ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Electrostatic.cpp
Revision: 1822
Committed: Tue Jan 8 15:29:03 2013 UTC (12 years, 3 months ago) by gezelter
File size: 38978 byte(s)
Log Message:
Performance boosts, cleaning up debugging cruft

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include <stdio.h>
44 #include <string.h>
45
46 #include <cmath>
47 #include "nonbonded/Electrostatic.hpp"
48 #include "utils/simError.h"
49 #include "types/NonBondedInteractionType.hpp"
50 #include "types/FixedChargeAdapter.hpp"
51 #include "types/FluctuatingChargeAdapter.hpp"
52 #include "types/MultipoleAdapter.hpp"
53 #include "io/Globals.hpp"
54 #include "nonbonded/SlaterIntegrals.hpp"
55 #include "utils/PhysicalConstants.hpp"
56 #include "math/erfc.hpp"
57 #include "math/SquareMatrix.hpp"
58
59 namespace OpenMD {
60
61 Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
62 forceField_(NULL), info_(NULL),
63 haveCutoffRadius_(false),
64 haveDampingAlpha_(false),
65 haveDielectric_(false),
66 haveElectroSplines_(false)
67 {}
68
69 void Electrostatic::initialize() {
70
71 Globals* simParams_ = info_->getSimParams();
72
73 summationMap_["HARD"] = esm_HARD;
74 summationMap_["NONE"] = esm_HARD;
75 summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
76 summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL;
77 summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE;
78 summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD;
79 summationMap_["EWALD_FULL"] = esm_EWALD_FULL;
80 summationMap_["EWALD_PME"] = esm_EWALD_PME;
81 summationMap_["EWALD_SPME"] = esm_EWALD_SPME;
82 screeningMap_["DAMPED"] = DAMPED;
83 screeningMap_["UNDAMPED"] = UNDAMPED;
84
85 // these prefactors convert the multipole interactions into kcal / mol
86 // all were computed assuming distances are measured in angstroms
87 // Charge-Charge, assuming charges are measured in electrons
88 pre11_ = 332.0637778;
89 // Charge-Dipole, assuming charges are measured in electrons, and
90 // dipoles are measured in debyes
91 pre12_ = 69.13373;
92 // Dipole-Dipole, assuming dipoles are measured in Debye
93 pre22_ = 14.39325;
94 // Charge-Quadrupole, assuming charges are measured in electrons, and
95 // quadrupoles are measured in 10^-26 esu cm^2
96 // This unit is also known affectionately as an esu centibarn.
97 pre14_ = 69.13373;
98 // Dipole-Quadrupole, assuming dipoles are measured in debyes and
99 // quadrupoles in esu centibarns:
100 pre24_ = 14.39325;
101 // Quadrupole-Quadrupole, assuming esu centibarns:
102 pre44_ = 14.39325;
103
104 // conversions for the simulation box dipole moment
105 chargeToC_ = 1.60217733e-19;
106 angstromToM_ = 1.0e-10;
107 debyeToCm_ = 3.33564095198e-30;
108
109 // number of points for electrostatic splines
110 np_ = 1000;
111
112 // variables to handle different summation methods for long-range
113 // electrostatics:
114 summationMethod_ = esm_HARD;
115 screeningMethod_ = UNDAMPED;
116 dielectric_ = 1.0;
117
118 // check the summation method:
119 if (simParams_->haveElectrostaticSummationMethod()) {
120 string myMethod = simParams_->getElectrostaticSummationMethod();
121 toUpper(myMethod);
122 map<string, ElectrostaticSummationMethod>::iterator i;
123 i = summationMap_.find(myMethod);
124 if ( i != summationMap_.end() ) {
125 summationMethod_ = (*i).second;
126 } else {
127 // throw error
128 sprintf( painCave.errMsg,
129 "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
130 "\t(Input file specified %s .)\n"
131 "\telectrostaticSummationMethod must be one of: \"hard\",\n"
132 "\t\"shifted_potential\", \"shifted_force\", or \n"
133 "\t\"reaction_field\".\n", myMethod.c_str() );
134 painCave.isFatal = 1;
135 simError();
136 }
137 } else {
138 // set ElectrostaticSummationMethod to the cutoffMethod:
139 if (simParams_->haveCutoffMethod()){
140 string myMethod = simParams_->getCutoffMethod();
141 toUpper(myMethod);
142 map<string, ElectrostaticSummationMethod>::iterator i;
143 i = summationMap_.find(myMethod);
144 if ( i != summationMap_.end() ) {
145 summationMethod_ = (*i).second;
146 }
147 }
148 }
149
150 if (summationMethod_ == esm_REACTION_FIELD) {
151 if (!simParams_->haveDielectric()) {
152 // throw warning
153 sprintf( painCave.errMsg,
154 "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
155 "\tA default value of %f will be used for the dielectric.\n", dielectric_);
