ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/branches/development/src/nonbonded/Electrostatic.cpp
Revision: 1750
Committed: Thu Jun 7 12:53:46 2012 UTC (12 years, 10 months ago) by gezelter
File size: 38471 byte(s)
Log Message:
Fixing some bugs in optimization, fixing status functions so that they
dump correctly (although some things are deferred until the Stats is
accumulator-based).

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include <stdio.h>
44 #include <string.h>
45
46 #include <cmath>
47 #include "nonbonded/Electrostatic.hpp"
48 #include "utils/simError.h"
49 #include "types/NonBondedInteractionType.hpp"
50 #include "types/FixedChargeAdapter.hpp"
51 #include "types/FluctuatingChargeAdapter.hpp"
52 #include "types/MultipoleAdapter.hpp"
53 #include "io/Globals.hpp"
54 #include "nonbonded/SlaterIntegrals.hpp"
55 #include "utils/PhysicalConstants.hpp"
56
57
58 namespace OpenMD {
59
60 Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false),
61 forceField_(NULL), info_(NULL),
62 haveCutoffRadius_(false),
63 haveDampingAlpha_(false),
64 haveDielectric_(false),
65 haveElectroSpline_(false)
66 {}
67
68 void Electrostatic::initialize() {
69
70 Globals* simParams_ = info_->getSimParams();
71
72 summationMap_["HARD"] = esm_HARD;
73 summationMap_["NONE"] = esm_HARD;
74 summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION;
75 summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL;
76 summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE;
77 summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD;
78 summationMap_["EWALD_FULL"] = esm_EWALD_FULL;
79 summationMap_["EWALD_PME"] = esm_EWALD_PME;
80 summationMap_["EWALD_SPME"] = esm_EWALD_SPME;
81 screeningMap_["DAMPED"] = DAMPED;
82 screeningMap_["UNDAMPED"] = UNDAMPED;
83
84 // these prefactors convert the multipole interactions into kcal / mol
85 // all were computed assuming distances are measured in angstroms
86 // Charge-Charge, assuming charges are measured in electrons
87 pre11_ = 332.0637778;
88 // Charge-Dipole, assuming charges are measured in electrons, and
89 // dipoles are measured in debyes
90 pre12_ = 69.13373;
91 // Dipole-Dipole, assuming dipoles are measured in debyes
92 pre22_ = 14.39325;
93 // Charge-Quadrupole, assuming charges are measured in electrons, and
94 // quadrupoles are measured in 10^-26 esu cm^2
95 // This unit is also known affectionately as an esu centi-barn.
96 pre14_ = 69.13373;
97
98 // conversions for the simulation box dipole moment
99 chargeToC_ = 1.60217733e-19;
100 angstromToM_ = 1.0e-10;
101 debyeToCm_ = 3.33564095198e-30;
102
103 // number of points for electrostatic splines
104 np_ = 100;
105
106 // variables to handle different summation methods for long-range
107 // electrostatics:
108 summationMethod_ = esm_HARD;
109 screeningMethod_ = UNDAMPED;
110 dielectric_ = 1.0;
111 one_third_ = 1.0 / 3.0;
112
113 // check the summation method:
114 if (simParams_->haveElectrostaticSummationMethod()) {
115 string myMethod = simParams_->getElectrostaticSummationMethod();
116 toUpper(myMethod);
117 map<string, ElectrostaticSummationMethod>::iterator i;
118 i = summationMap_.find(myMethod);
119 if ( i != summationMap_.end() ) {
120 summationMethod_ = (*i).second;
121 } else {
122 // throw error
123 sprintf( painCave.errMsg,
124 "Electrostatic::initialize: Unknown electrostaticSummationMethod.\n"
125 "\t(Input file specified %s .)\n"
126 "\telectrostaticSummationMethod must be one of: \"hard\",\n"
127 "\t\"shifted_potential\", \"shifted_force\", or \n"
128 "\t\"reaction_field\".\n", myMethod.c_str() );
129 painCave.isFatal = 1;
130 simError();
131 }
132 } else {
133 // set ElectrostaticSummationMethod to the cutoffMethod:
134 if (simParams_->haveCutoffMethod()){
135 string myMethod = simParams_->getCutoffMethod();
136 toUpper(myMethod);
137 map<string, ElectrostaticSummationMethod>::iterator i;
138 i = summationMap_.find(myMethod);
139 if ( i != summationMap_.end() ) {
140 summationMethod_ = (*i).second;
141 }
142 }
143 }
