943 |
indirect_Ta -= C_b * pref * preRF_ * rxDa; |
944 |
} |
945 |
} |
946 |
|
947 |
if (b_is_Dipole) { |
948 |
pref = pre22_ * *(idat.electroMult); |
949 |
DadDb = dot(D_a, D_b); |
950 |
DaxDb = cross(D_a, D_b); |
951 |
|
952 |
U -= pref * (DadDb * v21 + rdDa * rdDb * v22); |
953 |
F -= pref * (DadDb * rhat + rdDb * D_a + rdDa * D_b)*v23; |
954 |
F -= pref * (rdDa * rdDb) * v24 * rhat; |
955 |
Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa); |
956 |
Tb += pref * (-v21 * DaxDb - v22 * rdDa * rxDb); |
957 |
|
958 |
// Even if we excluded this pair from direct interactions, we |
959 |
// still have the reaction-field-mediated dipole-dipole |
960 |
// interaction: |
961 |
if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) { |
962 |
rfContrib = -pref * preRF_ * 2.0; |
963 |
indirect_Pot += rfContrib * DadDb; |
964 |
indirect_Ta += rfContrib * DaxDb; |
965 |
indirect_Tb -= rfContrib * DaxDb; |
966 |
} |
967 |
|
968 |
} |
969 |
|
970 |
if (b_is_Quadrupole) { |
971 |
pref = pre24_ * *(idat.electroMult); |
972 |
DadQb = D_a * Q_b; |
973 |
DadQbr = dot(D_a, Qbr); |
974 |
DaxQbr = cross(D_a, Qbr); |
975 |
|
976 |
U -= pref * ((trQb*rdDa + 2.0*DadQbr)*v31 + rdDa*rdQbr*v32); |
977 |
F -= pref * (trQb*D_a + 2.0*DadQb) * v33; |
978 |
F -= pref * (trQb*rdDa*rhat + 2.0*DadQbr*rhat + D_a*rdQbr |
979 |
+ 2.0*rdDa*rQb)*v34; |
980 |
F -= pref * (rdDa * rdQbr * rhat * v35); |
981 |
Ta += pref * ((-trQb*rxDa + 2.0 * DaxQbr)*v31 - rxDa*rdQbr*v32); |
982 |
Tb += pref * ((2.0*cross(DadQb, rhat) - 2.0*DaxQbr)*v31 |
983 |
- 2.0*rdDa*rxQbr*v32); |
984 |
} |
985 |
} |
986 |
|
987 |
if (a_is_Quadrupole) { |
988 |
if (b_is_Charge) { |
989 |
pref = pre14_ * *(idat.electroMult); |
990 |
U += C_b * pref * (v21 * trQa + v22 * rdQar); |
991 |
F += C_b * pref * (trQa * rhat + 2.0 * Qar) * v23; |
992 |
F += C_b * pref * rdQar * rhat * v24; |
993 |
Ta += C_b * pref * 2.0 * rxQar * v22; |
994 |
|
995 |
if (b_is_Fluctuating) dUdCb += pref * (v21 * trQa + v22 * rdQar); |
996 |
} |
997 |
if (b_is_Dipole) { |
998 |
pref = pre24_ * *(idat.electroMult); |
999 |
DbdQa = D_b * Q_a; |
1000 |
DbdQar = dot(D_b, Qar); |
1001 |
DbxQar = cross(D_b, Qar); |
1002 |
|
1003 |
U += pref * ((trQa*rdDb + 2.0*DbdQar)*v31 + rdDb*rdQar*v32); |
1004 |
F += pref * (trQa*D_b + 2.0*DbdQa) * v33; |
1005 |
F += pref * (trQa*rdDb*rhat + 2.0*DbdQar*rhat + D_b*rdQar |
1006 |
+ 2.0*rdDb*rQa)*v34; |
1007 |
F += pref * (rdDb * rdQar * rhat * v35); |
1008 |
Ta += pref * ((-2.0*cross(DbdQa, rhat) + 2.0*DbxQar)*v31 |
1009 |
+ 2.0*rdDb*rxQar*v32); |
1010 |
Tb += pref * ((trQa*rxDb - 2.0 * DbxQar)*v31 + rxDb*rdQar*v32); |
1011 |
} |
1012 |
if (b_is_Quadrupole) { |
1013 |
pref = pre44_ * *(idat.electroMult); // yes |
1014 |
QaQb = Q_a * Q_b; |
1015 |
trQaQb = QaQb.trace(); |
1016 |
rQaQb = rhat * QaQb; |
1017 |
QaQbr = QaQb * rhat; |
1018 |
QaxQb = cross(Q_a, Q_b); |
1019 |
rQaQbr = dot(rQa, Qbr); |
1020 |
rQaxQbr = cross(rQa, Qbr); |
1021 |
|
1022 |
U += pref * (trQa * trQb + 2.0 * trQaQb) * v41; |
1023 |
U += pref * (trQa * rdQbr + trQb * rdQar + 4.0 * rQaQbr) * v42; |
1024 |
U += pref * (rdQar * rdQbr) * v43; |
1025 |
|
1026 |
F += pref * rhat * (trQa * trQb + 2.0 * trQaQb)*v44; |
1027 |
F += pref * rhat * (trQa * rdQbr + trQb * rdQar + 4.0 * rQaQbr)*v45; |
1028 |
F += pref * rhat * (rdQar * rdQbr)*v46; |
1029 |
|
1030 |
F += pref * 2.0 * (trQb*rQa + trQa*rQb)*v44; |
1031 |
F += pref * 4.0 * (rQaQb + QaQbr)*v44; |
1032 |
F += pref * 2.0 * (rQa*rdQbr + rdQar*rQb)*v45; |
1033 |
|
1034 |
Ta += pref * (- 4.0 * QaxQb * v41); |
1035 |
Ta += pref * (- 2.0 * trQb * cross(rQa, rhat) |
1036 |
+ 4.0 * cross(rhat, QaQbr) |
1037 |
- 4.0 * rQaxQbr) * v42; |
1038 |
Ta += pref * 2.0 * cross(rhat,Qar) * rdQbr * v43; |
1039 |
|
1040 |
|
1041 |
Tb += pref * (+ 4.0 * QaxQb * v41); |
1042 |
Tb += pref * (- 2.0 * trQa * cross(rQb, rhat) |
1043 |
- 4.0 * cross(rQaQb, rhat) |
