1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <stdio.h> |
44 |
#include <string.h> |
45 |
|
46 |
#include <cmath> |
47 |
#include "nonbonded/Electrostatic.hpp" |
48 |
#include "utils/simError.h" |
49 |
#include "types/NonBondedInteractionType.hpp" |
50 |
#include "types/FixedChargeAdapter.hpp" |
51 |
#include "types/FluctuatingChargeAdapter.hpp" |
52 |
#include "types/MultipoleAdapter.hpp" |
53 |
#include "io/Globals.hpp" |
54 |
#include "nonbonded/SlaterIntegrals.hpp" |
55 |
#include "utils/PhysicalConstants.hpp" |
56 |
|
57 |
|
58 |
namespace OpenMD { |
59 |
|
60 |
Electrostatic::Electrostatic(): name_("Electrostatic"), initialized_(false), |
61 |
forceField_(NULL), info_(NULL), |
62 |
haveCutoffRadius_(false), |
63 |
haveDampingAlpha_(false), |
64 |
haveDielectric_(false), |
65 |
haveElectroSpline_(false) |
66 |
{} |
67 |
|
68 |
void Electrostatic::initialize() { |
69 |
|
70 |
Globals* simParams_ = info_->getSimParams(); |
71 |
|
72 |
summationMap_["HARD"] = esm_HARD; |
73 |
summationMap_["NONE"] = esm_HARD; |
74 |
summationMap_["SWITCHING_FUNCTION"] = esm_SWITCHING_FUNCTION; |
75 |
summationMap_["SHIFTED_POTENTIAL"] = esm_SHIFTED_POTENTIAL; |
76 |
summationMap_["SHIFTED_FORCE"] = esm_SHIFTED_FORCE; |
77 |
summationMap_["REACTION_FIELD"] = esm_REACTION_FIELD; |
78 |
summationMap_["EWALD_FULL"] = esm_EWALD_FULL; |
79 |
summationMap_["EWALD_PME"] = esm_EWALD_PME; |
80 |
summationMap_["EWALD_SPME"] = esm_EWALD_SPME; |
81 |
screeningMap_["DAMPED"] = DAMPED; |
82 |
screeningMap_["UNDAMPED"] = UNDAMPED; |
83 |
|
84 |
// these prefactors convert the multipole interactions into kcal / mol |
85 |
// all were computed assuming distances are measured in angstroms |
86 |
// Charge-Charge, assuming charges are measured in electrons |
87 |
pre11_ = 332.0637778; |
88 |
// Charge-Dipole, assuming charges are measured in electrons, and |
89 |
// dipoles are measured in debyes |
90 |
pre12_ = 69.13373; |
91 |
// Dipole-Dipole, assuming dipoles are measured in debyes |
92 |
pre22_ = 14.39325; |
93 |
// Charge-Quadrupole, assuming charges are measured in electrons, and |
94 |
// quadrupoles are measured in 10^-26 esu cm^2 |
95 |
// This unit is also known affectionately as an esu centi-barn. |
96 |
pre14_ = 69.13373; |
97 |
|
98 |
// conversions for the simulation box dipole moment |
99 |
chargeToC_ = 1.60217733e-19; |
100 |
angstromToM_ = 1.0e-10; |
101 |
debyeToCm_ = 3.33564095198e-30; |
102 |
|
103 |
// number of points for electrostatic splines |
104 |
np_ = 100; |
105 |
|
106 |
// variables to handle different summation methods for long-range |
107 |
// electrostatics: |
108 |
summationMethod_ = esm_HARD; |
109 |
screeningMethod_ = UNDAMPED; |
110 |
dielectric_ = 1.0; |
111 |
one_third_ = 1.0 / 3.0; |
112 |
|
113 |
// check the summation method: |
114 |
if (simParams_->haveElectrostaticSummationMethod()) { |
115 |
string myMethod = simParams_->getElectrostaticSummationMethod(); |
116 |
toUpper(myMethod); |
117 |
map<string, ElectrostaticSummationMethod>::iterator i; |
118 |
i = summationMap_.find(myMethod); |
119 |
if ( i != summationMap_.end() ) { |
120 |
summationMethod_ = (*i).second; |
121 |
} else { |
122 |
// throw error |
123 |
sprintf( painCave.errMsg, |
124 |
"Electrostatic::initialize: Unknown electrostaticSummationMethod.\n" |
125 |
"\t(Input file specified %s .)\n" |
126 |
"\telectrostaticSummationMethod must be one of: \"hard\",\n" |
127 |
"\t\"shifted_potential\", \"shifted_force\", or \n" |
128 |
"\t\"reaction_field\".\n", myMethod.c_str() ); |
129 |
painCave.isFatal = 1; |
130 |
simError(); |
131 |
} |
132 |
} else { |
133 |
// set ElectrostaticSummationMethod to the cutoffMethod: |
134 |
if (simParams_->haveCutoffMethod()){ |
135 |
string myMethod = simParams_->getCutoffMethod(); |
136 |
toUpper(myMethod); |
137 |
map<string, ElectrostaticSummationMethod>::iterator i; |
138 |
i = summationMap_.find(myMethod); |
139 |
if ( i != summationMap_.end() ) { |
140 |
summationMethod_ = (*i).second; |
141 |
} |
142 |
} |
143 |
} |
144 |
|
145 |
if (summationMethod_ == esm_REACTION_FIELD) { |
146 |
if (!simParams_->haveDielectric()) { |
147 |
// throw warning |
148 |
sprintf( painCave.errMsg, |
149 |
"SimInfo warning: dielectric was not specified in the input file\n\tfor the reaction field correction method.\n" |
150 |
"\tA default value of %f will be used for the dielectric.\n", dielectric_); |
151 |
painCave.isFatal = 0; |
152 |
painCave.severity = OPENMD_INFO; |
153 |
simError(); |
154 |
} else { |
155 |
dielectric_ = simParams_->getDielectric(); |
156 |
} |
157 |
haveDielectric_ = true; |
158 |
} |
159 |
|
160 |
if (simParams_->haveElectrostaticScreeningMethod()) { |