144
145 if (summationMethod_ == esm_REACTION_FIELD) {
146 if (!simParams_->haveDielectric()) {
147 // throw warning
148 sprintf( painCave.errMsg,
149 "SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n"
150 "\tA default value of %f will be used for the dielectric.\n", dielectric_);
151 painCave.isFatal = 0;
152 painCave.severity = OPENMD_INFO;
153 simError();
154 } else {
155 dielectric_ = simParams_->getDielectric();
156 }
157 haveDielectric_ = true;
158 }
159
160 if (simParams_->haveElectrostaticScreeningMethod()) {
161 string myScreen = simParams_->getElectrostaticScreeningMethod();
162 toUpper(myScreen);
163 map<string, ElectrostaticScreeningMethod>::iterator i;
164 i = screeningMap_.find(myScreen);
165 if ( i != screeningMap_.end()) {
166 screeningMethod_ = (*i).second;
167 } else {
168 sprintf( painCave.errMsg,
169 "SimInfo error: Unknown electrostaticScreeningMethod.\n"
170 "\t(Input file specified %s .)\n"
171 "\telectrostaticScreeningMethod must be one of: \"undamped\"\n"
172 "or \"damped\".\n", myScreen.c_str() );
173 painCave.isFatal = 1;
174 simError();
175 }
176 }
177
178 // check to make sure a cutoff value has been set:
179 if (!haveCutoffRadius_) {
180 sprintf( painCave.errMsg, "Electrostatic::initialize has no Default "
181 "Cutoff value!\n");
182 painCave.severity = OPENMD_ERROR;
183 painCave.isFatal = 1;
184 simError();
185 }
186
187 if (screeningMethod_ == DAMPED) {
188 if (!simParams_->haveDampingAlpha()) {
189 // first set a cutoff dependent alpha value
190 // we assume alpha depends linearly with rcut from 0 to 20.5 ang
191 dampingAlpha_ = 0.425 - cutoffRadius_* 0.02;
192 if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0;
193
194 // throw warning
195 sprintf( painCave.errMsg,
196 "Electrostatic::initialize: dampingAlpha was not specified in the\n"
197 "\tinput file. A default value of %f (1/ang) will be used for the\n"
198 "\tcutoff of %f (ang).\n",
199 dampingAlpha_, cutoffRadius_);
200 painCave.severity = OPENMD_INFO;
201 painCave.isFatal = 0;
202 simError();
203 } else {
204 dampingAlpha_ = simParams_->getDampingAlpha();
205 }
206 haveDampingAlpha_ = true;
207 }
208
209 // find all of the Electrostatic atom Types:
210 ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes();
211 ForceField::AtomTypeContainer::MapTypeIterator i;
212 AtomType* at;
213
214 for (at = atomTypes->beginType(i); at != NULL;
215 at = atomTypes->nextType(i)) {
216
217 if (at->isElectrostatic())
218 addType(at);
219 }
220
221 cutoffRadius2_ = cutoffRadius_ * cutoffRadius_;
222 rcuti_ = 1.0 / cutoffRadius_;
223 rcuti2_ = rcuti_ * rcuti_;
224 rcuti3_ = rcuti2_ * rcuti_;
225 rcuti4_ = rcuti2_ * rcuti2_;
226
227 if (screeningMethod_ == DAMPED) {
228
229 alpha2_ = dampingAlpha_ * dampingAlpha_;
230 alpha4_ = alpha2_ * alpha2_;
231 alpha6_ = alpha4_ * alpha2_;
232 alpha8_ = alpha4_ * alpha4_;
233
234 constEXP_ = exp(-alpha2_ * cutoffRadius2_);
235 invRootPi_ = 0.56418958354775628695;
236 alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_;
237
238 c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_;
239 c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_;
240 c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_;
241 c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_;
242 c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_;
243 c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_;
244 } else {
245 c1c_ = rcuti_;
246 c2c_ = c1c_ * rcuti_;
247 c3c_ = 3.0 * c2c_ * rcuti_;
248 c4c_ = 5.0 * c3c_ * rcuti2_;
249 c5c_ = 7.0 * c4c_ * rcuti2_;
250 c6c_ = 9.0 * c5c_ * rcuti2_;
251 }
252
253 if (summationMethod_ == esm_REACTION_FIELD) {
254 preRF_ = (dielectric_ - 1.0) /
255 ((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_);
256 preRF2_ = 2.0 * preRF_;
257 }
258
259 // Add a 2 angstrom safety window to deal with cutoffGroups that
260 // have charged atoms longer than the cutoffRadius away from each
261 // other. Splining may not be the best choice here. Direct calls
262 // to erfc might be preferrable.