156 painCave.isFatal = 0;
157 painCave.severity = OPENMD_INFO;
158 simError();
159 } else {
160 dielectric_ = simParams_->getDielectric();
161 }
162 haveDielectric_ = true;
163 }
164
165 if (simParams_->haveElectrostaticScreeningMethod()) {
166 string myScreen = simParams_->getElectrostaticScreeningMethod();
167 toUpper(myScreen);
168 map<string, ElectrostaticScreeningMethod>::iterator i;
169 i = screeningMap_.find(myScreen);
170 if ( i != screeningMap_.end()) {
171 screeningMethod_ = (*i).second;
172 } else {
173 sprintf( painCave.errMsg,
174 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
175 "\t(Input file specified %s .)\n"
176 "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
177 "or \"damped\".\n", myScreen.c_str() );
178 painCave.isFatal = 1;
179 simError();
180 }
181 }
182
183 // check to make sure a cutoff value has been set:
184 if (!haveCutoffRadius_) {
185 sprintf( painCave.errMsg, "Electrostatic::initialize has no Default "
186 "Cutoff value!\n");
187 painCave.severity = OPENMD_ERROR;
188 painCave.isFatal = 1;
189 simError();
190 }
191
192 if (screeningMethod_ == DAMPED) {
193 if (!simParams_->haveDampingAlpha()) {
194 // first set a cutoff dependent alpha value
195 // we assume alpha depends linearly with rcut from 0 to 20.5 ang
196 dampingAlpha_ = 0.425 - cutoffRadius_* 0.02;
197 if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;
198
199 // throw warning
200 sprintf( painCave.errMsg,
201 "Electrostatic::initialize: dampingAlpha was not specified in the\n"
202 "\tinput file. A default value of %f (1/ang) will be used for the\n"
203 "\tcutoff of %f (ang).\n",
204 dampingAlpha_, cutoffRadius_);
205 painCave.severity = OPENMD_INFO;
206 painCave.isFatal = 0;
207 simError();
208 } else {
209 dampingAlpha_ = simParams_->getDampingAlpha();
210 }
211 haveDampingAlpha_ = true;
212 }
213
214 // find all of the Electrostatic atom Types:
215 ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
216 ForceField::AtomTypeContainer::MapTypeIterator i;
217 AtomType* at;
218
219 for (at = atomTypes->beginType(i); at != NULL;
220 at = atomTypes->nextType(i)) {
221
222 if (at->isElectrostatic())
223 addType(at);
224 }
225
226 if (summationMethod_ == esm_REACTION_FIELD) {
227 preRF_ = (dielectric_ - 1.0) /
228 ((2.0 * dielectric_ + 1.0) * pow(cutoffRadius_,3) );
229 }
230
231 RealType b0c, b1c, b2c, b3c, b4c, b5c;
232 RealType db0c_1, db0c_2, db0c_3, db0c_4, db0c_5;
233 RealType a2, expTerm, invArootPi;
234
235 RealType r = cutoffRadius_;
236 RealType r2 = r * r;
237
238 if (screeningMethod_ == DAMPED) {
239 a2 = dampingAlpha_ * dampingAlpha_;
240 invArootPi = 1.0 / (dampingAlpha_ * sqrt(M_PI));
241 expTerm = exp(-a2 * r2);
242 // values of Smith's B_l functions at the cutoff radius:
243 b0c = erfc(dampingAlpha_ * r) / r;
244 b1c = ( b0c + 2.0*a2 * expTerm * invArootPi) / r2;
245 b2c = (3.0 * b1c + pow(2.0*a2, 2) * expTerm * invArootPi) / r2;
246 b3c = (5.0 * b2c + pow(2.0*a2, 3) * expTerm * invArootPi) / r2;
247 b4c = (7.0 * b3c + pow(2.0*a2, 4) * expTerm * invArootPi) / r2;
248 b5c = (9.0 * b4c + pow(2.0*a2, 5) * expTerm * invArootPi) / r2;
249 selfMult_ = b0c + 2.0 * a2 * invArootPi;
250 } else {
251 a2 = 0.0;
252 b0c = 1.0 / r;
253 b1c = ( b0c) / r2;
254 b2c = (3.0 * b1c) / r2;
255 b3c = (5.0 * b2c) / r2;
256 b4c = (7.0 * b3c) / r2;
257 b5c = (9.0 * b4c) / r2;
258 selfMult_ = b0c;
259 }
260
261 // higher derivatives of B_0 at the cutoff radius:
262 db0c_1 = -r * b1c;
263 db0c_2 = -b1c + r2 * b2c;
264 db0c_3 = 3.0*r*b2c - r2*r*b3c;
265 db0c_4 = 3.0*b2c - 6.0*r2*b3c + r2*r2*b4c;
266 db0c_5 = -15.0*r*b3c + 10.0*r2*r*b4c - r2*r2*r*b5c;
267
268 // working variables for the splines:
269 RealType ri, ri2;
270 RealType b0, b1, b2, b3, b4, b5;
271 RealType db0_1, db0_2, db0_3, db0_4, db0_5;
272 RealType f0;
273 RealType g0, g1, g2, g3, g4;
274 RealType h1, h2, h3, h4;
275 RealType s2, s3, s4;
276 RealType t3, t4;
277 RealType u4;
278
279 // working variables for Taylor expansion:
280 RealType rmRc, rmRc2, rmRc3, rmRc4;
281
282 // Add a 2 angstrom safety window to deal with cutoffGroups that
283 // have charged atoms longer than the cutoffRadius away from each
284 // other. Splining is almost certainly the best choice here.
285 // Direct calls to erfc would be preferrable if it is a very fast
286 // implementation.