161 |
string myScreen = simParams_->getElectrostaticScreeningMethod(); |
162 |
toUpper(myScreen); |
163 |
map<string, ElectrostaticScreeningMethod>::iterator i; |
164 |
i = screeningMap_.find(myScreen); |
165 |
if ( i != screeningMap_.end()) { |
166 |
screeningMethod_ = (*i).second; |
167 |
} else { |
168 |
sprintf( painCave.errMsg, |
169 |
"SimInfo error: Unknown electrostaticScreeningMethod.\n" |
170 |
"\t(Input file specified %s .)\n" |
171 |
"\telectrostaticScreeningMethod must be one of: \"undamped\"\n" |
172 |
"or \"damped\".\n", myScreen.c_str() ); |
173 |
painCave.isFatal = 1; |
174 |
simError(); |
175 |
} |
176 |
} |
177 |
|
178 |
// check to make sure a cutoff value has been set: |
179 |
if (!haveCutoffRadius_) { |
180 |
sprintf( painCave.errMsg, "Electrostatic::initialize has no Default " |
181 |
"Cutoff value!\n"); |
182 |
painCave.severity = OPENMD_ERROR; |
183 |
painCave.isFatal = 1; |
184 |
simError(); |
185 |
} |
186 |
|
187 |
if (screeningMethod_ == DAMPED) { |
188 |
if (!simParams_->haveDampingAlpha()) { |
189 |
// first set a cutoff dependent alpha value |
190 |
// we assume alpha depends linearly with rcut from 0 to 20.5 ang |
191 |
dampingAlpha_ = 0.425 - cutoffRadius_* 0.02; |
192 |
if (dampingAlpha_ < 0.0) dampingAlpha_ = 0.0; |
193 |
|
194 |
// throw warning |
195 |
sprintf( painCave.errMsg, |
196 |
"Electrostatic::initialize: dampingAlpha was not specified in the\n" |
197 |
"\tinput file. A default value of %f (1/ang) will be used for the\n" |
198 |
"\tcutoff of %f (ang).\n", |
199 |
dampingAlpha_, cutoffRadius_); |
200 |
painCave.severity = OPENMD_INFO; |
201 |
painCave.isFatal = 0; |
202 |
simError(); |
203 |
} else { |
204 |
dampingAlpha_ = simParams_->getDampingAlpha(); |
205 |
} |
206 |
haveDampingAlpha_ = true; |
207 |
} |
208 |
|
209 |
// find all of the Electrostatic atom Types: |
210 |
ForceField::AtomTypeContainer* atomTypes = forceField_->getAtomTypes(); |
211 |
ForceField::AtomTypeContainer::MapTypeIterator i; |
212 |
AtomType* at; |
213 |
|
214 |
for (at = atomTypes->beginType(i); at != NULL; |
215 |
at = atomTypes->nextType(i)) { |
216 |
|
217 |
if (at->isElectrostatic()) |
218 |
addType(at); |
219 |
} |
220 |
|
221 |
cutoffRadius2_ = cutoffRadius_ * cutoffRadius_; |
222 |
rcuti_ = 1.0 / cutoffRadius_; |
223 |
rcuti2_ = rcuti_ * rcuti_; |
224 |
rcuti3_ = rcuti2_ * rcuti_; |
225 |
rcuti4_ = rcuti2_ * rcuti2_; |
226 |
|
227 |
if (screeningMethod_ == DAMPED) { |
228 |
|
229 |
alpha2_ = dampingAlpha_ * dampingAlpha_; |
230 |
alpha4_ = alpha2_ * alpha2_; |
231 |
alpha6_ = alpha4_ * alpha2_; |
232 |
alpha8_ = alpha4_ * alpha4_; |
233 |
|
234 |
constEXP_ = exp(-alpha2_ * cutoffRadius2_); |
235 |
invRootPi_ = 0.56418958354775628695; |
236 |
alphaPi_ = 2.0 * dampingAlpha_ * invRootPi_; |
237 |
|
238 |
c1c_ = erfc(dampingAlpha_ * cutoffRadius_) * rcuti_; |
239 |
c2c_ = alphaPi_ * constEXP_ * rcuti_ + c1c_ * rcuti_; |
240 |
c3c_ = 2.0 * alphaPi_ * alpha2_ + 3.0 * c2c_ * rcuti_; |
241 |
c4c_ = 4.0 * alphaPi_ * alpha4_ + 5.0 * c3c_ * rcuti2_; |
242 |
c5c_ = 8.0 * alphaPi_ * alpha6_ + 7.0 * c4c_ * rcuti2_; |
243 |
c6c_ = 16.0 * alphaPi_ * alpha8_ + 9.0 * c5c_ * rcuti2_; |
244 |
} else { |
245 |
c1c_ = rcuti_; |
246 |
c2c_ = c1c_ * rcuti_; |
247 |
c3c_ = 3.0 * c2c_ * rcuti_; |
248 |
c4c_ = 5.0 * c3c_ * rcuti2_; |
249 |
c5c_ = 7.0 * c4c_ * rcuti2_; |
250 |
c6c_ = 9.0 * c5c_ * rcuti2_; |
251 |
} |
252 |
|
253 |
if (summationMethod_ == esm_REACTION_FIELD) { |
254 |
preRF_ = (dielectric_ - 1.0) / |
255 |
((2.0 * dielectric_ + 1.0) * cutoffRadius2_ * cutoffRadius_); |
256 |
preRF2_ = 2.0 * preRF_; |
257 |
} |
258 |
|
259 |
// Add a 2 angstrom safety window to deal with cutoffGroups that |
260 |
// have charged atoms longer than the cutoffRadius away from each |
261 |
// other. Splining may not be the best choice here. Direct calls |
262 |
// to erfc might be preferrable. |
263 |
|
264 |
RealType dx = (cutoffRadius_ + 2.0) / RealType(np_ - 1); |
265 |
RealType rval; |
266 |
vector<RealType> rvals; |
267 |
vector<RealType> yvals; |
268 |
for (int i = 0; i < np_; i++) { |
269 |
rval = RealType(i) * dx; |
270 |
rvals.push_back(rval); |
271 |
yvals.push_back(erfc(dampingAlpha_ * rval)); |
272 |
} |
273 |
erfcSpline_ = new CubicSpline(); |
274 |
erfcSpline_->addPoints(rvals, yvals); |
275 |
haveElectroSpline_ = true; |
276 |
|
277 |
initialized_ = true; |
278 |
} |
279 |
|
280 |
void Electrostatic::addType(AtomType* atomType){ |
281 |
|
282 |
ElectrostaticAtomData electrostaticAtomData; |
283 |
electrostaticAtomData.is_Charge = false; |
284 |
electrostaticAtomData.is_Dipole = false; |
285 |
electrostaticAtomData.is_SplitDipole = false; |