263
264 RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
265 RealType rval;
266 vector<RealType> rvals;
267 vector<RealType> yvals;
268 for (int i = 0; i < np_; i++) {
269 rval = RealType(i) * dx;
270 rvals.push_back(rval);
271 yvals.push_back(erfc(dampingAlpha_ * rval));
272 }
273 erfcSpline_ = new CubicSpline();
274 erfcSpline_->addPoints(rvals, yvals);
275 haveElectroSpline_ = true;
276
277 initialized_ = true;
278 }
279
280 void Electrostatic::addType(AtomType* atomType){
281
282 ElectrostaticAtomData electrostaticAtomData;
283 electrostaticAtomData.is_Charge = false;
284 electrostaticAtomData.is_Dipole = false;
285 electrostaticAtomData.is_SplitDipole = false;
286 electrostaticAtomData.is_Quadrupole = false;
287 electrostaticAtomData.is_Fluctuating = false;
288
289 FixedChargeAdapter fca = FixedChargeAdapter(atomType);
290
291 if (fca.isFixedCharge()) {
292 electrostaticAtomData.is_Charge = true;
293 electrostaticAtomData.fixedCharge = fca.getCharge();
294 }
295
296 MultipoleAdapter ma = MultipoleAdapter(atomType);
297 if (ma.isMultipole()) {
298 if (ma.isDipole()) {
299 electrostaticAtomData.is_Dipole = true;
300 electrostaticAtomData.dipole_moment = ma.getDipoleMoment();
301 }
302 if (ma.isSplitDipole()) {
303 electrostaticAtomData.is_SplitDipole = true;
304 electrostaticAtomData.split_dipole_distance = ma.getSplitDipoleDistance();
305 }
306 if (ma.isQuadrupole()) {
307 // Quadrupoles in OpenMD are set as the diagonal elements
308 // of the diagonalized traceless quadrupole moment tensor.
309 // The column vectors of the unitary matrix that diagonalizes
310 // the quadrupole moment tensor become the eFrame (or the
311 // electrostatic version of the body-fixed frame.
312 electrostaticAtomData.is_Quadrupole = true;
313 electrostaticAtomData.quadrupole_moments = ma.getQuadrupoleMoments();
314 }
315 }
316
317 FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType);
318
319 if (fqa.isFluctuatingCharge()) {
320 electrostaticAtomData.is_Fluctuating = true;
321 electrostaticAtomData.electronegativity = fqa.getElectronegativity();
322 electrostaticAtomData.hardness = fqa.getHardness();
323 electrostaticAtomData.slaterN = fqa.getSlaterN();
324 electrostaticAtomData.slaterZeta = fqa.getSlaterZeta();
325 }
326
327 pair<map<int,AtomType*>::iterator,bool> ret;
328 ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(),
329 atomType) );
330 if (ret.second == false) {
331 sprintf( painCave.errMsg,
332 "Electrostatic already had a previous entry with ident %d\n",
333 atomType->getIdent() );
334 painCave.severity = OPENMD_INFO;
335 painCave.isFatal = 0;
336 simError();
337 }
338
339 ElectrostaticMap[atomType] = electrostaticAtomData;
340
341 // Now, iterate over all known types and add to the mixing map:
342
343 map<AtomType*, ElectrostaticAtomData>::iterator it;
344 for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) {
345 AtomType* atype2 = (*it).first;
346 ElectrostaticAtomData eaData2 = (*it).second;
347 if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) {
348
349 RealType a = electrostaticAtomData.slaterZeta;
350 RealType b = eaData2.slaterZeta;
351 int m = electrostaticAtomData.slaterN;
352 int n = eaData2.slaterN;
353
354 // Create the spline of the coulombic integral for s-type
355 // Slater orbitals. Add a 2 angstrom safety window to deal
356 // with cutoffGroups that have charged atoms longer than the
357 // cutoffRadius away from each other.
358
359 RealType rval;
360 RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1);
361 vector<RealType> rvals;
362 vector<RealType> J1vals;
363 vector<RealType> J2vals;
364 for (int i = 0; i < np_; i++) {
365 rval = RealType(i) * dr;
366 rvals.push_back(rval);
367 J1vals.push_back(electrostaticAtomData.hardness * sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromsToBohr ) );