287
288 RealType dx = (cutoffRadius_ + 2.0) / RealType(np_);
289
290 // Storage vectors for the computed functions
291 vector<RealType> rv;
292 vector<RealType> v01v, v02v;
293 vector<RealType> v11v, v12v, v13v;
294 vector<RealType> v21v, v22v, v23v, v24v;
295 vector<RealType> v31v, v32v, v33v, v34v, v35v;
296 vector<RealType> v41v, v42v, v43v, v44v, v45v, v46v;
297
298 for (int i = 1; i < np_ + 1; i++) {
299 r = RealType(i) * dx;
300 rv.push_back(r);
301
302 ri = 1.0 / r;
303 ri2 = ri * ri;
304
305 r2 = r * r;
306 expTerm = exp(-a2 * r2);
307
308 // Taylor expansion factors (no need for factorials this way):
309 rmRc = r - cutoffRadius_;
310 rmRc2 = rmRc * rmRc / 2.0;
311 rmRc3 = rmRc2 * rmRc / 3.0;
312 rmRc4 = rmRc3 * rmRc / 4.0;
313
314 // values of Smith's B_l functions at r:
315 if (screeningMethod_ == DAMPED) {
316 b0 = erfc(dampingAlpha_ * r) * ri;
317 b1 = ( b0 + 2.0*a2 * expTerm * invArootPi) * ri2;
318 b2 = (3.0 * b1 + pow(2.0*a2, 2) * expTerm * invArootPi) * ri2;
319 b3 = (5.0 * b2 + pow(2.0*a2, 3) * expTerm * invArootPi) * ri2;
320 b4 = (7.0 * b3 + pow(2.0*a2, 4) * expTerm * invArootPi) * ri2;
321 b5 = (9.0 * b4 + pow(2.0*a2, 5) * expTerm * invArootPi) * ri2;
322 } else {
323 b0 = ri;
324 b1 = ( b0) * ri2;
325 b2 = (3.0 * b1) * ri2;
326 b3 = (5.0 * b2) * ri2;
327 b4 = (7.0 * b3) * ri2;
328 b5 = (9.0 * b4) * ri2;
329 }
330
331 // higher derivatives of B_0 at r:
332 db0_1 = -r * b1;
333 db0_2 = -b1 + r2 * b2;
334 db0_3 = 3.0*r*b2 - r2*r*b3;
335 db0_4 = 3.0*b2 - 6.0*r2*b3 + r2*r2*b4;
336 db0_5 = -15.0*r*b3 + 10.0*r2*r*b4 - r2*r2*r*b5;
337
338
339 switch (summationMethod_) {
340 case esm_SHIFTED_FORCE:
341 f0 = b0 - b0c - rmRc*db0c_1;
342
343 g0 = db0_1 - db0c_1;
344 g1 = g0 - rmRc *db0c_2;
345 g2 = g1 - rmRc2*db0c_3;
346 g3 = g2 - rmRc3*db0c_4;
347 g4 = g3 - rmRc4*db0c_5;
348
349 h1 = db0_2 - db0c_2;
350 h2 = h1 - rmRc *db0c_3;
351 h3 = h2 - rmRc2*db0c_4;
352 h4 = h3 - rmRc3*db0c_5;
353
354 s2 = db0_3 - db0c_3;
355 s3 = s2 - rmRc *db0c_4;
356 s4 = s3 - rmRc2*db0c_5;
357
358 t3 = db0_4 - db0c_4;
359 t4 = t3 - rmRc *db0c_5;
360
361 u4 = db0_5 - db0c_5;
362 break;
363
364 case esm_SHIFTED_POTENTIAL:
365 f0 = b0 - b0c;
366
367 g0 = db0_1;
368 g1 = db0_1 - db0c_1;
369 g2 = g1 - rmRc *db0c_2;
370 g3 = g2 - rmRc2*db0c_3;
371 g4 = g3 - rmRc3*db0c_4;
372
373 h1 = db0_2;
374 h2 = db0_2 - db0c_2;
375 h3 = h2 - rmRc *db0c_3;
376 h4 = h3 - rmRc2*db0c_4;
377
378 s2 = db0_3;
379 s3 = db0_3 - db0c_3;
380 s4 = s3 - rmRc *db0c_4;
381
382 t3 = db0_4;
383 t4 = db0_4 - db0c_4;
384
385 u4 = db0_5;
386 break;
387
388 case esm_SWITCHING_FUNCTION:
389 case esm_HARD:
390 f0 = b0;
391
392 g0 = db0_1;
393 g1 = g0;
394 g2 = g1;
395 g3 = g2;
396 g4 = g3;
397
398 h1 = db0_2;
399 h2 = h1;
400 h3 = h2;
401 h4 = h3;
402
403 s2 = db0_3;
404 s3 = s2;
405 s4 = s3;
406
407 t3 = db0_4;
408 t4 = t3;
409
410 u4 = db0_5;
411 break;
412
413 case esm_REACTION_FIELD:
414
415 // following DL_POLY's lead for shifting the image charge potential:
416 f0 = b0 + preRF_ * r2
417 - (b0c + preRF_ * cutoffRadius_ * cutoffRadius_);
418
419 g0 = db0_1 + preRF_ * 2.0 * r;
420 g1 = g0;
421 g2 = g1;
422 g3 = g2;
423 g4 = g3;
424
425 h1 = db0_2 + preRF_ * 2.0;
426 h2 = h1;
427 h3 = h2;
428 h4 = h3;
429
430 s2 = db0_3;
431 s3 = s2;
432 s4 = s3;
433
434 t3 = db0_4;
435 t4 = t3;
436
437 u4 = db0_5;
438 break;
439
440 case esm_EWALD_FULL:
441 case esm_EWALD_PME:
442 case esm_EWALD_SPME:
443 default :
444 map<string, ElectrostaticSummationMethod>::iterator i;
445 std::string meth;
446 for (i = summationMap_.begin(); i != summationMap_.end(); ++i) {
447 if ((*i).second == summationMethod_) meth = (*i).first;
448 }
449 sprintf( painCave.errMsg,
450 "Electrostatic::initialize: electrostaticSummationMethod %s \n"
451 "\thas not been implemented yet. Please select one of:\n"
452 "\t\"hard\", \"shifted_potential\", or \"shifted_force\"\n",
453 meth.c_str() );
454 painCave.isFatal = 1;
455 simError();
456 break;
457 }
458
459 v01 = f0;
460 v02 = g0;
461
462 v11 = g1;
463 v12 = g1 * ri;
464 v13 = h1 - v12;
465
466 v21 = g2 * ri;
467 v22 = h2 - v21;
468 v23 = v22 * ri;
469 v24 = s2 - 3.0*v23;
470
471 v31 = (h3 - g3 * ri) * ri;
472 v32 = s3 - 3.0*v31;
473 v33 = v31 * ri;
474 v34 = v32 * ri;
475 v35 = t3 - 6.0*v34 - 3.0*v33;
476
477 v41 = (h4 - g4 * ri) * ri2;
478 v42 = s4 * ri - 3.0*v41;
479 v43 = t4 - 6.0*v42 - 3.0*v41;
480 v44 = v42 * ri;
481 v45 = v43 * ri;
482 v46 = u4 - 10.0*v45 - 15.0*v44;
483