286 |
electrostaticAtomData.is_Quadrupole = false; |
287 |
electrostaticAtomData.is_Fluctuating = false; |
288 |
|
289 |
FixedChargeAdapter fca = FixedChargeAdapter(atomType); |
290 |
|
291 |
if (fca.isFixedCharge()) { |
292 |
electrostaticAtomData.is_Charge = true; |
293 |
electrostaticAtomData.fixedCharge = fca.getCharge(); |
294 |
} |
295 |
|
296 |
MultipoleAdapter ma = MultipoleAdapter(atomType); |
297 |
if (ma.isMultipole()) { |
298 |
if (ma.isDipole()) { |
299 |
electrostaticAtomData.is_Dipole = true; |
300 |
electrostaticAtomData.dipole_moment = ma.getDipoleMoment(); |
301 |
} |
302 |
if (ma.isSplitDipole()) { |
303 |
electrostaticAtomData.is_SplitDipole = true; |
304 |
electrostaticAtomData.split_dipole_distance = ma.getSplitDipoleDistance(); |
305 |
} |
306 |
if (ma.isQuadrupole()) { |
307 |
// Quadrupoles in OpenMD are set as the diagonal elements |
308 |
// of the diagonalized traceless quadrupole moment tensor. |
309 |
// The column vectors of the unitary matrix that diagonalizes |
310 |
// the quadrupole moment tensor become the eFrame (or the |
311 |
// electrostatic version of the body-fixed frame. |
312 |
electrostaticAtomData.is_Quadrupole = true; |
313 |
electrostaticAtomData.quadrupole_moments = ma.getQuadrupoleMoments(); |
314 |
} |
315 |
} |
316 |
|
317 |
FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atomType); |
318 |
|
319 |
if (fqa.isFluctuatingCharge()) { |
320 |
electrostaticAtomData.is_Fluctuating = true; |
321 |
electrostaticAtomData.electronegativity = fqa.getElectronegativity(); |
322 |
electrostaticAtomData.hardness = fqa.getHardness(); |
323 |
electrostaticAtomData.slaterN = fqa.getSlaterN(); |
324 |
electrostaticAtomData.slaterZeta = fqa.getSlaterZeta(); |
325 |
} |
326 |
|
327 |
pair<map<int,AtomType*>::iterator,bool> ret; |
328 |
ret = ElectrostaticList.insert( pair<int,AtomType*>(atomType->getIdent(), |
329 |
atomType) ); |
330 |
if (ret.second == false) { |
331 |
sprintf( painCave.errMsg, |
332 |
"Electrostatic already had a previous entry with ident %d\n", |
333 |
atomType->getIdent() ); |
334 |
painCave.severity = OPENMD_INFO; |
335 |
painCave.isFatal = 0; |
336 |
simError(); |
337 |
} |
338 |
|
339 |
ElectrostaticMap[atomType] = electrostaticAtomData; |
340 |
|
341 |
// Now, iterate over all known types and add to the mixing map: |
342 |
|
343 |
map<AtomType*, ElectrostaticAtomData>::iterator it; |
344 |
for( it = ElectrostaticMap.begin(); it != ElectrostaticMap.end(); ++it) { |
345 |
AtomType* atype2 = (*it).first; |
346 |
ElectrostaticAtomData eaData2 = (*it).second; |
347 |
if (eaData2.is_Fluctuating && electrostaticAtomData.is_Fluctuating) { |
348 |
|
349 |
RealType a = electrostaticAtomData.slaterZeta; |
350 |
RealType b = eaData2.slaterZeta; |
351 |
int m = electrostaticAtomData.slaterN; |
352 |
int n = eaData2.slaterN; |
353 |
|
354 |
// Create the spline of the coulombic integral for s-type |
355 |
// Slater orbitals. Add a 2 angstrom safety window to deal |
356 |
// with cutoffGroups that have charged atoms longer than the |
357 |
// cutoffRadius away from each other. |
358 |
|
359 |
RealType rval; |
360 |
RealType dr = (cutoffRadius_ + 2.0) / RealType(np_ - 1); |
361 |
vector<RealType> rvals; |
362 |
vector<RealType> J1vals; |
363 |
vector<RealType> J2vals; |
364 |
for (int i = 0; i < np_; i++) { |
365 |
rval = RealType(i) * dr; |
366 |
rvals.push_back(rval); |
367 |
J1vals.push_back(electrostaticAtomData.hardness * sSTOCoulInt( a, b, m, n, rval * PhysicalConstants::angstromsToBohr ) ); |
368 |
// may not be necessary if Slater coulomb integral is symmetric |
369 |
J2vals.push_back(eaData2.hardness * sSTOCoulInt( b, a, n, m, rval * PhysicalConstants::angstromsToBohr ) ); |
370 |
} |
371 |
|
372 |
CubicSpline* J1 = new CubicSpline(); |
373 |
J1->addPoints(rvals, J1vals); |
374 |
CubicSpline* J2 = new CubicSpline(); |
375 |
J2->addPoints(rvals, J2vals); |
376 |
|
377 |
pair<AtomType*, AtomType*> key1, key2; |
378 |
key1 = make_pair(atomType, atype2); |
379 |
key2 = make_pair(atype2, atomType); |
380 |
|
381 |
Jij[key1] = J1; |
382 |
Jij[key2] = J2; |
383 |
} |
384 |
} |
385 |
|
386 |
return; |
387 |
} |
388 |
|
389 |
void Electrostatic::setCutoffRadius( RealType rCut ) { |
390 |
cutoffRadius_ = rCut; |
391 |
rrf_ = cutoffRadius_; |
392 |
haveCutoffRadius_ = true; |
393 |
} |
394 |
|
395 |
void Electrostatic::setSwitchingRadius( RealType rSwitch ) { |
396 |
rt_ = rSwitch; |
397 |
} |
398 |
void Electrostatic::setElectrostaticSummationMethod( ElectrostaticSummationMethod esm ) { |
399 |
summationMethod_ = esm; |
400 |
} |
401 |
void Electrostatic::setElectrostaticScreeningMethod( ElectrostaticScreeningMethod sm ) { |