368 // may not be necessary if Slater coulomb integral is symmetric
369 J2vals.push_back(eaData2.hardness * sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromsToBohr ) );
370 }
371
372 CubicSpline* J1 = new CubicSpline();
373 J1->addPoints(rvals, J1vals);
374 CubicSpline* J2 = new CubicSpline();
375 J2->addPoints(rvals, J2vals);
376
377 pair<AtomType*, AtomType*> key1, key2;
378 key1 = make_pair(atomType, atype2);
379 key2 = make_pair(atype2, atomType);
380
381 Jij[key1] = J1;
382 Jij[key2] = J2;
383 }
384 }
385
386 return;
387 }
388
389 void Electrostatic::setCutoffRadius( RealType rCut ) {
390 cutoffRadius_ = rCut;
391 rrf_ = cutoffRadius_;
392 haveCutoffRadius_ = true;
393 }
394
395 void Electrostatic::setSwitchingRadius( RealType rSwitch ) {
396 rt_ = rSwitch;
397 }
398 void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) {
399 summationMethod_ = esm;
400 }
401 void Electrostatic::setElectrostaticScreeningMethod( ElectrostaticScreeningMethod sm ) {
402 screeningMethod_ = sm;
403 }
404 void Electrostatic::setDampingAlpha( RealType alpha ) {
405 dampingAlpha_ = alpha;
406 haveDampingAlpha_ = true;
407 }
408 void Electrostatic::setReactionFieldDielectric( RealType dielectric ){
409 dielectric_ = dielectric;
410 haveDielectric_ = true;
411 }
412
413 void Electrostatic::calcForce(InteractionData &idat) {
414
415 // utility variables. Should clean these up and use the Vector3d and
416 // Mat3x3d to replace as many as we can in future versions:
417
418 RealType q_i, q_j, mu_i, mu_j, d_i, d_j;
419 RealType qxx_i, qyy_i, qzz_i;
420 RealType qxx_j, qyy_j, qzz_j;
421 RealType cx_i, cy_i, cz_i;
422 RealType cx_j, cy_j, cz_j;
423 RealType cx2, cy2, cz2;
424 RealType ct_i, ct_j, ct_ij, a1;
425 RealType riji, ri, ri2, ri3, ri4;
426 RealType pref, vterm, epot, dudr;
427 RealType vpair(0.0);
428 RealType scale, sc2;
429 RealType pot_term, preVal, rfVal;
430 RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj;
431 RealType preSw, preSwSc;
432 RealType c1, c2, c3, c4;
433 RealType erfcVal(1.0), derfcVal(0.0);
434 RealType BigR;
435 RealType two(2.0), three(3.0);
436
437 Vector3d Q_i, Q_j;
438 Vector3d ux_i, uy_i, uz_i;
439 Vector3d ux_j, uy_j, uz_j;
440 Vector3d dudux_i, duduy_i, duduz_i;
441 Vector3d dudux_j, duduy_j, duduz_j;
442 Vector3d rhatdot2, rhatc4;
443 Vector3d dVdr;
444
445 // variables for indirect (reaction field) interactions for excluded pairs:
446 RealType indirect_Pot(0.0);
447 RealType indirect_vpair(0.0);
448 Vector3d indirect_dVdr(V3Zero);
449 Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero);
450
451 RealType coulInt, vFluc1(0.0), vFluc2(0.0);
452 pair<RealType, RealType> res;
453
454 // splines for coulomb integrals
455 CubicSpline* J1;
456 CubicSpline* J2;
457
458 if (!initialized_) initialize();
459
460 ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first];
461 ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second];
462
463 // some variables we'll need independent of electrostatic type:
464
465 riji = 1.0 / *(idat.rij) ;
466 Vector3d rhat = *(idat.d) * riji;
467
468 // logicals
469
470 bool i_is_Charge = data1.is_Charge;
471 bool i_is_Dipole = data1.is_Dipole;
472 bool i_is_SplitDipole = data1.is_SplitDipole;
473 bool i_is_Quadrupole = data1.is_Quadrupole;
474 bool i_is_Fluctuating = data1.is_Fluctuating;
475
476 bool j_is_Charge = data2.is_Charge;
477 bool j_is_Dipole = data2.is_Dipole;
478 bool j_is_SplitDipole = data2.is_SplitDipole;
479 bool j_is_Quadrupole = data2.is_Quadrupole;
480 bool j_is_Fluctuating = data2.is_Fluctuating;
481
482 if (i_is_Charge) {
483 q_i = data1.fixedCharge;
484
485 if (i_is_Fluctuating) {
486 q_i += *(idat.flucQ1);
487 }
488
489 if (idat.excluded) {
490 *(idat.skippedCharge2) += q_i;
491 }
492 }
493
494 if (i_is_Dipole) {
495 mu_i = data1.dipole_moment;