484 // Add these computed values to the storage vectors for spline creation:
485 v01v.push_back(v01);
486 v02v.push_back(v02);
487
488 v11v.push_back(v11);
489 v12v.push_back(v12);
490 v13v.push_back(v13);
491
492 v21v.push_back(v21);
493 v22v.push_back(v22);
494 v23v.push_back(v23);
495 v24v.push_back(v24);
496
497 v31v.push_back(v31);
498 v32v.push_back(v32);
499 v33v.push_back(v33);
500 v34v.push_back(v34);
501 v35v.push_back(v35);
502
503 v41v.push_back(v41);
504 v42v.push_back(v42);
505 v43v.push_back(v43);
506 v44v.push_back(v44);
507 v45v.push_back(v45);
508 v46v.push_back(v46);
509 }
510
511 // construct the spline structures and fill them with the values we've
512 // computed:
513
514 v01s = new CubicSpline();
515 v01s->addPoints(rv, v01v);
516 v02s = new CubicSpline();
517 v02s->addPoints(rv, v02v);
518
519 v11s = new CubicSpline();
520 v11s->addPoints(rv, v11v);
521 v12s = new CubicSpline();
522 v12s->addPoints(rv, v12v);
523 v13s = new CubicSpline();
524 v13s->addPoints(rv, v13v);
525
526 v21s = new CubicSpline();
527 v21s->addPoints(rv, v21v);
528 v22s = new CubicSpline();
529 v22s->addPoints(rv, v22v);
530 v23s = new CubicSpline();
531 v23s->addPoints(rv, v23v);
532 v24s = new CubicSpline();
533 v24s->addPoints(rv, v24v);
534
535 v31s = new CubicSpline();
536 v31s->addPoints(rv, v31v);
537 v32s = new CubicSpline();
538 v32s->addPoints(rv, v32v);
539 v33s = new CubicSpline();
540 v33s->addPoints(rv, v33v);
541 v34s = new CubicSpline();
542 v34s->addPoints(rv, v34v);
543 v35s = new CubicSpline();
544 v35s->addPoints(rv, v35v);
545
546 v41s = new CubicSpline();
547 v41s->addPoints(rv, v41v);
548 v42s = new CubicSpline();
549 v42s->addPoints(rv, v42v);
550 v43s = new CubicSpline();
551 v43s->addPoints(rv, v43v);
552 v44s = new CubicSpline();
553 v44s->addPoints(rv, v44v);
554 v45s = new CubicSpline();
555 v45s->addPoints(rv, v45v);
556 v46s = new CubicSpline();
557 v46s->addPoints(rv, v46v);
558
559 haveElectroSplines_ = true;
560
561 initialized_ = true;
562 }
563
564 void Electrostatic::addType(AtomType* atomType){
565
566 ElectrostaticAtomData electrostaticAtomData;
567 electrostaticAtomData.is_Charge = false;
568 electrostaticAtomData.is_Dipole = false;
569 electrostaticAtomData.is_Quadrupole = false;
570 electrostaticAtomData.is_Fluctuating = false;
571
572 FixedChargeAdapter fca = FixedChargeAdapter(atomType);
573
574 if (fca.isFixedCharge()) {
575 electrostaticAtomData.is_Charge = true;
576 electrostaticAtomData.fixedCharge = fca.getCharge();
577 }
578
579 MultipoleAdapter ma = MultipoleAdapter(atomType);
580 if (ma.isMultipole()) {
581 if (ma.isDipole()) {
582 electrostaticAtomData.is_Dipole = true;
583 electrostaticAtomData.dipole = ma.getDipole();
584 }
585 if (ma.isQuadrupole()) {
586 electrostaticAtomData.is_Quadrupole = true;
587 electrostaticAtomData.quadrupole = ma.getQuadrupole();
588 }
589 }
590
591 FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType);
592
593 if (fqa.isFluctuatingCharge()) {
594 electrostaticAtomData.is_Fluctuating = true;
595 electrostaticAtomData.electronegativity = fqa.getElectronegativity();
596 electrostaticAtomData.hardness = fqa.getHardness();
597 electrostaticAtomData.slaterN = fqa.getSlaterN();
598 electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
599 }
600
601 pair<map<int,AtomType*>::iterator,bool> ret;
602 ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(),
603 atomType) );
604 if (ret.second == false) {
605 sprintf( painCave.errMsg,
606 "Electrostatic already had a previous entry with ident %d\n",
607 atomType->getIdent() );
608 painCave.severity = OPENMD_INFO;
609 painCave.isFatal = 0;
610 simError();
611 }
612
613 ElectrostaticMap[atomType] = electrostaticAtomData;
614
615 // Now, iterate over all known types and add to the mixing map:
616
617 map<AtomType*, ElectrostaticAtomData>::iterator it;
618 for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) {
619 AtomType* atype2 = (*it).first;
620 ElectrostaticAtomData eaData2 = (*it).second;
621 if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) {
622
623 RealType a = electrostaticAtomData.slaterZeta;
624 RealType b = eaData2.slaterZeta;
625 int m = electrostaticAtomData.slaterN;
626 int n = eaData2.slaterN;
627
628 // Create the spline of the coulombic integral for s-type
629 // Slater orbitals. Add a 2 angstrom safety window to deal
630 // with cutoffGroups that have charged atoms longer than the
631 // cutoffRadius away from each other.