402 |
screeningMethod_ = sm; |
403 |
} |
404 |
void Electrostatic::setDampingAlpha( RealType alpha ) { |
405 |
dampingAlpha_ = alpha; |
406 |
haveDampingAlpha_ = true; |
407 |
} |
408 |
void Electrostatic::setReactionFieldDielectric( RealType dielectric ){ |
409 |
dielectric_ = dielectric; |
410 |
haveDielectric_ = true; |
411 |
} |
412 |
|
413 |
void Electrostatic::calcForce(InteractionData &idat) { |
414 |
|
415 |
// utility variables. Should clean these up and use the Vector3d and |
416 |
// Mat3x3d to replace as many as we can in future versions: |
417 |
|
418 |
RealType q_i, q_j, mu_i, mu_j, d_i, d_j; |
419 |
RealType qxx_i, qyy_i, qzz_i; |
420 |
RealType qxx_j, qyy_j, qzz_j; |
421 |
RealType cx_i, cy_i, cz_i; |
422 |
RealType cx_j, cy_j, cz_j; |
423 |
RealType cx2, cy2, cz2; |
424 |
RealType ct_i, ct_j, ct_ij, a1; |
425 |
RealType riji, ri, ri2, ri3, ri4; |
426 |
RealType pref, vterm, epot, dudr; |
427 |
RealType vpair(0.0); |
428 |
RealType scale, sc2; |
429 |
RealType pot_term, preVal, rfVal; |
430 |
RealType c2ri, c3ri, c4rij, cti3, ctj3, ctidotj; |
431 |
RealType preSw, preSwSc; |
432 |
RealType c1, c2, c3, c4; |
433 |
RealType erfcVal(1.0), derfcVal(0.0); |
434 |
RealType BigR; |
435 |
RealType two(2.0), three(3.0); |
436 |
|
437 |
Vector3d Q_i, Q_j; |
438 |
Vector3d ux_i, uy_i, uz_i; |
439 |
Vector3d ux_j, uy_j, uz_j; |
440 |
Vector3d dudux_i, duduy_i, duduz_i; |
441 |
Vector3d dudux_j, duduy_j, duduz_j; |
442 |
Vector3d rhatdot2, rhatc4; |
443 |
Vector3d dVdr; |
444 |
|
445 |
// variables for indirect (reaction field) interactions for excluded pairs: |
446 |
RealType indirect_Pot(0.0); |
447 |
RealType indirect_vpair(0.0); |
448 |
Vector3d indirect_dVdr(V3Zero); |
449 |
Vector3d indirect_duduz_i(V3Zero), indirect_duduz_j(V3Zero); |
450 |
|
451 |
RealType coulInt, vFluc1(0.0), vFluc2(0.0); |
452 |
pair<RealType, RealType> res; |
453 |
|
454 |
// splines for coulomb integrals |
455 |
CubicSpline* J1; |
456 |
CubicSpline* J2; |
457 |
|
458 |
if (!initialized_) initialize(); |
459 |
|
460 |
ElectrostaticAtomData data1 = ElectrostaticMap[idat.atypes.first]; |
461 |
ElectrostaticAtomData data2 = ElectrostaticMap[idat.atypes.second]; |
462 |
|
463 |
// some variables we'll need independent of electrostatic type: |
464 |
|
465 |
riji = 1.0 / *(idat.rij) ; |
466 |
Vector3d rhat = *(idat.d) * riji; |
467 |
|
468 |
// logicals |
469 |
|
470 |
bool i_is_Charge = data1.is_Charge; |
471 |
bool i_is_Dipole = data1.is_Dipole; |
472 |
bool i_is_SplitDipole = data1.is_SplitDipole; |
473 |
bool i_is_Quadrupole = data1.is_Quadrupole; |
474 |
bool i_is_Fluctuating = data1.is_Fluctuating; |
475 |
|
476 |
bool j_is_Charge = data2.is_Charge; |
477 |
bool j_is_Dipole = data2.is_Dipole; |
478 |
bool j_is_SplitDipole = data2.is_SplitDipole; |
479 |
bool j_is_Quadrupole = data2.is_Quadrupole; |
480 |
bool j_is_Fluctuating = data2.is_Fluctuating; |
481 |
|
482 |
if (i_is_Charge) { |
483 |
q_i = data1.fixedCharge; |
484 |
|
485 |
if (i_is_Fluctuating) { |
486 |
q_i += *(idat.flucQ1); |
487 |
} |
488 |
|
489 |
if (idat.excluded) { |
490 |
*(idat.skippedCharge2) += q_i; |
491 |
} |
492 |
} |
493 |
|
494 |
if (i_is_Dipole) { |
495 |
mu_i = data1.dipole_moment; |
496 |
uz_i = idat.eFrame1->getColumn(2); |
497 |
|
498 |
ct_i = dot(uz_i, rhat); |
499 |
|
500 |
if (i_is_SplitDipole) |
501 |
d_i = data1.split_dipole_distance; |
502 |
|
503 |
duduz_i = V3Zero; |
504 |
} |
505 |
|
506 |
if (i_is_Quadrupole) { |
507 |
Q_i = data1.quadrupole_moments; |
508 |
qxx_i = Q_i.x(); |
509 |
qyy_i = Q_i.y(); |
510 |
qzz_i = Q_i.z(); |
511 |
|
512 |
ux_i = idat.eFrame1->getColumn(0); |
513 |
uy_i = idat.eFrame1->getColumn(1); |
514 |
uz_i = idat.eFrame1->getColumn(2); |
515 |
|
516 |
cx_i = dot(ux_i, rhat); |
517 |
cy_i = dot(uy_i, rhat); |
518 |
cz_i = dot(uz_i, rhat); |
519 |
|
520 |
dudux_i = V3Zero; |
521 |
duduy_i = V3Zero; |
522 |
duduz_i = V3Zero; |
523 |
} |
524 |
|
525 |
if (j_is_Charge) { |
526 |
q_j = data2.fixedCharge; |
527 |
|
528 |
if (j_is_Fluctuating) |
529 |
q_j += *(idat.flucQ2); |
530 |
|
531 |
if (idat.excluded) { |
532 |
*(idat.skippedCharge1) += q_j; |
533 |
} |
534 |
} |
535 |
|
536 |
|
537 |
if (j_is_Dipole) { |
538 |
mu_j = data2.dipole_moment; |
539 |
uz_j = idat.eFrame2->getColumn(2); |
540 |
|
541 |
ct_j = dot(uz_j, rhat); |
542 |
|
543 |
if (j_is_SplitDipole) |
544 |
d_j = data2.split_dipole_distance; |
545 |
|
546 |
duduz_j = V3Zero; |
547 |
} |
548 |
|
549 |
if (j_is_Quadrupole) { |
550 |
Q_j = data2.quadrupole_moments; |
551 |
qxx_j = Q_j.x(); |
552 |
qyy_j = Q_j.y(); |
553 |
qzz_j = Q_j.z(); |
554 |
|
555 |
ux_j = idat.eFrame2->getColumn(0); |