1044 |
+ 4.0 * rQaxQbr) * v42; |
1045 |
// Possible replacement for line 2 above: |
1046 |
// + 4.0 * cross(rhat, QbQar) |
1047 |
|
1048 |
Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43; |
1049 |
|
1050 |
// cerr << " tsum = " << Ta + Tb - cross( *(idat.d) , F ) << "\n"; |
1051 |
} |
1052 |
} |
1053 |
|
1054 |
if (idat.doElectricField) { |
1055 |
*(idat.eField1) += Ea * *(idat.electroMult); |
1056 |
*(idat.eField2) += Eb * *(idat.electroMult); |
1057 |
} |
1058 |
|
1059 |
if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw); |
1060 |
if (b_is_Fluctuating) *(idat.dVdFQ2) += dUdCb * *(idat.sw); |
1061 |
|
1062 |
if (!idat.excluded) { |
1063 |
|
1064 |
*(idat.vpair) += U; |
1065 |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += U * *(idat.sw); |
1066 |
*(idat.f1) += F * *(idat.sw); |
1067 |
|
1068 |
if (a_is_Dipole || a_is_Quadrupole) |
1069 |
*(idat.t1) += Ta * *(idat.sw); |
1070 |
|
1071 |
if (b_is_Dipole || b_is_Quadrupole) |
1072 |
*(idat.t2) += Tb * *(idat.sw); |
1073 |
|
1074 |
} else { |
1075 |
|
1076 |
// only accumulate the forces and torques resulting from the |
1077 |
// indirect reaction field terms. |
1078 |
|
1079 |
*(idat.vpair) += indirect_Pot; |
1080 |
(*(idat.excludedPot))[ELECTROSTATIC_FAMILY] += excluded_Pot; |
1081 |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += *(idat.sw) * indirect_Pot; |
1082 |
*(idat.f1) += *(idat.sw) * indirect_F; |
1083 |
|
1084 |
if (a_is_Dipole || a_is_Quadrupole) |
1085 |
*(idat.t1) += *(idat.sw) * indirect_Ta; |
1086 |
|
1087 |
if (b_is_Dipole || b_is_Quadrupole) |
1088 |
*(idat.t2) += *(idat.sw) * indirect_Tb; |
1089 |
} |
1090 |
return; |
1091 |
} |
1092 |
|
1093 |
void Electrostatic::calcSelfCorrection(SelfData &sdat) { |
1094 |
|
1095 |
if (!initialized_) initialize(); |
1096 |
|
1097 |
ElectrostaticAtomData data = ElectrostaticMap[sdat.atype]; |
1098 |
|
1099 |
// logicals |
1100 |
bool i_is_Charge = data.is_Charge; |
1101 |
bool i_is_Dipole = data.is_Dipole; |
1102 |
bool i_is_Fluctuating = data.is_Fluctuating; |
1103 |
RealType C_a = data.fixedCharge; |
1104 |
RealType self, preVal, DadDa; |
1105 |
|
1106 |
if (i_is_Fluctuating) { |
1107 |
C_a += *(sdat.flucQ); |
1108 |
// dVdFQ is really a force, so this is negative the derivative |
1109 |
*(sdat.dVdFQ) -= *(sdat.flucQ) * data.hardness + data.electronegativity; |
1110 |
(*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) * |
1111 |
(*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity); |
1112 |
} |
1113 |
|
1114 |
switch (summationMethod_) { |
1115 |
case esm_REACTION_FIELD: |
1116 |
|
1117 |
if (i_is_Charge) { |
1118 |
// Self potential [see Wang and Hermans, "Reaction Field |
1119 |
// Molecular Dynamics Simulation with Friedman’s Image Charge |
1120 |
// Method," J. Phys. Chem. 99, 12001-12007 (1995).] |
1121 |
preVal = pre11_ * preRF_ * C_a * C_a; |
1122 |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal / cutoffRadius_; |
1123 |
} |
1124 |
|
1125 |
if (i_is_Dipole) { |
1126 |
DadDa = data.dipole.lengthSquare(); |
1127 |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] -= pre22_ * preRF_ * DadDa; |
1128 |
} |
1129 |
|
1130 |
break; |
1131 |
|
1132 |
case esm_SHIFTED_FORCE: |
1133 |
case esm_SHIFTED_POTENTIAL: |
1134 |
if (i_is_Charge) { |
1135 |
self = -0.5 * selfMult_ * C_a * (C_a + *(sdat.skippedCharge)) * pre11_; |
1136 |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] += self; |
1137 |
} |
1138 |
break; |
1139 |
default: |
1140 |
break; |
1141 |
} |
1142 |
} |
1143 |
|
1144 |
RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
1145 |
// This seems to work moderately well as a default. There's no |
1146 |
// inherent scale for 1/r interactions that we can standardize. |
1147 |
// 12 angstroms seems to be a reasonably good guess for most |
1148 |
// cases. |
1149 |
return 12.0; |
1150 |
} |
1151 |
} |