632
633 RealType rval;
634 RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
635 vector<RealType> rvals;
636 vector<RealType> Jvals;
637 // don't start at i = 0, as rval = 0 is undefined for the
638 // slater overlap integrals.
639 for (int i = 1; i < np_+1; i++) {
640 rval = RealType(i) * dr;
641 rvals.push_back(rval);
642 Jvals.push_back(sSTOCoulInt( a, b, m, n, rval *
643 PhysicalConstants::angstromToBohr ) *
644 PhysicalConstants::hartreeToKcal );
645 }
646
647 CubicSpline* J = new CubicSpline();
648 J->addPoints(rvals, Jvals);
649
650 pair<AtomType*, AtomType*> key1, key2;
651 key1 = make_pair(atomType, atype2);
652 key2 = make_pair(atype2, atomType);
653
654 Jij[key1] = J;
655 Jij[key2] = J;
656 }
657 }
658
659 return;
660 }
661
662 void Electrostatic::setCutoffRadius( RealType rCut ) {
663 cutoffRadius_ = rCut;
664 haveCutoffRadius_ = true;
665 }
666
667 void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
668 summationMethod_ = esm;
669 }
670 void Electrostatic::setElectrostaticScreeningMethod( ElectrostaticScreeningMethod sm ) {
671 screeningMethod_ = sm;
672 }
673 void Electrostatic::setDampingAlpha( RealType alpha ) {
674 dampingAlpha_ = alpha;
675 haveDampingAlpha_ = true;
676 }
677 void Electrostatic::setReactionFieldDielectric( RealType dielectric ){
678 dielectric_ = dielectric;
679 haveDielectric_ = true;
680 }
681
682 void Electrostatic::calcForce(InteractionData &idat) {
683
684 RealType C_a, C_b; // Charges
685 Vector3d D_a, D_b; // Dipoles (space-fixed)
686 Mat3x3d Q_a, Q_b; // Quadrupoles (space-fixed)
687
688 RealType ri, ri2, ri3, ri4; // Distance utility scalars
689 RealType rdDa, rdDb; // Dipole utility scalars
690 Vector3d rxDa, rxDb; // Dipole utility vectors
691 RealType rdQar, rdQbr, trQa, trQb; // Quadrupole utility scalars
692 Vector3d Qar, Qbr, rQa, rQb, rxQar, rxQbr; // Quadrupole utility vectors
693 RealType pref;
694
695 RealType DadDb, trQaQb, DadQbr, DbdQar; // Cross-interaction scalars
696 RealType rQaQbr;
697 Vector3d DaxDb, DadQb, DbdQa, DaxQbr, DbxQar; // Cross-interaction vectors
698 Vector3d rQaQb, QaQbr, QaxQb, rQaxQbr;
699 Mat3x3d QaQb; // Cross-interaction matrices
700
701 RealType U(0.0); // Potential
702 Vector3d F(0.0); // Force
703 Vector3d Ta(0.0); // Torque on site a
704 Vector3d Tb(0.0); // Torque on site b
705 Vector3d Ea(0.0); // Electric field at site a
706 Vector3d Eb(0.0); // Electric field at site b
707 RealType dUdCa(0.0); // fluctuating charge force at site a
708 RealType dUdCb(0.0); // fluctuating charge force at site a
709
710 // Indirect interactions mediated by the reaction field.
711 RealType indirect_Pot(0.0); // Potential
712 Vector3d indirect_F(0.0); // Force
713 Vector3d indirect_Ta(0.0); // Torque on site a
714 Vector3d indirect_Tb(0.0); // Torque on site b
715
716 // Excluded potential that is still computed for fluctuating charges
717 RealType excluded_Pot(0.0);
718
719 RealType rfContrib, coulInt;
720
721 // spline for coulomb integral
722 CubicSpline* J;
723
724 if (!initialized_) initialize();
725
726 ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
727 ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
728
729 // some variables we'll need independent of electrostatic type:
730
731 ri = 1.0 / *(idat.rij);
732 Vector3d rhat = *(idat.d) * ri;
733 ri2 = ri * ri;
734
735 // logicals
736
737 bool a_is_Charge = data1.is_Charge;
738 bool a_is_Dipole = data1.is_Dipole;
739 bool a_is_Quadrupole = data1.is_Quadrupole;
740 bool a_is_Fluctuating = data1.is_Fluctuating;
741
742 bool b_is_Charge = data2.is_Charge;
743 bool b_is_Dipole = data2.is_Dipole;
744 bool b_is_Quadrupole = data2.is_Quadrupole;
745 bool b_is_Fluctuating = data2.is_Fluctuating;
746
747 // Obtain all of the required radial function values from the
748 // spline structures:
749
750 // needed for fields (and forces):
751 if (a_is_Charge || b_is_Charge) {
752 v02 = v02s->getValueAt( *(idat.rij) );
753 }
754 if (a_is_Dipole || b_is_Dipole) {
755 v12 = v12s->getValueAt( *(idat.rij) );
756 v13 = v13s->getValueAt( *(idat.rij) );
757 }
758 if (a_is_Quadrupole || b_is_Quadrupole) {
759 v23 = v23s->getValueAt( *(idat.rij) );
760 v24 = v24s->getValueAt( *(idat.rij) );
761 }
762
763 // needed for potentials (and torques):
764 if (a_is_Charge && b_is_Charge) {
765 v01 = v01s->getValueAt( *(idat.rij) );
766 }
767 if ((a_is_Charge && b_is_Dipole) || (b_is_Charge && a_is_Dipole)) {
768 v11 = v11s->getValueAt( *(idat.rij) );
769 }
770 if ((a_is_Charge && b_is_Quadrupole) || (b_is_Charge && a_is_Quadrupole)) {
771 v21 = v21s->getValueAt( *(idat.rij) );
772 v22 = v22s->getValueAt( *(idat.rij) );
773 } else if (a_is_Dipole && b_is_Dipole) {
774 v21 = v21s->getValueAt( *(idat.rij) );
775 v22 = v22s->getValueAt( *(idat.rij) );
776 v23 = v23s->getValueAt( *(idat.rij) );
777 v24 = v24s->getValueAt( *(idat.rij) );
778 }
779 if ((a_is_Dipole && b_is_Quadrupole) ||
780 (b_is_Dipole && a_is_Quadrupole)) {
781 v31 = v31s->getValueAt( *(idat.rij) );
782 v32 = v32s->getValueAt( *(idat.rij) );
783 v33 = v33s->getValueAt( *(idat.rij) );
784 v34 = v34s->getValueAt( *(idat.rij) );
785 v35 = v35s->getValueAt( *(idat.rij) );
786 }
787 if (a_is_Quadrupole && b_is_Quadrupole) {
788 v41 = v41s->getValueAt( *(idat.rij) );
789 v42 = v42s->getValueAt( *(idat.rij) );
790 v43 = v43s->getValueAt( *(idat.rij) );
791 v44 = v44s->getValueAt( *(idat.rij) );
792 v45 = v45s->getValueAt( *(idat.rij) );
793 v46 = v46s->getValueAt( *(idat.rij) );
794 }
795
796 // calculate the single-site contributions (fields, etc).