556 |
uy_j = idat.eFrame2->getColumn(1); |
557 |
uz_j = idat.eFrame2->getColumn(2); |
558 |
|
559 |
cx_j = dot(ux_j, rhat); |
560 |
cy_j = dot(uy_j, rhat); |
561 |
cz_j = dot(uz_j, rhat); |
562 |
|
563 |
dudux_j = V3Zero; |
564 |
duduy_j = V3Zero; |
565 |
duduz_j = V3Zero; |
566 |
} |
567 |
|
568 |
if (i_is_Fluctuating && j_is_Fluctuating) { |
569 |
J1 = Jij[idat.atypes]; |
570 |
J2 = Jij[make_pair(idat.atypes.second, idat.atypes.first)]; |
571 |
} |
572 |
|
573 |
epot = 0.0; |
574 |
dVdr = V3Zero; |
575 |
|
576 |
if (i_is_Charge) { |
577 |
|
578 |
if (j_is_Charge) { |
579 |
if (screeningMethod_ == DAMPED) { |
580 |
// assemble the damping variables |
581 |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
582 |
//erfcVal = res.first; |
583 |
//derfcVal = res.second; |
584 |
|
585 |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
586 |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
587 |
|
588 |
c1 = erfcVal * riji; |
589 |
c2 = (-derfcVal + c1) * riji; |
590 |
} else { |
591 |
c1 = riji; |
592 |
c2 = c1 * riji; |
593 |
} |
594 |
|
595 |
preVal = *(idat.electroMult) * pre11_; |
596 |
|
597 |
if (summationMethod_ == esm_SHIFTED_POTENTIAL) { |
598 |
vterm = preVal * (c1 - c1c_); |
599 |
dudr = - *(idat.sw) * preVal * c2; |
600 |
|
601 |
} else if (summationMethod_ == esm_SHIFTED_FORCE) { |
602 |
vterm = preVal * ( c1 - c1c_ + c2c_*( *(idat.rij) - cutoffRadius_) ); |
603 |
dudr = *(idat.sw) * preVal * (c2c_ - c2); |
604 |
|
605 |
} else if (summationMethod_ == esm_REACTION_FIELD) { |
606 |
rfVal = preRF_ * *(idat.rij) * *(idat.rij); |
607 |
|
608 |
vterm = preVal * ( riji + rfVal ); |
609 |
dudr = *(idat.sw) * preVal * ( 2.0 * rfVal - riji ) * riji; |
610 |
|
611 |
// if this is an excluded pair, there are still indirect |
612 |
// interactions via the reaction field we must worry about: |
613 |
|
614 |
if (idat.excluded) { |
615 |
indirect_vpair += preVal * rfVal; |
616 |
indirect_Pot += *(idat.sw) * preVal * rfVal; |
617 |
indirect_dVdr += *(idat.sw) * preVal * two * rfVal * riji * rhat; |
618 |
} |
619 |
|
620 |
} else { |
621 |
|
622 |
vterm = preVal * riji * erfcVal; |
623 |
dudr = - *(idat.sw) * preVal * c2; |
624 |
|
625 |
} |
626 |
|
627 |
vpair += vterm * q_i * q_j; |
628 |
epot += *(idat.sw) * vterm * q_i * q_j; |
629 |
dVdr += dudr * rhat * q_i * q_j; |
630 |
|
631 |
if (i_is_Fluctuating) { |
632 |
if (idat.excluded) { |
633 |
// vFluc1 is the difference between the direct coulomb integral |
634 |
// and the normal 1/r-like interaction between point charges. |
635 |
coulInt = J1->getValueAt( *(idat.rij) ); |
636 |
vFluc1 = coulInt - (*(idat.sw) * vterm); |
637 |
} else { |
638 |
vFluc1 = 0.0; |
639 |
} |
640 |
*(idat.dVdFQ1) += ( *(idat.sw) * vterm + vFluc1 ) * q_j; |
641 |
} |
642 |
|
643 |
if (j_is_Fluctuating) { |
644 |
if (idat.excluded) { |
645 |
// vFluc2 is the difference between the direct coulomb integral |
646 |
// and the normal 1/r-like interaction between point charges. |
647 |
coulInt = J2->getValueAt( *(idat.rij) ); |
648 |
vFluc2 = coulInt - (*(idat.sw) * vterm); |
649 |
} else { |
650 |
vFluc2 = 0.0; |
651 |
} |
652 |
*(idat.dVdFQ2) += ( *(idat.sw) * vterm + vFluc2 ) * q_i; |
653 |
} |
654 |
|
655 |
|
656 |
} |
657 |
|
658 |
if (j_is_Dipole) { |
659 |
// pref is used by all the possible methods |
660 |
pref = *(idat.electroMult) * pre12_ * q_i * mu_j; |
661 |
preSw = *(idat.sw) * pref; |
662 |
|
663 |
if (summationMethod_ == esm_REACTION_FIELD) { |
664 |
ri2 = riji * riji; |
665 |
ri3 = ri2 * riji; |
666 |
|
667 |
vterm = - pref * ct_j * ( ri2 - preRF2_ * *(idat.rij) ); |
668 |
vpair += vterm; |
669 |
epot += *(idat.sw) * vterm; |
670 |
|
671 |
dVdr += -preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j); |
672 |
duduz_j += -preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
673 |
|
674 |
// Even if we excluded this pair from direct interactions, |
675 |
// we still have the reaction-field-mediated charge-dipole |
676 |
// interaction: |
677 |
|
678 |
if (idat.excluded) { |
679 |
indirect_vpair += pref * ct_j * preRF2_ * *(idat.rij); |
680 |
indirect_Pot += preSw * ct_j * preRF2_ * *(idat.rij); |
681 |
indirect_dVdr += preSw * preRF2_ * uz_j; |
682 |
indirect_duduz_j += preSw * rhat * preRF2_ * *(idat.rij); |
683 |
} |
684 |
|
685 |
} else { |
686 |
// determine the inverse r used if we have split dipoles |
687 |
if (j_is_SplitDipole) { |
688 |
BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j); |
689 |
ri = 1.0 / BigR; |
690 |
scale = *(idat.rij) * ri; |
691 |
} else { |
692 |
ri = riji; |
693 |
scale = 1.0; |
694 |
} |
695 |
|
696 |
sc2 = scale * scale; |
697 |
|
698 |