496 uz_i = idat.eFrame1->getColumn(2);
497
498 ct_i = dot(uz_i, rhat);
499
500 if (i_is_SplitDipole)
501 d_i = data1.split_dipole_distance;
502
503 duduz_i = V3Zero;
504 }
505
506 if (i_is_Quadrupole) {
507 Q_i = data1.quadrupole_moments;
508 qxx_i = Q_i.x();
509 qyy_i = Q_i.y();
510 qzz_i = Q_i.z();
511
512 ux_i = idat.eFrame1->getColumn(0);
513 uy_i = idat.eFrame1->getColumn(1);
514 uz_i = idat.eFrame1->getColumn(2);
515
516 cx_i = dot(ux_i, rhat);
517 cy_i = dot(uy_i, rhat);
518 cz_i = dot(uz_i, rhat);
519
520 dudux_i = V3Zero;
521 duduy_i = V3Zero;
522 duduz_i = V3Zero;
523 }
524
525 if (j_is_Charge) {
526 q_j = data2.fixedCharge;
527
528 if (j_is_Fluctuating)
529 q_j += *(idat.flucQ2);
530
531 if (idat.excluded) {
532 *(idat.skippedCharge1) += q_j;
533 }
534 }
535
536
537 if (j_is_Dipole) {
538 mu_j = data2.dipole_moment;
539 uz_j = idat.eFrame2->getColumn(2);
540
541 ct_j = dot(uz_j, rhat);
542
543 if (j_is_SplitDipole)
544 d_j = data2.split_dipole_distance;
545
546 duduz_j = V3Zero;
547 }
548
549 if (j_is_Quadrupole) {
550 Q_j = data2.quadrupole_moments;
551 qxx_j = Q_j.x();
552 qyy_j = Q_j.y();
553 qzz_j = Q_j.z();
554
555 ux_j = idat.eFrame2->getColumn(0);
556 uy_j = idat.eFrame2->getColumn(1);
557 uz_j = idat.eFrame2->getColumn(2);
558
559 cx_j = dot(ux_j, rhat);
560 cy_j = dot(uy_j, rhat);
561 cz_j = dot(uz_j, rhat);
562
563 dudux_j = V3Zero;
564 duduy_j = V3Zero;
565 duduz_j = V3Zero;
566 }
567
568 if (i_is_Fluctuating && j_is_Fluctuating) {
569 J1 = Jij[idat.atypes];
570 J2 = Jij[make_pair(idat.atypes.second, idat.atypes.first)];
571 }
572
573 epot = 0.0;
574 dVdr = V3Zero;
575
576 if (i_is_Charge) {
577
578 if (j_is_Charge) {
579 if (screeningMethod_ == DAMPED) {
580 // assemble the damping variables
581 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
582 //erfcVal = res.first;
583 //derfcVal = res.second;
584
585 erfcVal = erfc(dampingAlpha_ * *(idat.rij));
586 derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
587
588 c1 = erfcVal * riji;
589 c2 = (-derfcVal + c1) * riji;
590 } else {
591 c1 = riji;
592 c2 = c1 * riji;
593 }
594
595 preVal = *(idat.electroMult) * pre11_;
596
597 if (summationMethod_ == esm_SHIFTED_POTENTIAL) {
598 vterm = preVal * (c1 - c1c_);
599 dudr = - *(idat.sw) * preVal * c2;
600
601 } else if (summationMethod_ == esm_SHIFTED_FORCE) {
602 vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij) - cutoffRadius_) );
603 dudr = *(idat.sw) * preVal * (c2c_ - c2);
604
605 } else if (summationMethod_ == esm_REACTION_FIELD) {
606 rfVal = preRF_ * *(idat.rij) * *(idat.rij);
607
608 vterm = preVal * ( riji + rfVal );
609 dudr = *(idat.sw) * preVal * ( 2.0 * rfVal - riji ) * riji;
610
611 // if this is an excluded pair, there are still indirect
612 // interactions via the reaction field we must worry about:
613
614 if (idat.excluded) {
615 indirect_vpair += preVal * rfVal;
616 indirect_Pot += *(idat.sw) * preVal * rfVal;
617 indirect_dVdr += *(idat.sw) * preVal * two * rfVal * riji * rhat;
618 }
619
620 } else {
621
622 vterm = preVal * riji * erfcVal;
623 dudr = - *(idat.sw) * preVal * c2;
624
625 }
626
627 vpair += vterm * q_i * q_j;
628 epot += *(idat.sw) * vterm * q_i * q_j;
629 dVdr += dudr * rhat * q_i * q_j;
630
631 if (i_is_Fluctuating) {
632 if (idat.excluded) {
633 // vFluc1 is the difference between the direct coulomb integral
634 // and the normal 1/r-like interaction between point charges.
635 coulInt = J1->getValueAt( *(idat.rij) );
636 vFluc1 = coulInt - (*(idat.sw) * vterm);
637 } else {
638 vFluc1 = 0.0;
639 }
640 *(idat.dVdFQ1) += ( *(idat.sw) * vterm + vFluc1 ) * q_j;
641 }
642
643 if (j_is_Fluctuating) {
644 if (idat.excluded) {
645 // vFluc2 is the difference between the direct coulomb integral
646 // and the normal 1/r-like interaction between point charges.