797
798 if (a_is_Charge) {
799 C_a = data1.fixedCharge;
800
801 if (a_is_Fluctuating) {
802 C_a += *(idat.flucQ1);
803 }
804
805 if (idat.excluded) {
806 *(idat.skippedCharge2) += C_a;
807 }
808 Eb -= C_a * pre11_ * v02 * rhat;
809 }
810
811 if (a_is_Dipole) {
812 D_a = *(idat.dipole1);
813 rdDa = dot(rhat, D_a);
814 rxDa = cross(rhat, D_a);
815 Eb -= pre12_ * (v13 * rdDa * rhat + v12 * D_a);
816 }
817
818 if (a_is_Quadrupole) {
819 Q_a = *(idat.quadrupole1);
820 trQa = Q_a.trace();
821 Qar = Q_a * rhat;
822 rQa = rhat * Q_a;
823 rdQar = dot(rhat, Qar);
824 rxQar = cross(rhat, Qar);
825 Eb -= pre14_ * ((trQa * rhat + 2.0 * Qar) * v23 + rdQar * rhat * v24);
826 }
827
828 if (b_is_Charge) {
829 C_b = data2.fixedCharge;
830
831 if (b_is_Fluctuating)
832 C_b += *(idat.flucQ2);
833
834 if (idat.excluded) {
835 *(idat.skippedCharge1) += C_b;
836 }
837 Ea += C_b * pre11_ * v02 * rhat;
838 }
839
840 if (b_is_Dipole) {
841 D_b = *(idat.dipole2);
842 rdDb = dot(rhat, D_b);
843 rxDb = cross(rhat, D_b);
844 Ea += pre12_ * (v13 * rdDb * rhat + v12 * D_b);
845 }
846
847 if (b_is_Quadrupole) {
848 Q_b = *(idat.quadrupole2);
849 trQb = Q_b.trace();
850 Qbr = Q_b * rhat;
851 rQb = rhat * Q_b;
852 rdQbr = dot(rhat, Qbr);
853 rxQbr = cross(rhat, Qbr);
854 Ea += pre14_ * ((trQb * rhat + 2.0 * Qbr) * v23 + rdQbr * rhat * v24);
855 }
856
857 if ((a_is_Fluctuating || b_is_Fluctuating) && idat.excluded) {
858 J = Jij[idat.atypes];
859 }
860
861 if (a_is_Charge) {
862
863 if (b_is_Charge) {
864 pref = pre11_ * *(idat.electroMult);
865 U += C_a * C_b * pref * v01;
866 F += C_a * C_b * pref * v02 * rhat;
867
868 // If this is an excluded pair, there are still indirect
869 // interactions via the reaction field we must worry about:
870
871 if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
872 rfContrib = preRF_ * pref * C_a * C_b * *(idat.r2);
873 indirect_Pot += rfContrib;
874 indirect_F += rfContrib * 2.0 * ri * rhat;
875 }
876
877 // Fluctuating charge forces are handled via Coulomb integrals
878 // for excluded pairs (i.e. those connected via bonds) and
879 // with the standard charge-charge interaction otherwise.