if (screeningMethod_ == DAMPED) { |
699 |
// assemble the damping variables |
700 |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
701 |
//erfcVal = res.first; |
702 |
//derfcVal = res.second; |
703 |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
704 |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
705 |
c1 = erfcVal * ri; |
706 |
c2 = (-derfcVal + c1) * ri; |
707 |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
708 |
} else { |
709 |
c1 = ri; |
710 |
c2 = c1 * ri; |
711 |
c3 = 3.0 * c2 * ri; |
712 |
} |
713 |
|
714 |
c2ri = c2 * ri; |
715 |
|
716 |
// calculate the potential |
717 |
pot_term = scale * c2; |
718 |
vterm = -pref * ct_j * pot_term; |
719 |
vpair += vterm; |
720 |
epot += *(idat.sw) * vterm; |
721 |
|
722 |
// calculate derivatives for forces and torques |
723 |
|
724 |
dVdr += -preSw * (uz_j * c2ri - ct_j * rhat * sc2 * c3); |
725 |
duduz_j += -preSw * pot_term * rhat; |
726 |
|
727 |
} |
728 |
if (i_is_Fluctuating) { |
729 |
*(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i; |
730 |
} |
731 |
} |
732 |
|
733 |
if (j_is_Quadrupole) { |
734 |
// first precalculate some necessary variables |
735 |
cx2 = cx_j * cx_j; |
736 |
cy2 = cy_j * cy_j; |
737 |
cz2 = cz_j * cz_j; |
738 |
pref = *(idat.electroMult) * pre14_ * q_i * one_third_; |
739 |
|
740 |
if (screeningMethod_ == DAMPED) { |
741 |
// assemble the damping variables |
742 |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
743 |
//erfcVal = res.first; |
744 |
//derfcVal = res.second; |
745 |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
746 |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
747 |
c1 = erfcVal * riji; |
748 |
c2 = (-derfcVal + c1) * riji; |
749 |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji; |
750 |
c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji; |
751 |
} else { |
752 |
c1 = riji; |
753 |
c2 = c1 * riji; |
754 |
c3 = 3.0 * c2 * riji; |
755 |
c4 = 5.0 * c3 * riji * riji; |
756 |
} |
757 |
|
758 |
// precompute variables for convenience |
759 |
preSw = *(idat.sw) * pref; |
760 |
c2ri = c2 * riji; |
761 |
c3ri = c3 * riji; |
762 |
c4rij = c4 * *(idat.rij) ; |
763 |
rhatdot2 = two * rhat * c3; |
764 |
rhatc4 = rhat * c4rij; |
765 |
|
766 |
// calculate the potential |
767 |
pot_term = ( qxx_j * (cx2*c3 - c2ri) + |
768 |
qyy_j * (cy2*c3 - c2ri) + |
769 |
qzz_j * (cz2*c3 - c2ri) ); |
770 |
vterm = pref * pot_term; |
771 |
vpair += vterm; |
772 |
epot += *(idat.sw) * vterm; |
773 |
|
774 |
// calculate derivatives for the forces and torques |
775 |
|
776 |
dVdr += -preSw * ( qxx_j* (cx2*rhatc4 - (two*cx_j*ux_j + rhat)*c3ri) + |
777 |
qyy_j* (cy2*rhatc4 - (two*cy_j*uy_j + rhat)*c3ri) + |
778 |
qzz_j* (cz2*rhatc4 - (two*cz_j*uz_j + rhat)*c3ri)); |
779 |
|
780 |
dudux_j += preSw * qxx_j * cx_j * rhatdot2; |
781 |
duduy_j += preSw * qyy_j * cy_j * rhatdot2; |
782 |
duduz_j += preSw * qzz_j * cz_j * rhatdot2; |
783 |
if (i_is_Fluctuating) { |
784 |
*(idat.dVdFQ1) += ( *(idat.sw) * vterm ) / q_i; |
785 |
} |
786 |
|
787 |
} |
788 |
} |
789 |
|
790 |
if (i_is_Dipole) { |
791 |
|
792 |
if (j_is_Charge) { |
793 |
// variables used by all the methods |
794 |
pref = *(idat.electroMult) * pre12_ * q_j * mu_i; |
795 |
preSw = *(idat.sw) * pref; |
796 |
|
797 |
if (summationMethod_ == esm_REACTION_FIELD) { |
798 |
|
799 |
ri2 = riji * riji; |
800 |
ri3 = ri2 * riji; |
801 |
|
802 |
vterm = pref * ct_i * ( ri2 - preRF2_ * *(idat.rij) ); |
803 |
vpair += vterm; |
804 |
epot += *(idat.sw) * vterm; |
805 |
|
806 |
dVdr += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_ * uz_i); |
807 |
|
808 |
duduz_i += preSw * rhat * (ri2 - preRF2_ * *(idat.rij) ); |
809 |
|
810 |
// Even if we excluded this pair from direct interactions, |
811 |
// we still have the reaction-field-mediated charge-dipole |
812 |
// interaction: |
813 |
|
814 |
if (idat.excluded) { |
815 |
indirect_vpair += -pref * ct_i * preRF2_ * *(idat.rij); |
816 |
indirect_Pot += -preSw * ct_i * preRF2_ * *(idat.rij); |
817 |
indirect_dVdr += -preSw * preRF2_ * uz_i; |
818 |
indirect_duduz_i += -preSw * rhat * preRF2_ * *(idat.rij); |
819 |
} |
820 |
|
821 |
} else { |
822 |
|
823 |
// determine inverse r if we are using split dipoles |
824 |
if (i_is_SplitDipole) { |
825 |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i); |
826 |
ri = 1.0 / BigR; |
827 |
scale = *(idat.rij) * ri; |
828 |
} else { |
829 |
ri = riji; |
830 |
scale = 1.0; |
831 |
} |
832 |
|
833 |
sc2 = scale * scale; |
834 |
|
835 |
if (screeningMethod_ == DAMPED) { |
836 |
// assemble the damping variables |
837 |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
838 |
//erfcVal = res.first; |
839 |