647 coulInt = J2->getValueAt( *(idat.rij) );
648 vFluc2 = coulInt - (*(idat.sw) * vterm);
649 } else {
650 vFluc2 = 0.0;
651 }
652 *(idat.dVdFQ2) += ( *(idat.sw) * vterm + vFluc2 ) * q_i;
653 }
654
655
656 }
657
658 if (j_is_Dipole) {
659 // pref is used by all the possible methods
660 pref = *(idat.electroMult) * pre12_ * q_i * mu_j;
661 preSw = *(idat.sw) * pref;
662
663 if (summationMethod_ == esm_REACTION_FIELD) {
664 ri2 = riji * riji;
665 ri3 = ri2 * riji;
666
667 vterm = - pref * ct_j * ( ri2 - preRF2_ * *(idat.rij) );
668 vpair += vterm;
669 epot += *(idat.sw) * vterm;
670
671 dVdr += -preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
672 duduz_j += -preSw * rhat * (ri2 - preRF2_ * *(idat.rij) );
673
674 // Even if we excluded this pair from direct interactions,
675 // we still have the reaction-field-mediated charge-dipole
676 // interaction:
677
678 if (idat.excluded) {
679 indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij);
680 indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij);
681 indirect_dVdr += preSw * preRF2_ * uz_j;
682 indirect_duduz_j += preSw * rhat * preRF2_ * *(idat.rij);
683 }
684
685 } else {
686 // determine the inverse r used if we have split dipoles
687 if (j_is_SplitDipole) {
688 BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
689 ri = 1.0 / BigR;
690 scale = *(idat.rij) * ri;
691 } else {
692 ri = riji;
693 scale = 1.0;
694 }
695
696 sc2 = scale * scale;
697
698 if (screeningMethod_ == DAMPED) {
699 // assemble the damping variables
700 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
701 //erfcVal = res.first;
702 //derfcVal = res.second;
703 erfcVal = erfc(dampingAlpha_ * *(idat.rij));
704 derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
705 c1 = erfcVal * ri;
706 c2 = (-derfcVal + c1) * ri;
707 c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
708 } else {
709 c1 = ri;
710 c2 = c1 * ri;
711 c3 = 3.0 * c2 * ri;
712 }
713
714 c2ri = c2 * ri;
715
716 // calculate the potential
717 pot_term = scale * c2;
718 vterm = -pref * ct_j * pot_term;
719 vpair += vterm;
720 epot += *(idat.sw) * vterm;
721
722 // calculate derivatives for forces and torques
723
724 dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3);
725 duduz_j += -preSw * pot_term * rhat;
726
727 }
728 if (i_is_Fluctuating) {
729 *(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i;
730 }
731 }
732
733 if (j_is_Quadrupole) {
734 // first precalculate some necessary variables
735 cx2 = cx_j * cx_j;
736 cy2 = cy_j * cy_j;
737 cz2 = cz_j * cz_j;
738 pref = *(idat.electroMult) * pre14_ * q_i * one_third_;
739
740 if (screeningMethod_ == DAMPED) {
741 // assemble the damping variables
742 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
743 //erfcVal = res.first;
744 //derfcVal = res.second;
745 erfcVal = erfc(dampingAlpha_ * *(idat.rij));
746 derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
747 c1 = erfcVal * riji;
748 c2 = (-derfcVal + c1) * riji;
749 c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
750 c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
751 } else {
752 c1 = riji;
753 c2 = c1 * riji;
754 c3 = 3.0 * c2 * riji;
755 c4 = 5.0 * c3 * riji * riji;
756 }
757
758 // precompute variables for convenience
759 preSw = *(idat.sw) * pref;
760 c2ri = c2 * riji;
761 c3ri = c3 * riji;
762 c4rij = c4 * *(idat.rij) ;
763 rhatdot2 = two * rhat * c3;
764 rhatc4 = rhat * c4rij;
765
766 // calculate the potential
767 pot_term = ( qxx_j * (cx2*c3 - c2ri) +
768 qyy_j * (cy2*c3 - c2ri) +
769 qzz_j * (cz2*c3 - c2ri) );
770 vterm = pref * pot_term;
771 vpair += vterm;
772 epot += *(idat.sw) * vterm;
773
774 // calculate derivatives for the forces and torques
775
776 dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (two*cx_j*ux_j + rhat)*c3ri) +
777 qyy_j* (cy2*rhatc4 - (two*cy_j*uy_j + rhat)*c3ri) +
778 qzz_j* (cz2*rhatc4 - (two*cz_j*uz_j + rhat)*c3ri));
779
780 dudux_j += preSw * qxx_j * cx_j * rhatdot2;
781 duduy_j += preSw * qyy_j * cy_j * rhatdot2;
782 duduz_j += preSw * qzz_j * cz_j * rhatdot2;
783 if (i_is_Fluctuating) {
784 *(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i;
785 }
786
787 }
788 }
789
790 if (i_is_Dipole) {
791
792 if (j_is_Charge) {
793 // variables used by all the methods
794 pref = *(idat.electroMult) * pre12_ * q_j * mu_i;
795 preSw = *(idat.sw) * pref;
796
797 if (summationMethod_ == esm_REACTION_FIELD) {
798
799 ri2 = riji * riji;
800 ri3 = ri2 * riji;
801
802 vterm = pref * ct_i * ( ri2 - preRF2_ * *(idat.rij) );
803 vpair += vterm;
804 epot += *(idat.sw) * vterm;
805
806 dVdr += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_ * uz_i);