880
881 if (idat.excluded) {
882 if (a_is_Fluctuating || b_is_Fluctuating) {
883 coulInt = J->getValueAt( *(idat.rij) );
884 if (a_is_Fluctuating) dUdCa += coulInt * C_b;
885 if (b_is_Fluctuating) dUdCb += coulInt * C_a;
886 excluded_Pot += C_a * C_b * coulInt;
887 }
888 } else {
889 if (a_is_Fluctuating) dUdCa += C_b * pref * v01;
890 if (a_is_Fluctuating) dUdCb += C_a * pref * v01;
891 }
892 }
893
894 if (b_is_Dipole) {
895 pref = pre12_ * *(idat.electroMult);
896 U += C_a * pref * v11 * rdDb;
897 F += C_a * pref * (v13 * rdDb * rhat + v12 * D_b);
898 Tb += C_a * pref * v11 * rxDb;
899
900 if (a_is_Fluctuating) dUdCa += pref * v11 * rdDb;
901
902 // Even if we excluded this pair from direct interactions, we
903 // still have the reaction-field-mediated charge-dipole
904 // interaction:
905
906 if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
907 rfContrib = C_a * pref * preRF_ * 2.0 * *(idat.rij);
908 indirect_Pot += rfContrib * rdDb;
909 indirect_F += rfContrib * D_b / (*idat.rij);
910 indirect_Tb += C_a * pref * preRF_ * rxDb;
911 }
912 }
913
914 if (b_is_Quadrupole) {
915 pref = pre14_ * *(idat.electroMult);
916 U += C_a * pref * (v21 * trQb + v22 * rdQbr);
917 F += C_a * pref * (trQb * rhat + 2.0 * Qbr) * v23;
918 F += C_a * pref * rdQbr * rhat * v24;
919 Tb += C_a * pref * 2.0 * rxQbr * v22;
920
921 if (a_is_Fluctuating) dUdCa += pref * (v21 * trQb + v22 * rdQbr);
922 }
923 }
924
925 if (a_is_Dipole) {
926
927 if (b_is_Charge) {
928 pref = pre12_ * *(idat.electroMult);
929
930 U -= C_b * pref * v11 * rdDa;
931 F -= C_b * pref * (v13 * rdDa * rhat + v12 * D_a);
932 Ta -= C_b * pref * v11 * rxDa;
933
934 if (b_is_Fluctuating) dUdCb -= pref * v11 * rdDa;
935
936 // Even if we excluded this pair from direct interactions,
937 // we still have the reaction-field-mediated charge-dipole
938 // interaction:
939 if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
940 rfContrib = C_b * pref * preRF_ * 2.0 * *(idat.rij);
941 indirect_Pot -= rfContrib * rdDa;
942 indirect_F -= rfContrib * D_a / (*idat.rij);
943 indirect_Ta -= C_b * pref * preRF_ * rxDa;
944 }
945 }
946
947 if (b_is_Dipole) {
948 pref = pre22_ * *(idat.electroMult);
949 DadDb = dot(D_a, D_b);
950 DaxDb = cross(D_a, D_b);
951
952 U -= pref * (DadDb * v21 + rdDa * rdDb * v22);
953 F -= pref * (DadDb * rhat + rdDb * D_a + rdDa * D_b)*v23;
954 F -= pref * (rdDa * rdDb) * v24 * rhat;
955 Ta += pref * ( v21 * DaxDb - v22 * rdDb * rxDa);
956 Tb += pref * (-v21 * DaxDb - v22 * rdDa * rxDb);
957
958 // Even if we excluded this pair from direct interactions, we
959 // still have the reaction-field-mediated dipole-dipole
960 // interaction:
961 if (summationMethod_ == esm_REACTION_FIELD && idat.excluded) {
962 rfContrib = -pref * preRF_ * 2.0;
963 indirect_Pot += rfContrib * DadDb;
964 indirect_Ta += rfContrib * DaxDb;
965 indirect_Tb -= rfContrib * DaxDb;
966 }
967
968 }
969
970 if (b_is_Quadrupole) {
971 pref = pre24_ * *(idat.electroMult);
972 DadQb = D_a * Q_b;
973 DadQbr = dot(D_a, Qbr);
974 DaxQbr = cross(D_a, Qbr);
975
976 U -= pref * ((trQb*rdDa + 2.0*DadQbr)*v31 + rdDa*rdQbr*v32);
977 F -= pref * (trQb*D_a + 2.0*DadQb) * v33;
978 F -= pref * (trQb*rdDa*rhat + 2.0*DadQbr*rhat + D_a*rdQbr
979 + 2.0*rdDa*rQb)*v34;
980 F -= pref * (rdDa * rdQbr * rhat * v35);
981 Ta += pref * ((-trQb*rxDa + 2.0 * DaxQbr)*v31 - rxDa*rdQbr*v32);
982 Tb += pref * ((2.0*cross(DadQb, rhat) - 2.0*DaxQbr)*v31
983 - 2.0*rdDa*rxQbr*v32);
984 }
985 }
986
987 if (a_is_Quadrupole) {
988 if (b_is_Charge) {
989 pref = pre14_ * *(idat.electroMult);
990 U += C_b * pref * (v21 * trQa + v22 * rdQar);
991 F += C_b * pref * (trQa * rhat + 2.0 * Qar) * v23;
992 F += C_b * pref * rdQar * rhat * v24;
993 Ta += C_b * pref * 2.0 * rxQar * v22;
994
995 if (b_is_Fluctuating) dUdCb += pref * (v21 * trQa + v22 * rdQar);
996 }
997 if (b_is_Dipole) {
998 pref = pre24_ * *(idat.electroMult);
999 DbdQa = D_b * Q_a;
1000 DbdQar = dot(D_b, Qar);
1001 DbxQar = cross(D_b, Qar);
1002
1003 U += pref * ((trQa*rdDb + 2.0*DbdQar)*v31 + rdDb*rdQar*v32);
1004 F += pref * (trQa*D_b + 2.0*DbdQa) * v33;
1005 F += pref * (trQa*rdDb*rhat + 2.0*DbdQar*rhat + D_b*rdQar
1006 + 2.0*rdDb*rQa)*v34;
1007 F += pref * (rdDb * rdQar * rhat * v35);
1008 Ta += pref * ((-2.0*cross(DbdQa, rhat) + 2.0*DbxQar)*v31
1009 + 2.0*rdDb*rxQar*v32);
1010 Tb += pref * ((trQa*rxDb - 2.0 * DbxQar)*v31 + rxDb*rdQar*v32);
1011 }
1012 if (b_is_Quadrupole) {
1013 pref = pre44_ * *(idat.electroMult); // yes