//derfcVal = res.second; |
840 |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
841 |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
842 |
c1 = erfcVal * ri; |
843 |
c2 = (-derfcVal + c1) * ri; |
844 |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
845 |
} else { |
846 |
c1 = ri; |
847 |
c2 = c1 * ri; |
848 |
c3 = 3.0 * c2 * ri; |
849 |
} |
850 |
|
851 |
c2ri = c2 * ri; |
852 |
|
853 |
// calculate the potential |
854 |
pot_term = c2 * scale; |
855 |
vterm = pref * ct_i * pot_term; |
856 |
vpair += vterm; |
857 |
epot += *(idat.sw) * vterm; |
858 |
|
859 |
// calculate derivatives for the forces and torques |
860 |
dVdr += preSw * (uz_i * c2ri - ct_i * rhat * sc2 * c3); |
861 |
duduz_i += preSw * pot_term * rhat; |
862 |
} |
863 |
|
864 |
if (j_is_Fluctuating) { |
865 |
*(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j; |
866 |
} |
867 |
|
868 |
} |
869 |
|
870 |
if (j_is_Dipole) { |
871 |
// variables used by all methods |
872 |
ct_ij = dot(uz_i, uz_j); |
873 |
|
874 |
pref = *(idat.electroMult) * pre22_ * mu_i * mu_j; |
875 |
preSw = *(idat.sw) * pref; |
876 |
|
877 |
if (summationMethod_ == esm_REACTION_FIELD) { |
878 |
ri2 = riji * riji; |
879 |
ri3 = ri2 * riji; |
880 |
ri4 = ri2 * ri2; |
881 |
|
882 |
vterm = pref * ( ri3 * (ct_ij - 3.0 * ct_i * ct_j) - |
883 |
preRF2_ * ct_ij ); |
884 |
vpair += vterm; |
885 |
epot += *(idat.sw) * vterm; |
886 |
|
887 |
a1 = 5.0 * ct_i * ct_j - ct_ij; |
888 |
|
889 |
dVdr += preSw * three * ri4 * (a1 * rhat - ct_i * uz_j - ct_j * uz_i); |
890 |
|
891 |
duduz_i += preSw * (ri3 * (uz_j - three * ct_j * rhat) - preRF2_*uz_j); |
892 |
duduz_j += preSw * (ri3 * (uz_i - three * ct_i * rhat) - preRF2_*uz_i); |
893 |
|
894 |
if (idat.excluded) { |
895 |
indirect_vpair += - pref * preRF2_ * ct_ij; |
896 |
indirect_Pot += - preSw * preRF2_ * ct_ij; |
897 |
indirect_duduz_i += -preSw * preRF2_ * uz_j; |
898 |
indirect_duduz_j += -preSw * preRF2_ * uz_i; |
899 |
} |
900 |
|
901 |
} else { |
902 |
|
903 |
if (i_is_SplitDipole) { |
904 |
if (j_is_SplitDipole) { |
905 |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i + 0.25 * d_j * d_j); |
906 |
} else { |
907 |
BigR = sqrt( *(idat.r2) + 0.25 * d_i * d_i); |
908 |
} |
909 |
ri = 1.0 / BigR; |
910 |
scale = *(idat.rij) * ri; |
911 |
} else { |
912 |
if (j_is_SplitDipole) { |
913 |
BigR = sqrt( *(idat.r2) + 0.25 * d_j * d_j); |
914 |
ri = 1.0 / BigR; |
915 |
scale = *(idat.rij) * ri; |
916 |
} else { |
917 |
ri = riji; |
918 |
scale = 1.0; |
919 |
} |
920 |
} |
921 |
if (screeningMethod_ == DAMPED) { |
922 |
// assemble damping variables |
923 |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
924 |
//erfcVal = res.first; |
925 |
//derfcVal = res.second; |
926 |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
927 |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
928 |
c1 = erfcVal * ri; |
929 |
c2 = (-derfcVal + c1) * ri; |
930 |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * ri; |
931 |
c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * ri * ri; |
932 |
} else { |
933 |
c1 = ri; |
934 |
c2 = c1 * ri; |
935 |
c3 = 3.0 * c2 * ri; |
936 |
c4 = 5.0 * c3 * ri * ri; |
937 |
} |
938 |
|
939 |
// precompute variables for convenience |
940 |
sc2 = scale * scale; |
941 |
cti3 = ct_i * sc2 * c3; |
942 |
ctj3 = ct_j * sc2 * c3; |
943 |
ctidotj = ct_i * ct_j * sc2; |
944 |
preSwSc = preSw * scale; |
945 |
c2ri = c2 * ri; |
946 |
c3ri = c3 * ri; |
947 |
c4rij = c4 * *(idat.rij) ; |
948 |
|
949 |
// calculate the potential |
950 |
pot_term = (ct_ij * c2ri - ctidotj * c3); |
951 |
vterm = pref * pot_term; |
952 |
vpair += vterm; |
953 |
epot += *(idat.sw) * vterm; |
954 |
|
955 |
// calculate derivatives for the forces and torques |
956 |
dVdr += preSwSc * ( ctidotj * rhat * c4rij - |
957 |
(ct_i*uz_j + ct_j*uz_i + ct_ij*rhat) * c3ri); |
958 |
|
959 |
duduz_i += preSw * (uz_j * c2ri - ctj3 * rhat); |
960 |
duduz_j += preSw * (uz_i * c2ri - cti3 * rhat); |
961 |
} |
962 |
} |
963 |
} |
964 |
|
965 |
if (i_is_Quadrupole) { |
966 |
if (j_is_Charge) { |
967 |
// precompute some necessary variables |
968 |
cx2 = cx_i * cx_i; |
969 |
cy2 = cy_i * cy_i; |
970 |
cz2 = cz_i * cz_i; |
971 |
|
972 |
pref = *(idat.electroMult) * pre14_ * q_j * one_third_; |
973 |
|
974 |
if (screeningMethod_ == DAMPED) { |
975 |
// assemble the damping variables |
976 |
//res = erfcSpline_->getValueAndDerivativeAt( *(idat.rij) ); |
977 |
//erfcVal = res.first; |
978 |
//derfcVal = res.second; |
979 |
erfcVal = erfc(dampingAlpha_ * *(idat.rij)); |
980 |
derfcVal = - alphaPi_ * exp(-alpha2_ * *(idat.r2)); |
981 |
c1 = erfcVal * riji; |
982 |
c2 = (-derfcVal + c1) * riji; |