807
808 duduz_i += preSw * rhat * (ri2 - preRF2_ * *(idat.rij) );
809
810 // Even if we excluded this pair from direct interactions,
811 // we still have the reaction-field-mediated charge-dipole
812 // interaction:
813
814 if (idat.excluded) {
815 indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij);
816 indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij);
817 indirect_dVdr += -preSw * preRF2_ * uz_i;
818 indirect_duduz_i += -preSw * rhat * preRF2_ * *(idat.rij);
819 }
820
821 } else {
822
823 // determine inverse r if we are using split dipoles
824 if (i_is_SplitDipole) {
825 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
826 ri = 1.0 / BigR;
827 scale = *(idat.rij) * ri;
828 } else {
829 ri = riji;
830 scale = 1.0;
831 }
832
833 sc2 = scale * scale;
834
835 if (screeningMethod_ == DAMPED) {
836 // assemble the damping variables
837 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
838 //erfcVal = res.first;
839 //derfcVal = res.second;
840 erfcVal = erfc(dampingAlpha_ * *(idat.rij));
841 derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
842 c1 = erfcVal * ri;
843 c2 = (-derfcVal + c1) * ri;
844 c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
845 } else {
846 c1 = ri;
847 c2 = c1 * ri;
848 c3 = 3.0 * c2 * ri;
849 }
850
851 c2ri = c2 * ri;
852
853 // calculate the potential
854 pot_term = c2 * scale;
855 vterm = pref * ct_i * pot_term;
856 vpair += vterm;
857 epot += *(idat.sw) * vterm;
858
859 // calculate derivatives for the forces and torques
860 dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3);
861 duduz_i += preSw * pot_term * rhat;
862 }
863
864 if (j_is_Fluctuating) {
865 *(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j;
866 }
867
868 }
869
870 if (j_is_Dipole) {
871 // variables used by all methods
872 ct_ij = dot(uz_i, uz_j);
873
874 pref = *(idat.electroMult) * pre22_ * mu_i * mu_j;
875 preSw = *(idat.sw) * pref;
876
877 if (summationMethod_ == esm_REACTION_FIELD) {
878 ri2 = riji * riji;
879 ri3 = ri2 * riji;
880 ri4 = ri2 * ri2;
881
882 vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) -
883 preRF2_ * ct_ij );
884 vpair += vterm;
885 epot += *(idat.sw) * vterm;
886
887 a1 = 5.0 * ct_i * ct_j - ct_ij;
888
889 dVdr += preSw * three * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i);
890
891 duduz_i += preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j);
892 duduz_j += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_*uz_i);
893
894 if (idat.excluded) {
895 indirect_vpair += - pref * preRF2_ * ct_ij;
896 indirect_Pot += - preSw * preRF2_ * ct_ij;
897 indirect_duduz_i += -preSw * preRF2_ * uz_j;
898 indirect_duduz_j += -preSw * preRF2_ * uz_i;
899 }
900
901 } else {
902
903 if (i_is_SplitDipole) {
904 if (j_is_SplitDipole) {
905 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j);
906 } else {
907 BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i);
908 }
909 ri = 1.0 / BigR;
910 scale = *(idat.rij) * ri;
911 } else {
912 if (j_is_SplitDipole) {
913 BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j);
914 ri = 1.0 / BigR;
915 scale = *(idat.rij) * ri;
916 } else {
917 ri = riji;
918 scale = 1.0;
919 }
920 }
921 if (screeningMethod_ == DAMPED) {
922 // assemble damping variables
923 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
924 //erfcVal = res.first;
925 //derfcVal = res.second;
926 erfcVal = erfc(dampingAlpha_ * *(idat.rij));
927 derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
928 c1 = erfcVal * ri;
929 c2 = (-derfcVal + c1) * ri;
930 c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri;
931 c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri;
932 } else {
933 c1 = ri;
934 c2 = c1 * ri;
935 c3 = 3.0 * c2 * ri;
936 c4 = 5.0 * c3 * ri * ri;
937 }
938
939 // precompute variables for convenience
940 sc2 = scale * scale;
941 cti3 = ct_i * sc2 * c3;
942 ctj3 = ct_j * sc2 * c3;
943 ctidotj = ct_i * ct_j * sc2;
944 preSwSc = preSw * scale;
945 c2ri = c2 * ri;
946 c3ri = c3 * ri;
947 c4rij = c4 * *(idat.rij) ;
948
949 // calculate the potential
950 pot_term = (ct_ij * c2ri - ctidotj * c3);
951 vterm = pref * pot_term;
952 vpair += vterm;
953 epot += *(idat.sw) * vterm;
954
955 // calculate derivatives for the forces and torques
956 dVdr += preSwSc * ( ctidotj * rhat * c4rij -
957 (ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri);
958
959 duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat);
960 duduz_j += preSw * (uz_i * c2ri - cti3 * rhat);
961 }
962 }
963 }
964
965 if (i_is_Quadrupole) {
966 if (j_is_Charge) {
967 // precompute some necessary variables