1014 QaQb = Q_a * Q_b;
1015 trQaQb = QaQb.trace();
1016 rQaQb = rhat * QaQb;
1017 QaQbr = QaQb * rhat;
1018 QaxQb = cross(Q_a, Q_b);
1019 rQaQbr = dot(rQa, Qbr);
1020 rQaxQbr = cross(rQa, Qbr);
1021
1022 U += pref * (trQa * trQb + 2.0 * trQaQb) * v41;
1023 U += pref * (trQa * rdQbr + trQb * rdQar + 4.0 * rQaQbr) * v42;
1024 U += pref * (rdQar * rdQbr) * v43;
1025
1026 F += pref * rhat * (trQa * trQb + 2.0 * trQaQb)*v44;
1027 F += pref * rhat * (trQa * rdQbr + trQb * rdQar + 4.0 * rQaQbr)*v45;
1028 F += pref * rhat * (rdQar * rdQbr)*v46;
1029
1030 F += pref * 2.0 * (trQb*rQa + trQa*rQb)*v44;
1031 F += pref * 4.0 * (rQaQb + QaQbr)*v44;
1032 F += pref * 2.0 * (rQa*rdQbr + rdQar*rQb)*v45;
1033
1034 Ta += pref * (- 4.0 * QaxQb * v41);
1035 Ta += pref * (- 2.0 * trQb * cross(rQa, rhat)
1036 + 4.0 * cross(rhat, QaQbr)
1037 - 4.0 * rQaxQbr) * v42;
1038 Ta += pref * 2.0 * cross(rhat,Qar) * rdQbr * v43;
1039
1040
1041 Tb += pref * (+ 4.0 * QaxQb * v41);
1042 Tb += pref * (- 2.0 * trQa * cross(rQb, rhat)
1043 - 4.0 * cross(rQaQb, rhat)
1044 + 4.0 * rQaxQbr) * v42;
1045 // Possible replacement for line 2 above:
1046 // + 4.0 * cross(rhat, QbQar)
1047
1048 Tb += pref * 2.0 * cross(rhat,Qbr) * rdQar * v43;
1049
1050 // cerr << " tsum = " << Ta + Tb - cross( *(idat.d) , F ) << "\n";
1051 }
1052 }
1053
1054 if (idat.doElectricField) {
1055 *(idat.eField1) += Ea * *(idat.electroMult);
1056 *(idat.eField2) += Eb * *(idat.electroMult);
1057 }
1058
1059 if (a_is_Fluctuating) *(idat.dVdFQ1) += dUdCa * *(idat.sw);
1060 if (b_is_Fluctuating) *(idat.dVdFQ2) += dUdCb * *(idat.sw);
1061
1062 if (!idat.excluded) {
1063
1064 *(idat.vpair) += U;
1065 (*(idat.pot))[ELECTROSTATIC_FAMILY] += U * *(idat.sw);
1066 *(idat.f1) += F * *(idat.sw);
1067
1068 if (a_is_Dipole || a_is_Quadrupole)
1069 *(idat.t1) += Ta * *(idat.sw);
1070
1071 if (b_is_Dipole || b_is_Quadrupole)
1072 *(idat.t2) += Tb * *(idat.sw);
1073
1074 } else {
1075
1076 // only accumulate the forces and torques resulting from the
1077 // indirect reaction field terms.
1078
1079 *(idat.vpair) += indirect_Pot;
1080 (*(idat.excludedPot))[ELECTROSTATIC_FAMILY] += excluded_Pot;
1081 (*(idat.pot))[ELECTROSTATIC_FAMILY] += *(idat.sw) * indirect_Pot;
1082 *(idat.f1) += *(idat.sw) * indirect_F;
1083
1084 if (a_is_Dipole || a_is_Quadrupole)
1085 *(idat.t1) += *(idat.sw) * indirect_Ta;
1086
1087 if (b_is_Dipole || b_is_Quadrupole)
1088 *(idat.t2) += *(idat.sw) * indirect_Tb;
1089 }
1090 return;
1091 }
1092
1093 void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1094
1095 if (!initialized_) initialize();
1096
1097 ElectrostaticAtomData data = ElectrostaticMap[sdat.atype];
1098
1099 // logicals
1100 bool i_is_Charge = data.is_Charge;
1101 bool i_is_Dipole = data.is_Dipole;
1102 bool i_is_Fluctuating = data.is_Fluctuating;
1103 RealType C_a = data.fixedCharge;
1104 RealType self, preVal, DadDa;
1105
1106 if (i_is_Fluctuating) {
1107 C_a += *(sdat.flucQ);
1108 // dVdFQ is really a force, so this is negative the derivative
1109 *(sdat.dVdFQ) -= *(sdat.flucQ) * data.hardness + data.electronegativity;
1110 (*(sdat.excludedPot))[ELECTROSTATIC_FAMILY] += (*sdat.flucQ) *
1111 (*(sdat.flucQ) * data.hardness * 0.5 + data.electronegativity);
1112 }
1113
1114 switch (summationMethod_) {
1115 case esm_REACTION_FIELD:
1116
1117 if (i_is_Charge) {
1118 // Self potential [see Wang and Hermans, "Reaction Field
1119 // Molecular Dynamics Simulation with Friedman’s Image Charge
1120 // Method," J. Phys. Chem. 99, 12001-12007 (1995).]
1121 preVal = pre11_ * preRF_ * C_a * C_a;
1122 (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal / cutoffRadius_;
1123 }
1124
1125 if (i_is_Dipole) {
1126 DadDa = data.dipole.lengthSquare();
1127 (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= pre22_ * preRF_ * DadDa;
1128 }
1129
1130 break;
1131
1132 case esm_SHIFTED_FORCE:
1133 case esm_SHIFTED_POTENTIAL:
1134 if (i_is_Charge) {
1135 self = -0.5 * selfMult_ * C_a * (C_a + *(sdat.skippedCharge)) * pre11_;
1136 (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1137 }
1138 break;
1139 default:
1140 break;
1141 }
1142 }
1143
1144 RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1145 // This seems to work moderately well as a default. There's no
1146 // inherent scale for 1/r interactions that we can standardize.
1147 // 12 angstroms seems to be a reasonably good guess for most
1148 // cases.
1149 return 12.0;
1150 }
1151 }

Properties

Name Value
svn:eol-style native