983 |
c3 = -2.0 * derfcVal * alpha2_ + 3.0 * c2 * riji; |
984 |
c4 = -4.0 * derfcVal * alpha4_ + 5.0 * c3 * riji * riji; |
985 |
} else { |
986 |
c1 = riji; |
987 |
c2 = c1 * riji; |
988 |
c3 = 3.0 * c2 * riji; |
989 |
c4 = 5.0 * c3 * riji * riji; |
990 |
} |
991 |
|
992 |
// precompute some variables for convenience |
993 |
preSw = *(idat.sw) * pref; |
994 |
c2ri = c2 * riji; |
995 |
c3ri = c3 * riji; |
996 |
c4rij = c4 * *(idat.rij) ; |
997 |
rhatdot2 = two * rhat * c3; |
998 |
rhatc4 = rhat * c4rij; |
999 |
|
1000 |
// calculate the potential |
1001 |
pot_term = ( qxx_i * (cx2 * c3 - c2ri) + |
1002 |
qyy_i * (cy2 * c3 - c2ri) + |
1003 |
qzz_i * (cz2 * c3 - c2ri) ); |
1004 |
|
1005 |
vterm = pref * pot_term; |
1006 |
vpair += vterm; |
1007 |
epot += *(idat.sw) * vterm; |
1008 |
|
1009 |
// calculate the derivatives for the forces and torques |
1010 |
|
1011 |
dVdr += -preSw * (qxx_i* (cx2*rhatc4 - (two*cx_i*ux_i + rhat)*c3ri) + |
1012 |
qyy_i* (cy2*rhatc4 - (two*cy_i*uy_i + rhat)*c3ri) + |
1013 |
qzz_i* (cz2*rhatc4 - (two*cz_i*uz_i + rhat)*c3ri)); |
1014 |
|
1015 |
dudux_i += preSw * qxx_i * cx_i * rhatdot2; |
1016 |
duduy_i += preSw * qyy_i * cy_i * rhatdot2; |
1017 |
duduz_i += preSw * qzz_i * cz_i * rhatdot2; |
1018 |
|
1019 |
if (j_is_Fluctuating) { |
1020 |
*(idat.dVdFQ2) += ( *(idat.sw) * vterm ) / q_j; |
1021 |
} |
1022 |
|
1023 |
} |
1024 |
} |
1025 |
|
1026 |
|
1027 |
if (!idat.excluded) { |
1028 |
*(idat.vpair) += vpair; |
1029 |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += epot; |
1030 |
*(idat.f1) += dVdr; |
1031 |
|
1032 |
if (i_is_Dipole || i_is_Quadrupole) |
1033 |
*(idat.t1) -= cross(uz_i, duduz_i); |
1034 |
if (i_is_Quadrupole) { |
1035 |
*(idat.t1) -= cross(ux_i, dudux_i); |
1036 |
*(idat.t1) -= cross(uy_i, duduy_i); |
1037 |
} |
1038 |
|
1039 |
if (j_is_Dipole || j_is_Quadrupole) |
1040 |
*(idat.t2) -= cross(uz_j, duduz_j); |
1041 |
if (j_is_Quadrupole) { |
1042 |
*(idat.t2) -= cross(uz_j, dudux_j); |
1043 |
*(idat.t2) -= cross(uz_j, duduy_j); |
1044 |
} |
1045 |
|
1046 |
} else { |
1047 |
|
1048 |
// only accumulate the forces and torques resulting from the |
1049 |
// indirect reaction field terms. |
1050 |
|
1051 |
*(idat.vpair) += indirect_vpair; |
1052 |
(*(idat.pot))[ELECTROSTATIC_FAMILY] += indirect_Pot; |
1053 |
*(idat.f1) += indirect_dVdr; |
1054 |
|
1055 |
if (i_is_Dipole) |
1056 |
*(idat.t1) -= cross(uz_i, indirect_duduz_i); |
1057 |
if (j_is_Dipole) |
1058 |
*(idat.t2) -= cross(uz_j, indirect_duduz_j); |
1059 |
} |
1060 |
|
1061 |
return; |
1062 |
} |
1063 |
|
1064 |
void Electrostatic::calcSelfCorrection(SelfData &sdat) { |
1065 |
RealType mu1, preVal, self; |
1066 |
if (!initialized_) initialize(); |
1067 |
|
1068 |
ElectrostaticAtomData data = ElectrostaticMap[sdat.atype]; |
1069 |
|
1070 |
// logicals |
1071 |
bool i_is_Charge = data.is_Charge; |
1072 |
bool i_is_Dipole = data.is_Dipole; |
1073 |
bool i_is_Fluctuating = data.is_Fluctuating; |
1074 |
RealType chg1 = data.fixedCharge; |
1075 |
|
1076 |
if (i_is_Fluctuating) { |
1077 |
chg1 += *(sdat.flucQ); |
1078 |
// dVdFQ is really a force, so this is negative the derivative |
1079 |
*(sdat.dVdFQ) -= *(sdat.flucQ) * data.hardness + data.electronegativity; |
1080 |
} |
1081 |
|
1082 |
if (summationMethod_ == esm_REACTION_FIELD) { |
1083 |
if (i_is_Dipole) { |
1084 |
mu1 = data.dipole_moment; |
1085 |
preVal = pre22_ * preRF2_ * mu1 * mu1; |
1086 |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] -= 0.5 * preVal; |
1087 |
|
1088 |
// The self-correction term adds into the reaction field vector |
1089 |
Vector3d uz_i = sdat.eFrame->getColumn(2); |
1090 |
Vector3d ei = preVal * uz_i; |
1091 |
|
1092 |
// This looks very wrong. A vector crossed with itself is zero. |
1093 |
*(sdat.t) -= cross(uz_i, ei); |
1094 |
} |
1095 |
} else if (summationMethod_ == esm_SHIFTED_FORCE || summationMethod_ == esm_SHIFTED_POTENTIAL) { |
1096 |
if (i_is_Charge) { |
1097 |
if (screeningMethod_ == DAMPED) { |
1098 |
self = - 0.5 * (c1c_ + alphaPi_) * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_; |
1099 |
} else { |
1100 |
self = - 0.5 * rcuti_ * chg1 * (chg1 + *(sdat.skippedCharge)) * pre11_; |
1101 |
} |
1102 |
(*(sdat.pot))[ELECTROSTATIC_FAMILY] += self; |
1103 |
} |
1104 |
} |
1105 |
} |
1106 |
|
1107 |
RealType Electrostatic::getSuggestedCutoffRadius(pair<AtomType*, AtomType*> atypes) { |
1108 |
// This seems to work moderately well as a default. There's no |
1109 |
// inherent scale for 1/r interactions that we can standardize. |
1110 |
// 12 angstroms seems to be a reasonably good guess for most |
1111 |
// cases. |
1112 |
return 12.0; |
1113 |
} |
1114 |
} |