968 cx2 = cx_i * cx_i;
969 cy2 = cy_i * cy_i;
970 cz2 = cz_i * cz_i;
971
972 pref = *(idat.electroMult) * pre14_ * q_j * one_third_;
973
974 if (screeningMethod_ == DAMPED) {
975 // assemble the damping variables
976 //res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) );
977 //erfcVal = res.first;
978 //derfcVal = res.second;
979 erfcVal = erfc(dampingAlpha_ * *(idat.rij));
980 derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2));
981 c1 = erfcVal * riji;
982 c2 = (-derfcVal + c1) * riji;
983 c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji;
984 c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji;
985 } else {
986 c1 = riji;
987 c2 = c1 * riji;
988 c3 = 3.0 * c2 * riji;
989 c4 = 5.0 * c3 * riji * riji;
990 }
991
992 // precompute some variables for convenience
993 preSw = *(idat.sw) * pref;
994 c2ri = c2 * riji;
995 c3ri = c3 * riji;
996 c4rij = c4 * *(idat.rij) ;
997 rhatdot2 = two * rhat * c3;
998 rhatc4 = rhat * c4rij;
999
1000 // calculate the potential
1001 pot_term = ( qxx_i * (cx2 * c3 - c2ri) +
1002 qyy_i * (cy2 * c3 - c2ri) +
1003 qzz_i * (cz2 * c3 - c2ri) );
1004
1005 vterm = pref * pot_term;
1006 vpair += vterm;
1007 epot += *(idat.sw) * vterm;
1008
1009 // calculate the derivatives for the forces and torques
1010
1011 dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (two*cx_i*ux_i + rhat)*c3ri) +
1012 qyy_i* (cy2*rhatc4 - (two*cy_i*uy_i + rhat)*c3ri) +
1013 qzz_i* (cz2*rhatc4 - (two*cz_i*uz_i + rhat)*c3ri));
1014
1015 dudux_i += preSw * qxx_i * cx_i * rhatdot2;
1016 duduy_i += preSw * qyy_i * cy_i * rhatdot2;
1017 duduz_i += preSw * qzz_i * cz_i * rhatdot2;
1018
1019 if (j_is_Fluctuating) {
1020 *(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j;
1021 }
1022
1023 }
1024 }
1025
1026
1027 if (!idat.excluded) {
1028 *(idat.vpair) += vpair;
1029 (*(idat.pot))[ELECTROSTATIC_FAMILY] += epot;
1030 *(idat.f1) += dVdr;
1031
1032 if (i_is_Dipole || i_is_Quadrupole)
1033 *(idat.t1) -= cross(uz_i, duduz_i);
1034 if (i_is_Quadrupole) {
1035 *(idat.t1) -= cross(ux_i, dudux_i);
1036 *(idat.t1) -= cross(uy_i, duduy_i);
1037 }
1038
1039 if (j_is_Dipole || j_is_Quadrupole)
1040 *(idat.t2) -= cross(uz_j, duduz_j);
1041 if (j_is_Quadrupole) {
1042 *(idat.t2) -= cross(uz_j, dudux_j);
1043 *(idat.t2) -= cross(uz_j, duduy_j);
1044 }
1045
1046 } else {
1047
1048 // only accumulate the forces and torques resulting from the
1049 // indirect reaction field terms.
1050
1051 *(idat.vpair) += indirect_vpair;
1052 (*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot;
1053 *(idat.f1) += indirect_dVdr;
1054
1055 if (i_is_Dipole)
1056 *(idat.t1) -= cross(uz_i, indirect_duduz_i);
1057 if (j_is_Dipole)
1058 *(idat.t2) -= cross(uz_j, indirect_duduz_j);
1059 }
1060
1061 return;
1062 }
1063
1064 void Electrostatic::calcSelfCorrection(SelfData &sdat) {
1065 RealType mu1, preVal, self;
1066 if (!initialized_) initialize();
1067
1068 ElectrostaticAtomData data = ElectrostaticMap[sdat.atype];
1069
1070 // logicals
1071 bool i_is_Charge = data.is_Charge;
1072 bool i_is_Dipole = data.is_Dipole;
1073 bool i_is_Fluctuating = data.is_Fluctuating;
1074 RealType chg1 = data.fixedCharge;
1075
1076 if (i_is_Fluctuating) {
1077 chg1 += *(sdat.flucQ);
1078 // dVdFQ is really a force, so this is negative the derivative
1079 *(sdat.dVdFQ) -= *(sdat.flucQ) * data.hardness + data.electronegativity;
1080 }
1081
1082 if (summationMethod_ == esm_REACTION_FIELD) {
1083 if (i_is_Dipole) {
1084 mu1 = data.dipole_moment;
1085 preVal = pre22_ * preRF2_ * mu1 * mu1;
1086 (*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal;
1087
1088 // The self-correction term adds into the reaction field vector
1089 Vector3d uz_i = sdat.eFrame->getColumn(2);
1090 Vector3d ei = preVal * uz_i;
1091
1092 // This looks very wrong. A vector crossed with itself is zero.
1093 *(sdat.t) -= cross(uz_i, ei);
1094 }
1095 } else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) {
1096 if (i_is_Charge) {
1097 if (screeningMethod_ == DAMPED) {
1098 self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1099 } else {
1100 self = - 0.5 * rcuti_ * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_;
1101 }
1102 (*(sdat.pot))[ELECTROSTATIC_FAMILY] += self;
1103 }
1104 }
1105 }
1106
1107 RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) {
1108 // This seems to work moderately well as a default. There's no
1109 // inherent scale for 1/r interactions that we can standardize.
1110 // 12 angstroms seems to be a reasonably good guess for most
1111 // cases.
1112 return 12.0;
1113 }
1114 }

Properties

Name Value
svn:eol-style native